JPH09178573A - Method and apparatus for detecting temperature of geothermal well - Google Patents

Method and apparatus for detecting temperature of geothermal well

Info

Publication number
JPH09178573A
JPH09178573A JP34251295A JP34251295A JPH09178573A JP H09178573 A JPH09178573 A JP H09178573A JP 34251295 A JP34251295 A JP 34251295A JP 34251295 A JP34251295 A JP 34251295A JP H09178573 A JPH09178573 A JP H09178573A
Authority
JP
Japan
Prior art keywords
temperature
well
geothermal
logging
measuring probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34251295A
Other languages
Japanese (ja)
Other versions
JP3026749B2 (en
Inventor
Ken Ikeuchi
研 池内
Nobuo Doi
宣夫 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP34251295A priority Critical patent/JP3026749B2/en
Publication of JPH09178573A publication Critical patent/JPH09178573A/en
Application granted granted Critical
Publication of JP3026749B2 publication Critical patent/JP3026749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide method and apparatus for measuring the temperature in mine shaft being used for detecting the temperature of geothermal well having high stratum temperature accurately. SOLUTION: A temperature measuring probe containing a plurality of kinds of temperature indicating agent 2 having different melting temperature performance is lowered down into a geothermal well by means of a wire rope and held at an inspecting position of required depth. It is then recovered onto the ground and the stratum temperature is measured by checking the fusion of each temperature indicating agent 2. A plurality of containing carriers 3, each provided with a temperature indicating agent containing space, are encapsulated in a tubular temperature measuring probe body 1 while being coupled in the axial direction. A plurality of kinds of temperature indicating agent 2 having different melting temperature performance is contained, individually, in the containing space of carrier 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地熱発電用地熱井
の坑井内温度を測定するときに用いられるものであっ
て、特に地熱発電に用いる地熱生産井や観測井,還元井
などのうち、とくに高い地層温度 (≧400 ℃) をもつ坑
井内温度を、示温剤を利用することによって温度検層す
る方法およびこの温度検層時に用いる坑井内温度測定用
検層装置についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used to measure the temperature inside a well of a geothermal well for geothermal power generation, and particularly, among geothermal production wells, observation wells, reduction wells and the like used for geothermal power generation. This is a proposal for a method of logging the well temperature with a particularly high formation temperature (≧ 400 ℃) by using a temperature indicator, and a logging device for measuring the well temperature used during this well logging.

【0002】[0002]

【従来の技術】地熱発電に供する地熱蒸気を採取するた
めに掘削される地熱井や、上記地熱蒸気から分離された
熱水を地層中に還元するための還元井などは、調査,解
析のために温度や圧力、流速などの種々の検層が行われ
る。こうした坑井内検層の1つに温度検層がある。
2. Description of the Related Art Geothermal wells that are excavated to collect geothermal steam for geothermal power generation, and reduction wells that reduce the hot water separated from the geothermal steam into the stratum, are for research and analysis. Various loggings such as temperature, pressure and flow velocity are performed. One of these well loggings is temperature logging.

【0003】上記温度検層というのは、例えば、各地熱
生産井の坑井内温度を調査することで地域全体の温度分
布を把握することにより、開発可能な高温域の範囲を知
りたいとき、あるいは、各坑井が自然対流の上昇域、下
降域あるいは自然対流の発生していない熱伝導域に位置
するのかどうかを見分けるとき、さらには、還元熱水や
地表水などの低温水の流動も明らかにしたいときなどに
行うものである。
The above-mentioned temperature logging means, for example, when it is desired to know the range of high temperature regions that can be developed by grasping the temperature distribution of the whole area by investigating the temperature inside the well of each heat producing well, or , When distinguishing whether each well is located in the rising area, falling area of natural convection, or in the heat conduction area where natural convection does not occur, the flow of low-temperature water such as reduced hot water and surface water is also clear. It is something you do when you want to.

【0004】こうした目的のために、地熱井の坑井内温
度,即ち地熱流体の温度を正確に測定する必要がある。
そして、その測定のために、坑井内に降下して使う高温
用の専用の温度計が必要となる。一般に温度計には、気
体・液体・固体の熱膨張を利用したものの他、熱電対温
度計・抵抗温度計・光ファイバー温度計・赤外線温度計
等種々の温度計がある。それぞれが異なった特長を持っ
ており、その特長に応じ適当なものを選択して使用して
いる。 しかし、測温される対象が特殊な場合、例え
ば、上述した地熱井のような場合には、測定位置が2000
m を超える深度の地下であり、しかも坑井内の地熱流体
を対象とするのであるから、測温方法および測定装置も
特殊なものが使われなければならない。
For this purpose, it is necessary to accurately measure the temperature inside the well of the geothermal well, that is, the temperature of the geothermal fluid.
Then, for the measurement, a dedicated thermometer for high temperature, which is used by descending into the well, is required. In general, there are various thermometers such as thermocouple thermometers, resistance thermometers, fiber optic thermometers, and infrared thermometers, in addition to those that utilize the thermal expansion of gas, liquid, and solid. Each has different characteristics, and we select and use the appropriate one according to the characteristics. However, if the object to be measured is special, for example, in the case of the geothermal well described above, the measurement position is 2000
Since it is underground to a depth of more than m and is intended for geothermal fluids in wells, special temperature measuring methods and measuring devices must be used.

【0005】従来、こうした坑井内温度検層を行う方
法,装置としては、例えば、315 ℃以下の坑井内温度測
定については、アーマードケーブルという電線を内挿し
たケーブルを用いて白金温度計にて行っている。また、
315 ℃を超える高温部を有する坑井内温度については、
機械式の温度計(バイメタル温度計)にて 418℃を上限
として測定していた。
Conventionally, as a method and apparatus for performing such wellbore temperature logging, for example, for wellbore temperature measurement at 315 ° C. or lower, a platinum thermometer is used using a cable called an armored cable with an electric wire inserted therein. ing. Also,
Regarding the temperature in the well with hot parts exceeding 315 ℃,
It was measured with a mechanical thermometer (bimetal thermometer) with an upper limit of 418 ° C.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
既知の測温方法では、418 ℃を超える地層温度をもつ坑
井内温度検層はできない。というのは、最近の地熱発電
用地熱井 (とくに生産井) などは、発電効率の向上を目
指すために、418 ℃以上、ときには 500℃を超える高温
流体を噴出する高温貯留層を有する地熱地域でさく井さ
れることがあり、その掘削深度も大きいために、従来の
上記温度測定方法および装置では、十分な対応ができな
いのが実情である。
However, with these known temperature measuring methods, it is not possible to perform wellbore temperature logging having a formation temperature exceeding 418 ° C. This is because recent geothermal wells (especially production wells) for geothermal power generation are located in geothermal areas that have high-temperature reservoirs that eject high-temperature fluids above 418 ℃ and sometimes above 500 ℃ in order to improve power generation efficiency. Since it is often drilled and the excavation depth is large, it is the actual situation that the above-mentioned conventional temperature measuring method and apparatus cannot sufficiently cope with the situation.

【0007】そこで、本発明の主たる目的は、地熱井な
どの坑井内温度測定のための新しい温度検層の技術を開
発することにある。本発明の他の目的は、高温の地層温
度を有する地熱井の温度検層を正確に行うための、坑井
内温度測定方法と測定装置とを提案するところにある。
Therefore, the main object of the present invention is to develop a new temperature logging technique for measuring the temperature inside a well such as a geothermal well. Another object of the present invention is to propose a well bore temperature measuring method and measuring apparatus for accurately performing temperature logging of a geothermal well having a high formation temperature.

【0008】[0008]

【課題を解決するための手段】上記の目的に適う地熱井
温度検層の方法として、本発明では、従来の白金温度計
やバイメタル温度計によるのではなく、示温剤を利用す
ることを特徴とする坑井内温度検層法およびその装置を
提案する。即ち、本発明は、地熱井の坑井内に、温度に
対して異なる融解性能をもつ複数種の示温剤を格納した
測温プローブをワイヤーにて降下させ、所要深度の検層
位置に保持したのち前記測温プローブを地上に回収し、
前記各示温剤の融解の有無によって地層温度を測定する
ことを特徴とする地熱井の温度検層法である。また、本
発明は、上記の温度検層に当たっては、先端部にキャッ
プを有しかつ後端部にはワイヤーソケットを介して懸吊
用ワイヤーを繋留してなる筒状の測温プローブ本体と、
この本体内に封入される、複数個をパッキンを介在させ
て軸方向に積層連結できると共に、各々示温剤収容スペ
ースを設けてなる複数個の格納キャリアーとからなり、
上記各格納キャリアーの収容スペース内には、温度に対
して異なる融解性能を示す複数種の示温剤をそれぞれ個
別に格納したことを特徴とする温度検層装置を用いる。
なお、格納キャリアーの連結には、必ずしもパッキンを
必要としない。
As a geothermal well temperature logging method suitable for the above purpose, the present invention is characterized by utilizing a temperature indicator instead of using a conventional platinum thermometer or bimetal thermometer. We propose a well logging method and its equipment. That is, the present invention, in the well of the geothermal well, after lowering the temperature measuring probe that stores a plurality of types of temperature indicating agents having different melting performance with respect to temperature with a wire and holding it at the logging position of the required depth. Collect the temperature probe on the ground,
A temperature logging method for geothermal wells, characterized in that the geological temperature is measured depending on whether or not each of the temperature indicators melts. Further, the present invention, in the above-mentioned temperature logging, a tubular temperature measuring probe main body having a cap at the tip and anchoring a suspending wire via a wire socket at the rear end,
A plurality of storage carriers enclosed in this main body can be stacked and connected in the axial direction with a packing interposed, and each storage carrier is provided with a temperature indicating agent storage space.
A temperature logging device is used in which a plurality of types of temperature indicating agents having different melting performances with respect to temperature are individually stored in the accommodation space of each storage carrier.
It should be noted that packing is not necessarily required to connect the storage carriers.

【0009】[0009]

【発明の実施の形態】本発明は、地熱発電用地熱井の温
度検層のために開発された技術であり、とくに坑井内の
測定位置が 418℃を超えるような高温の地層を有する地
熱生産井の温度検層にとりわけ有利に適用される方法で
あるが、もちろん、観測井や還元井の温度検層、さらに
は温泉井の温度検層にも適用できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a technique developed for temperature logging of geothermal wells for geothermal power generation, and particularly for geothermal production having a geological formation with a high temperature such that the measurement position in the well exceeds 418 ° C. The method is particularly advantageously applied to well logging, but of course, it can also be applied to observation wells, reducing wells, and hot spring wells.

【0010】上述したように、本発明にかかる温度検層
の特徴は、500 ℃を超える地熱流体の測定にも耐えられ
るように、示温剤を利用するところにある。ここで、示
温剤,とくに本発明に有利に適合する不可逆性型示温剤
には、熱分解方式、昇華現象方式、化学反応方
式、溶融現象方式、電子の授受方式、PH変化な
どによるものがあるが、本発明の温度検層法には、特定
の温度に達すると明瞭に溶融し、温度が下がっても元の
形状に戻らない特性を有する溶融現象方式がとくに有利
に適合するので、以下にこの方式について詳しく説明す
る。
As described above, the characteristic feature of the temperature logging according to the present invention lies in the use of a thermochromic agent so that it can withstand the measurement of geothermal fluids exceeding 500 ° C. Here, the thermochromic agent, especially the irreversible thermochromic agent which is advantageously applicable to the present invention, includes those based on a thermal decomposition method, a sublimation phenomenon method, a chemical reaction method, a melting phenomenon method, an electron transfer method, a PH change, etc. However, in the temperature logging method of the present invention, a melting phenomenon method having a characteristic that it melts clearly when a specific temperature is reached, and does not return to its original shape even when the temperature is lowered, is particularly advantageously suited. This method will be described in detail.

【0011】上記の溶融方式の示温剤は、結晶固体物が
温度の上昇により液体になる現象を利用するもので、一
度液体化したものは、冷却により凝固するが、元の形に
は戻らない。かかる溶融方式の示温剤は、熱分解方式が
固体の化学変化による変色を利用しているのに対して、
単に固体から液体への物理変化を利用するものであるか
ら、その転移温度に対しての他の条件の影響をほとんど
受けず一定であり、そのために、測温時に正確な温度測
定ができる利点がある。
The above-mentioned melting type temperature indicator utilizes the phenomenon that a crystalline solid substance becomes a liquid when the temperature rises. Once liquefied, it solidifies by cooling but does not return to its original form. . In contrast to the thermal decomposition method that utilizes the discoloration due to the chemical change of the solid,
Since it simply utilizes the physical change from solid to liquid, it is constant with almost no effect of other conditions on its transition temperature, which has the advantage of enabling accurate temperature measurement during temperature measurement. is there.

【0012】この溶融方式示温剤の製品形態としては、
棒状、粒状、液状 (ペイント状) あるいはラベル状 (シ
ール状) のものがあるが、本発明に適合するのは棒状、
粒状のものである。例えば、溶融物質を加圧成型して、
棒状,粒状に固めたもので、その使用方法は、測温対
象、例えば坑井内地熱流体によりプローブ本体が加熱さ
れ、さらにプローブ本体内の格納キャリアーが加熱され
ることにより、示温剤の表面が溶けるか否かで該地熱流
体の温度を測定するのである。なお、表示温度は、封入
した示温剤の中で溶融した最も高い示温剤の温度であ
る。
The product form of this melting type temperature indicator is as follows:
There are rod-shaped, granular, liquid (paint-shaped) or label-shaped (seal-shaped), but the rod-shaped,
It is granular. For example, pressure molding a molten material,
It is solidified into a rod shape or a granular shape, and the usage method is that the probe body is heated by the temperature measurement target, for example, the geothermal fluid in the well, and the storage carrier in the probe body is heated, so that the surface of the temperature indicator melts. Whether or not the temperature of the geothermal fluid is measured. The indicated temperature is the temperature of the highest melting temperature indicator among the enclosed temperature indicators.

【0013】次に、本発明にかかる地熱井の具体的な温
度検層方法について説明する。検層に当たっては、温度
検層を試みようとする地熱井の坑井内に、測温プローブ
を降下する。このとき、該測温プローブ中には筒軸方向
に、それぞれが異なる温度で溶融する示温剤を5〜10
種類、格納キャリアーを使って封入したものを使用す
る。この測温プローブは、ワイヤーを使って坑井内を降
下させて所定深度の坑底 (2000〜4000m)の地熱流体中に
導き、そこに、約30分〜1時間保持し、その後ワイヤ
を捲揚げて地上に回収する。そして、前記測温プローブ
から示温剤を封入した格納キャリアーを取り出し、封入
したどの温度の示温剤までが表面が融解したかを、もし
必要なら形状変形の観察とも合わせて確認することで、
指示温度を特定し、測温値とする。
Next, a specific method of temperature logging of the geothermal well according to the present invention will be described. For logging, the temperature probe is dropped into the well of a geothermal well where an attempt is made for temperature logging. At this time, in the temperature measuring probe, there are 5 to 10 temperature indicating agents that melt at different temperatures in the cylinder axis direction.
Use the one enclosed with the type and storage carrier. This temperature probe is used to lower the inside of the well using a wire and guide it into the geothermal fluid at the bottom of the well (2000 to 4000 m) at a predetermined depth, hold it there for about 30 minutes to 1 hour, and then wind the wire. And collect it on the ground. Then, the storage carrier in which the temperature indicator is enclosed is taken out from the temperature measuring probe, and the temperature of the enclosed temperature indicator up to which the surface has melted can be confirmed by observing the shape deformation, if necessary.
Specify the indicated temperature and use it as the measured value.

【0014】なお、使用する示温剤としては、種々の融
解温度をもつ化合物、例えば、カリウム化合物、ナトリ
ウム化合物、バリウム化合物、タングステン化合物、ク
ロム化合物あるいはモリブデン化合物などの無機化合物
などを用い、これらを棒状 (クレヨン) や粒状 (タブレ
ットまたはペレット) に成型したものを測温プローブ内
に封入する。
As the temperature indicator to be used, compounds having various melting temperatures, for example, inorganic compounds such as potassium compounds, sodium compounds, barium compounds, tungsten compounds, chromium compounds or molybdenum compounds are used, and these are rod-shaped. Encapsulate (crayon) or granular (tablet or pellet) into the temperature probe.

【0015】次に、上記の温度検層に当たって用いる装
置として、本発明では、図1に示すような構造のものを
用いる。図示の符号1は、金属製筒状の測温プローブ本
体であって、その先端 (降下端) には、溶接固定もしく
は着脱可能に嵌着するキャップ1aを有し、その後端
(後端) 部にはワイヤーソケット1bを介して懸吊用ワ
イヤー4が繋留された構成を有するものである。
Next, as an apparatus used for the above-mentioned temperature logging, in the present invention, an apparatus having a structure as shown in FIG. 1 is used. Reference numeral 1 shown in the figure is a metal-made tubular temperature measuring probe main body having a cap 1a at its tip (falling end) which is fixed by welding or detachably fitted, and its rear end.
At the (rear end) portion, the suspension wire 4 is anchored via the wire socket 1b.

【0016】この測温プローブ本体1内には、上述した
各種示温剤2を収容するための格納キャリアー3・・・
が、筒軸方向に複数個、積層連結した状態にて封入され
ている。即ち、この格納キャリアー3は、示温剤2を収
容するための収容スペース5をもつカップ状の形状を有
し、筒軸方向 (上下方向) に積み重ねて、互いに連結す
ることができ、その連結部にはシールリングの如きメタ
ルパッキン6を介挿することにより、各格納キャリアー
3,つまり各収納スペース5が隔離できるようになって
いる。なお、各格納キャリアー3の隔離のために使う前
記メタルパッキン6は、キャップ1a,ワイヤーソケッ
ト1bと測温プローブ本体とを溶接あるいはOリング,
メタルパッキン等によりシーリングする場合には、必ず
しも使用する必要がない。
In the temperature measuring probe body 1, a storage carrier 3 for accommodating the above-mentioned various temperature indicating agents 2 ...
However, a plurality of them are sealed in a stacked state in the cylinder axis direction. That is, the storage carrier 3 has a cup-like shape having a storage space 5 for storing the temperature indicator 2, and can be stacked in the cylinder axis direction (vertical direction) and connected to each other. By inserting a metal packing 6 such as a seal ring, the storage carriers 3, that is, the storage spaces 5 can be isolated from each other. The metal packing 6 used for separating each storage carrier 3 welds or O-rings the cap 1a, the wire socket 1b and the temperature measuring probe main body,
It is not always necessary to use it when sealing with metal packing or the like.

【0017】なお、上記測温プローブ本体1の大きさ
は、封入する格納キヤリアー3の数、即ち、示温剤2の
封入数に応じたものとし、例えば、5〜10個程度を目
安として封入するのに十分な長さとする。なお、この示
温剤の封入数については、温度検層をする被測定対象,
目的,測定範囲に応じて適宜に選定する。
The size of the temperature-measuring probe main body 1 depends on the number of storage carriers 3 to be enclosed, that is, the number of temperature-indicating agents 2 to be enclosed. Be long enough for Regarding the number of the thermoindicators enclosed,
Select appropriately according to the purpose and measurement range.

【0018】[0018]

【実施例】この実施例は、従来装置では測定のできない
高温の地熱層を有する地熱発電用調査井内の温度検層を
行った例である。その測定環境を表1にまとめて示し
た。なお、使用した示温剤は、ペレット (P) を7種類
の例、クレヨン (M) を6種類とペレット9種類の例に
ついて、これらを図1に示す測温プローブ本体内の格納
キヤリア中に収容して測定に供した。その測定結果を表
2に示す。なお、使用した試料 (示温剤) は、主成分が (クレヨン状示温剤Mは、熱溶融化合物に少量のバイン
ダーと色素を添加し加圧してクレヨン状としており、熱
溶融性化合物は指示温度によつて異なる。…上記カッコ
内数値は指示温度である。)である。
EXAMPLE This example is an example in which temperature logging was performed in a survey well for geothermal power generation having a high-temperature geothermal layer that cannot be measured by a conventional apparatus. The measurement environment is summarized in Table 1. Regarding the used temperature indicator, seven types of pellets (P), six types of crayons (M) and nine types of pellets were stored in the storage carrier in the temperature probe body shown in Fig. 1. And provided for measurement. Table 2 shows the measurement results. The main component of the used sample (indicator) is (The crayon-shaped temperature indicator M is a crayon-shaped product obtained by adding a small amount of a binder and a dye to a hot-melt compound and pressurizing it, and the heat-meltable compound varies depending on the indicated temperature .... .)

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示すとおり、示温剤による温度評価
によれば、 第1回:ペレット (P-399, 427, 482, 500, 510,
538, 550) を使用した場合、 ・ペレット (P-399, 427, 482, 500 ) は表面融解して
いる。 ・ペレット (P-510, 538, 550 )は表面融解していな
い。 第2回:クレヨン (M-395, 430, 460, 490, 520,
545 ) とペレット (P-343, 371, 399, 427, 482, 500,
510, 538, 550) とを使用した場合、 ・クレヨン (M-395, 430, 460, 490 ) は表面融解して
いる。 ・クレヨン (M-520, 545 ) は表面融解していない。 ・ペレット (P-343, 371, 399, 427, 482, 500 ) は表
面融解している。 ・ペレット (P-510, 538, 550) は表面融解していな
い。 従って、この実施例での坑井内 (坑底) 地層の温度は 5
00〜510 ℃と推定される。このようにして高温地熱層の
正確な温度を測定することができた。
As shown in Table 2, according to the temperature evaluation with a thermochromic agent, the first: pellets (P-399, 427, 482, 500, 510,
538, 550) ・ Pellets (P-399, 427, 482, 500) are surface-melted. -Pellets (P-510, 538, 550) are not surface-melted. 2nd: Crayons (M-395, 430, 460, 490, 520,
545) and pellets (P-343, 371, 399, 427, 482, 500,
510, 538, 550) ・ Crayons (M-395, 430, 460, 490) are surface-melted.・ Crayon (M-520, 545) does not melt on the surface. -Pellets (P-343, 371, 399, 427, 482, 500) are surface-melted. -Pellets (P-510, 538, 550) are not surface-melted. Therefore, the temperature of the well (bottom) formation in this example is 5
It is estimated to be 00 to 510 ℃. In this way, the accurate temperature of the hot geothermal layer could be measured.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、41
8 ℃を超える高温の地熱層を有する地熱井の坑井内温度
を正確に測定することができる。
As described above, according to the present invention, 41
It is possible to accurately measure the temperature inside a well of a geothermal well having a high-temperature geothermal layer exceeding 8 ℃.

【図面の簡単な説明】[Brief description of the drawings]

【図1】温度検層装置の要部の部分断面図である。FIG. 1 is a partial cross-sectional view of a main part of a temperature logging device.

【符号の説明】[Explanation of symbols]

1 測温プローブ本体 2 示温剤 3 格納キャリアー 4 懸吊用ワイヤ 5 収納スペース 6 パッキン 1 Temperature probe main body 2 Temperature indicator 3 Storage carrier 4 Suspending wire 5 Storage space 6 Packing

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年2月1日[Submission date] February 1, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】[0018]

【実施例】この実施例は、従来装置では測定のできない
高温の地熱層を有する地熱発電用調査井内の温度検層を
行った例である。その測定環境を表1にまとめて示し
た。なお、使用した示温剤は、ペレット (P) を7種類
の例、クレヨン (M) を6種類とペレット9種類の例に
ついて、これらを図1に示す測温プローブ本体内の格納
キヤリア中に収容して測定に供した。その測定結果を表
2に示す。なお、使用した試料 (示温剤) は、下記のと
おりである。 (クレヨン状示温剤Mは、熱溶融化合物に少量のバイン
ダーと色素を添加し加圧してクレヨン状としており、熱
溶融性化合物は指示温度によつて異なる。…上記カッコ
内数値は指示温度である。)【
EXAMPLE This example is an example in which temperature logging was performed in a survey well for geothermal power generation having a high-temperature geothermal layer that cannot be measured by a conventional apparatus. The measurement environment is summarized in Table 1. Regarding the used temperature indicator, seven types of pellets (P), six types of crayons (M) and nine types of pellets were stored in the storage carrier in the temperature probe body shown in Fig. 1. And provided for measurement. Table 2 shows the measurement results. Incidentally, the samples used (temperature indicating agents), bets below
It is a cage. (The crayon-shaped temperature indicator M is a crayon-shaped product obtained by adding a small amount of a binder and a dye to a hot-melt compound and pressurizing it, and the heat-meltable compound varies depending on the indicated temperature .... The numerical value in parentheses is the indicated temperature. .) 【

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 地熱井の坑井内に、温度に対して異なる
融解性能をもつ複数種の示温剤を格納した測温プローブ
をワイヤーにて降下させ、所要深度の検層位置に保持し
たのち前記測温プローブを地上に回収し、前記各示温剤
の融解の有無によって地層温度を測定することを特徴と
する地熱井の温度検層法。
1. A thermometer probe containing a plurality of types of temperature indicating agents having different melting performances with respect to temperature is lowered by a wire into a well of a geothermal well, and the temperature measuring probe is held at a logging position of a required depth. A temperature logging method for a geothermal well, characterized in that the temperature measuring probe is collected on the ground, and the formation temperature is measured by the presence or absence of melting of each of the temperature indicating agents.
【請求項2】 先端部にキャップを有しかつ後端部には
ワイヤーソケットを介して懸吊用ワイヤーを繋留してな
る筒状の測温プローブ本体と、この本体内に封入され
る、示温剤収容スペースを有すると共に複数個を互いに
パッキンを介在させて軸方向に積層連結できるカップ状
格納キャリアーとからなり、上記各格納キャリアーの収
容スペース内には、温度に対して異なる融解性能を示す
複数種の示温剤をそれぞれ個別に格納したことを特徴と
する坑井内温度測定用検層装置。
2. A tubular temperature measuring probe main body having a cap at the front end and a suspension wire being anchored at the rear end via a wire socket, and a temperature indicator enclosed in the main body. A plurality of cup-shaped storage carriers that have an agent storage space and can be stacked and connected in the axial direction by interposing packings therebetween, and the storage space of each storage carrier has a plurality of melting performances that differ depending on the temperature. A logging device for measuring the temperature inside a well, characterized in that each type of thermometer is stored separately.
JP34251295A 1995-12-28 1995-12-28 Temperature logging method for geothermal wells for geothermal power generation Expired - Fee Related JP3026749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34251295A JP3026749B2 (en) 1995-12-28 1995-12-28 Temperature logging method for geothermal wells for geothermal power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34251295A JP3026749B2 (en) 1995-12-28 1995-12-28 Temperature logging method for geothermal wells for geothermal power generation

Publications (2)

Publication Number Publication Date
JPH09178573A true JPH09178573A (en) 1997-07-11
JP3026749B2 JP3026749B2 (en) 2000-03-27

Family

ID=18354321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34251295A Expired - Fee Related JP3026749B2 (en) 1995-12-28 1995-12-28 Temperature logging method for geothermal wells for geothermal power generation

Country Status (1)

Country Link
JP (1) JP3026749B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115697A (en) * 2013-01-25 2013-05-22 安徽理工大学 Optical temperature sensing method for detecting longitudinal temperature of freezing holes
CN103968953A (en) * 2014-05-09 2014-08-06 葛洲坝易普力股份有限公司 Whole blasthole temperature measurement device and measurement method thereof
CN106895926A (en) * 2017-03-09 2017-06-27 长江水利委员会长江科学院 High accuracy geothermal gradient automatic measurement device and method
CN111485872A (en) * 2020-03-06 2020-08-04 四川省地质矿产勘查开发局成都水文地质工程地质队 Temperature measuring device of geothermal well

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115697A (en) * 2013-01-25 2013-05-22 安徽理工大学 Optical temperature sensing method for detecting longitudinal temperature of freezing holes
CN103968953A (en) * 2014-05-09 2014-08-06 葛洲坝易普力股份有限公司 Whole blasthole temperature measurement device and measurement method thereof
CN106895926A (en) * 2017-03-09 2017-06-27 长江水利委员会长江科学院 High accuracy geothermal gradient automatic measurement device and method
CN106895926B (en) * 2017-03-09 2023-06-06 长江水利委员会长江科学院 High-precision automatic measurement equipment and method for ground temperature gradient
CN111485872A (en) * 2020-03-06 2020-08-04 四川省地质矿产勘查开发局成都水文地质工程地质队 Temperature measuring device of geothermal well
CN111485872B (en) * 2020-03-06 2022-12-02 四川省地质矿产勘查开发局成都水文地质工程地质队 Temperature measuring device of geothermal well

Also Published As

Publication number Publication date
JP3026749B2 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
CN104466520B (en) Feed-through element for adverse circumstances
Williams et al. Melting curve of diopside to 50 kilobars
Ikeuchi et al. High-temperature measurements in well WD-1a and the thermal structure of the Kakkonda geothermal system, Japan
Lees et al. Combined very high pressure/high temperature calibration of the tetrahedral anvil apparatus, fusion curves of zinc, aluminium, germanium and silicon to 60 kilobars
CN104145080A (en) Systems and methods of determining fluid properties
Beck et al. The measurement of the thermal conductivities of rocks by observations in boreholes
US3905243A (en) Liquid-level sensing device
CN112345153B (en) High-temperature-resistant optical fiber pressure sensor and packaging process thereof
JPH09178573A (en) Method and apparatus for detecting temperature of geothermal well
Dirksen Upgrading formation-evaluation electronics for high-temperature drilling environments
Gusev et al. Equipment design for investigation of substances decomposed under the pressure of self-generated atmosphere by means of thermal analysis
Taylor Phase relationships and thermodynamic properties of the Pd-S system
CN105863618B (en) A kind of Temperature Deep is with boring temperature-detecting device
KR101358927B1 (en) Irradiation capsule for an improved temperature control by using a liquid and solid thermal media
CN213180406U (en) High-efficient FBG high temperature sensor
US2633025A (en) Means for indicating temperatures
Cooke Experimental determination of the thermal conductivity of molten lithium from 320 to 830 C
Hadley et al. Thermophysical properties of deep ocean sediments
EP0612983A1 (en) Method and apparatus for detecting the position of fluid-fluid interfaces
Zablocki et al. Field measurements of apparent Curie temperatures in a cooling basaltic lava lake, Kilauea Iki, Hawaii
Gido Subterrene penetration rate: melting power relationship
CN106500877A (en) A kind of thermal station temperature correction method
CN203249705U (en) Diameter-varied thermocouple
US1913845A (en) Apparatus for determining deep well temperatures
US2053967A (en) Apparatus for determining well temperatures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees