JPH09178377A - Honeycomb-like thermal storage unit - Google Patents

Honeycomb-like thermal storage unit

Info

Publication number
JPH09178377A
JPH09178377A JP7342634A JP34263495A JPH09178377A JP H09178377 A JPH09178377 A JP H09178377A JP 7342634 A JP7342634 A JP 7342634A JP 34263495 A JP34263495 A JP 34263495A JP H09178377 A JPH09178377 A JP H09178377A
Authority
JP
Japan
Prior art keywords
honeycomb structure
honeycomb
heat storage
crystal phase
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7342634A
Other languages
Japanese (ja)
Other versions
JP2857361B2 (en
Inventor
Kazuhiko Kumazawa
和彦 熊澤
Wataru Kotani
亘 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP7342634A priority Critical patent/JP2857361B2/en
Priority to CA002167991A priority patent/CA2167991C/en
Priority to EP96300516A priority patent/EP0724126B1/en
Priority to DE69620490T priority patent/DE69620490T2/en
Priority to US08/591,117 priority patent/US6210645B1/en
Publication of JPH09178377A publication Critical patent/JPH09178377A/en
Application granted granted Critical
Publication of JP2857361B2 publication Critical patent/JP2857361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a honeycomb-like thermal storage unit which make it possible to efficiently heat exchange without damaging for high temperature and corrosive exhaust gas. SOLUTION: This honeycomb-like thermal storage unit 1 comprises a plurality of honeycomb structures 2 stacked recover the waste heat of the exhaust gas by alternately passing the exhaust gas and gas to be heated to a channel formed of a through hole 3. The structure 2 made at the high temperature part of the unit in contact with the high temperature exhaust of aluminum titanate as a main crystal phase or the structure made of aluminum titanate and mullite. The thermal storage part becoming the temperature of at least 1,200 deg.C or higher at the time of normal operation of a baking furnace is constituted by the structure 2 of the alumina of a main crystal state, the unit of the lower temperature side than the structure 2 of the alumina as the main crystal phase is constituted by at least one combination selected from among the structure 2 of cordierite as the main crystal phase, the structure 2 of mullite as the main crystal phase and the structure 2 of corrosion resistant porcelain material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数のハニカム構
造体を積み重ねてなり、貫通孔から構成される流路に排
ガスと被加熱ガスとを交互に通過させて排ガス中の廃熱
を回収するハニカム状蓄熱体に関し、特に高温で腐食雰
囲気の排ガスに対して好適に使用できるハニカム状蓄熱
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a stack of a plurality of honeycomb structures, and exhaust gas and heated gas are alternately passed through a flow path constituted by through holes to recover waste heat in the exhaust gas. The present invention relates to a honeycomb heat storage body, and particularly to a honeycomb heat storage body that can be suitably used for exhaust gas in a corrosive atmosphere at high temperature.

【0002】[0002]

【従来の技術】従来、鉄鋼炉、アルミ溶解炉、ガラス溶
解炉のような一般産業用に用いられる燃焼加熱炉におい
て、燃焼ガスの廃熱を利用し、燃焼用空気を予熱して熱
効率を高めるために使用される蓄熱体としては、特開昭
58−26036号公報に記載の如くセラミック球を利
用するもの、または特開平4−251190号公報に記
載の如くハニカム状の構造体を利用するもの等が知られ
ていた。
2. Description of the Related Art Conventionally, in a combustion heating furnace used for general industries such as a steel furnace, an aluminum melting furnace, and a glass melting furnace, waste heat of a combustion gas is used to preheat combustion air to increase thermal efficiency. As a heat storage element used for this purpose, one using ceramic spheres as described in JP-A-58-26036 or one using a honeycomb-shaped structure as described in JP-A-4-251190 Etc. were known.

【0003】上述した従来の蓄熱体では、まず高温の燃
焼排ガスと球状またはハニカム状の蓄熱体とを接触させ
て蓄熱体中に燃焼排ガスの熱を蓄熱させ、次に低温の被
加熱ガスと蓄熱した蓄熱体とを接触させて被加熱ガスを
加熱することにより、燃焼排ガスの廃熱を効率よく利用
している。
In the above conventional heat storage body, first, the high temperature combustion exhaust gas and the spherical or honeycomb heat storage body are brought into contact with each other to store the heat of the combustion exhaust gas in the heat storage body, and then the low temperature heated gas and the heat storage body. The waste heat of the combustion exhaust gas is efficiently used by heating the gas to be heated by bringing it into contact with the heat storage body.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た蓄熱体のうち、セラミック球を使用する場合には、セ
ラミック球の通気抵抗が大きくなりセラミック球と通気
ガスとの接触面積が小さいため、効果的に熱交換を行う
ことができず、蓄熱体を大きな構成とする必要がある問
題があった。
However, when ceramic spheres are used among the above-mentioned heat accumulators, the ceramic spheres have a large airflow resistance and a small contact area between the ceramic spheres and the gaseous gas. However, there has been a problem that heat exchange cannot be performed, and the heat storage body needs to have a large configuration.

【0005】一方、蓄熱体をハニカム状にした場合、体
積に比し幾何学的比表面積が大きいため、コンパクトな
大きさで効果的な熱交換を行うことができる。しかしな
がら、一般産業用の燃焼加熱炉の中でもガラス溶解炉、
セラミック焼成炉のように1400℃以上の高温で操炉
されているものについては、従来例にも開示があり一番
良く利用されているコージェライトハニカム構造体を用
いたハニカム状蓄熱体では、コージェライトの軟化温度
が1400℃前後であるため、コージェライトハニカム
構造体が軟化して極端な場合は破壊してしまい、ハニカ
ム状蓄熱体をそのまま使用できない問題があった。
[0005] On the other hand, when the heat storage body is formed into a honeycomb shape, the geometric specific surface area is larger than the volume, so that the heat can be effectively exchanged with a compact size. However, among the combustion heating furnaces for general industry, glass melting furnaces,
Regarding a ceramic firing furnace that is operated at a high temperature of 1400 ° C. or higher, a honeycomb heat storage body using a cordierite honeycomb structure, which is disclosed in a conventional example and is most often used, is a cordier. Since the softening temperature of the light is around 1400 ° C., the cordierite honeycomb structure is softened and destroyed in an extreme case, and there is a problem that the honeycomb heat storage body cannot be used as it is.

【0006】また、蓄熱体をハニカム状にした例のう
ち、腐食性雰囲気での使用を想定した耐食性ハニカム構
造体とコージェライトハニカム構造体とを組み合わせた
例があるが、鉄鋼炉での使用においては1300℃前後
の高温でしかも鉄スケール等の飛来があるためまだ満足
できるレベルに達していない問題があった。例えば、耐
食性ハニカム構造体としてアルミナハニカム構造体を使
用した場合は、鉄スケールとの反応性では問題無いもの
の、1300℃の定常運転を行う場合でも時として急激
な温度変化を伴う運転を実施する場合があり、アルミナ
は熱膨張係数が高く耐熱衝撃強度が低いため、熱衝撃割
れを起こす問題があった。その他のムライト、SiCの
場合も熱膨張係数が高いため、アルミナと同じように熱
衝撃割れを起こす問題があった。耐熱衝撃性を高める手
段としては、ハニカムの細分化が考えられるが、取扱い
が面倒となる問題があった。
[0006] Among the examples in which the heat storage body is formed in a honeycomb shape, there is an example in which a corrosion resistant honeycomb structure and a cordierite honeycomb structure are combined for use in a corrosive atmosphere. Had a problem that it did not reach a satisfactory level at a high temperature of around 1300 ° C. and because iron scales and the like came flying. For example, when an alumina honeycomb structure is used as the corrosion-resistant honeycomb structure, although there is no problem in reactivity with the iron scale, even when a steady operation at 1300 ° C. is performed, sometimes an operation involving a sudden temperature change is performed. However, since alumina has a high coefficient of thermal expansion and a low thermal shock resistance, there is a problem of causing thermal shock cracking. Other mullite and SiC also have a problem of thermal shock cracking, similar to alumina, because they have high thermal expansion coefficients. Honeycomb subdivision can be considered as a means for improving the thermal shock resistance, but there is a problem that handling is troublesome.

【0007】さらに、コージェライトハニカム構造体を
使用した場合は、燃焼用バーナーの燃料が重油である場
合には重油中に含まれる硫黄分によりSOxが発生し、
酸露点以下では水分と反応して希硫酸が発生し、コージ
ェライトハニカム構造体では腐食してしまう問題があっ
た。
Further, when the cordierite honeycomb structure is used, when the fuel of the combustion burner is heavy oil, SOx is generated due to the sulfur content in the heavy oil,
Below the acid dew point, there was a problem that dilute sulfuric acid was generated by reaction with water, and the cordierite honeycomb structure was corroded.

【0008】本発明の目的は上述した課題を解消して、
高温で腐食性の排ガスに対しても破壊せず効率良く熱交
換を行うことができるハニカム状蓄熱体を提供しようと
するものである。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a honeycomb-shaped heat storage body capable of efficiently exchanging heat without destroying corrosive exhaust gas at high temperature.

【0009】[0009]

【課題を解決するための手段】本発明のハニカム状蓄熱
体は、複数のハニカム構造体を積み重ねてなり、貫通孔
から構成される流路に排ガスと被加熱ガスとを交互に通
過させて排ガス中の廃熱を回収するハニカム状蓄熱体に
おいて、高温の排ガスに接する蓄熱体の高温部をアルミ
ニウム−チタネートを主結晶相とするハニカム構造体ま
たはアルミニウム−チタネートとムライトからなるハニ
カム構造体から構成し、焼成炉の定常運転時に、少なく
とも1200℃以上の温度となる蓄熱体部分をアルミナ
を主結晶相とするハニカム構造体で構成し、このアルミ
ナを主結晶相とするハニカム構造体よりも低温側の蓄熱
体を、コージェライトを主結晶相とするハニカム構造
体、ムライトを主結晶相とするハニカム構造体および耐
食性磁器質ハニカム構造体の内から選ばれた少なくとも
一つを組み合わせてなることを特徴とするものである。
The honeycomb heat storage body of the present invention is formed by stacking a plurality of honeycomb structures, and the exhaust gas and the gas to be heated are alternately passed through a flow path formed of through holes to form the exhaust gas. In a honeycomb heat storage body for recovering waste heat therein, a high temperature portion of the heat storage body in contact with high temperature exhaust gas is composed of a honeycomb structure having aluminum-titanate as a main crystal phase or a honeycomb structure including aluminum-titanate and mullite. In the steady-state operation of the firing furnace, the heat storage part that has a temperature of at least 1200 ° C. or higher is formed of a honeycomb structure having alumina as a main crystal phase, and the temperature is lower than that of the honeycomb structure having alumina as a main crystal phase. The heat storage material is a honeycomb structure having cordierite as a main crystal phase, a honeycomb structure having mullite as a main crystal phase, and a corrosion-resistant porcelain honeycomb. And it is characterized in that comprising a combination of at least one selected from among concrete body.

【0010】上述した構成において、本発明のハニカム
状蓄熱体では、高温排ガスの上流側から下流側に向かっ
て(1)アルミニウム−チタネートを主結晶相とするハ
ニカム構造体またはアルミニウム−チタネートとムライ
トからなるハニカム構造体、(2)アルミナを主結晶相
とするハニカム構造体、(3)コージェライトを主結晶
相とするハニカム構造体、ムライトを主結晶相とするハ
ニカム構造体および耐食性磁器質ハニカムの内から選ば
れた少なくとも1つのハニカム構造体によりハニカム状
蓄熱体を構成することで、高温で腐食性の排ガスに対し
ても破壊せず効率良く熱交換を行うことができるハニカ
ム状蓄熱体を得ることができる。
In the above-mentioned structure, in the honeycomb heat storage body of the present invention, from the upstream side to the downstream side of the high temperature exhaust gas, (1) a honeycomb structure having aluminum-titanate as a main crystal phase or aluminum-titanate and mullite is used. Of the honeycomb structure, (2) a honeycomb structure containing alumina as a main crystal phase, (3) a honeycomb structure containing cordierite as a main crystal phase, a honeycomb structure containing mullite as a main crystal phase, and a corrosion-resistant porcelain honeycomb. By configuring the honeycomb heat storage body with at least one honeycomb structure selected from the above, a honeycomb heat storage body capable of efficiently exchanging heat without corroding exhaust gas that is corrosive at high temperature is obtained. be able to.

【0011】[0011]

【発明の実施の形態】図1は本発明のハニカム状蓄熱体
の一例の構成を示す図である。図1において、ハニカム
状蓄熱体1は、直方体形状のハニカム構造体2を、一方
向に貫通孔3から構成される流路が揃うよう複数個積み
重ねて構成されている。図1に示す例において、図中上
方が高温ガスに接する面であり、焼成炉の定常運転時に
高温排ガスに接する(a)部は、アルミニウム−チタネ
ートを主結晶相とするハニカム構造体またはアルミニウ
ム−チタネートとムライトからなるハニカム構造体によ
り構成される。高温部において少なくとも1200℃以
上の温度となる(b)部は、アルミナを主結晶相とする
ハニカム構造体より構成される。このアルミナを主結晶
相とするハニカム構造体よりも低温側の(c)部は、コ
ージェライト、ムライトを主結晶相とするハニカム構造
体か、または耐食性磁器質ハニカム構造体から選ばれた
少なくとも1つを組み合わせて、一方向に貫通孔3から
構成される流路が揃うように積み重ねて構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the structure of an example of a honeycomb heat storage body of the present invention. In FIG. 1, the honeycomb heat storage body 1 is formed by stacking a plurality of rectangular parallelepiped honeycomb structures 2 so that the flow paths formed by the through holes 3 are aligned in one direction. In the example shown in FIG. 1, the upper part in the figure is the surface in contact with the high temperature gas, and the part (a) in contact with the high temperature exhaust gas during the steady operation of the firing furnace is a honeycomb structure or aluminum-containing titanium-titanate as the main crystal phase. It is composed of a honeycomb structure composed of titanate and mullite. The part (b), which has a temperature of at least 1200 ° C. or higher in the high temperature part, is composed of a honeycomb structure having alumina as a main crystal phase. The (c) part on the lower temperature side than the honeycomb structure containing alumina as a main crystal phase is at least one selected from a honeycomb structure containing cordierite and mullite as a main crystal phase, or a corrosion-resistant porcelain honeycomb structure. The two are combined and stacked so that the flow paths formed by the through holes 3 are aligned in one direction.

【0012】また、図1に示す例では、全てのハニカム
構造体2の形状を同一形状としたが、少なくとも高温の
排ガスに接する面の外周部分のハニカム構造体の形状
を、中心部分のハニカム構造体の形状よりも小さく構成
することもできる。
In addition, in the example shown in FIG. 1, all the honeycomb structures 2 have the same shape, but at least the shape of the honeycomb structure at the outer peripheral portion of the surface in contact with the high temperature exhaust gas is at least the central structure. It can also be made smaller than the body shape.

【0013】図1に示したハニカム状蓄熱体2を構成す
る材料のうち、アルミニウム−チタネートは耐熱、低熱
膨張材料として知られ、また1300℃前後の高温にお
いても鉄との両立性に優れており、鉄に対して安定であ
るとともに高い耐熱衝撃性を有するため、急激な温度変
化によっても割れることがない。また、アルミニウム−
チタネートは1100℃付近をピークにアルミナとチタ
ニアに分解し高熱膨張化することが知られている。操炉
条件によって1250℃以下の温度で長時間使用される
ことが想定される場合には、MgOおよびFe23
固溶させることにより熱分解を抑制することができる。
Of the materials constituting the honeycomb heat storage body 2 shown in FIG. 1, aluminum-titanate is known as a heat resistant and low thermal expansion material, and is excellent in compatibility with iron even at a high temperature of about 1300 ° C. Since it is stable against iron and has high thermal shock resistance, it does not crack even when the temperature changes suddenly. Also, aluminum
It is known that titanate decomposes into alumina and titania with a peak around 1100 ° C. and has high thermal expansion. When it is expected that the furnace is used for a long time at a temperature of 1250 ° C. or lower, the thermal decomposition can be suppressed by solid-dissolving MgO and Fe 2 O 3 .

【0014】アルミニウム−チタネートへのMgOの固
溶により1100℃付近をピークとした熱分解をある程
度抑制することができるが、MgOだけでは充分でなく
Fe23 を同時に固溶させることが望ましい。また、
本発明では、MgOの固溶による効果として従来から知
られている熱分解の抑制だけでなく、耐食性、特に耐ア
ルカリ性を向上する効果があることを見い出した。Mg
Oの添加量が4重量%以上であると好ましいのは、後述
する実施例から明かなように、4重量%以上であると耐
アルカリ性が著しく向上するためであり、10重量%以
下であると好ましいのは10重量%を越えてMgOを添
加しすぎるとMgOが完全に固溶することができず、高
熱膨張係数を有するスピネルもしくはマグネシウム−チ
タネートを生成し、ハニカム構造体の熱膨張係数が高く
なるからである。
Although the solid solution of MgO in aluminum-titanate can suppress the thermal decomposition having a peak around 1100 ° C. to some extent, MgO alone is not sufficient, and it is desirable to simultaneously form a solid solution with Fe 2 O 3 . Also,
In the present invention, it has been found that not only the conventionally known effect of suppressing the thermal decomposition as the effect of the solid solution of MgO but also the effect of improving the corrosion resistance, particularly the alkali resistance is improved. Mg
The reason why the addition amount of O is preferably 4% by weight or more is that the alkali resistance is remarkably improved when it is 4% by weight or more, as will be apparent from the examples described later, and is 10% by weight or less. It is preferable that if MgO is added in excess of 10% by weight, MgO cannot completely form a solid solution and spinel or magnesium titanate having a high coefficient of thermal expansion is produced, and the coefficient of thermal expansion of the honeycomb structure is high. Because it will be.

【0015】アルミニウム−チタネートへFe23
固溶させるとFeイオンはAlイオンと完全に置換し、
アルミニウム−チタネートの熱分解を抑制する。Fe2
3 の添加量が2重量%以上であると好ましいのは、2
重量%未満であると熱分解を完全に抑制することができ
ず、10重量%以下であると好ましいのは、10重量%
を越えると熱膨張係数が高くなるためである。
When Fe 2 O 3 is solid-dissolved in aluminum-titanate, Fe ions are completely replaced with Al ions,
Suppresses the thermal decomposition of aluminum-titanate. Fe 2
It is preferable that the addition amount of O 3 is 2% by weight or more.
If it is less than 10% by weight, thermal decomposition cannot be completely suppressed, and if it is 10% by weight or less, 10% by weight is preferable.
This is because the coefficient of thermal expansion becomes high when the value exceeds.

【0016】アルミニウム−チタネートを主結晶相とす
るハニカム構造体の使用域よりも低温部にアルミナを主
結晶相とするハニカム構造体を使用する理由は、アルミ
ニウム−チタネートは高価であるため最低限直接高温の
排ガスに触れる部分に使用すれば充分であり、熱膨張係
数の高いアルミナを主結晶相とするハニカム構造体で
も、直接高温の排ガスに触れることがなければ、熱衝撃
は緩和され充分使用に耐えるためである。また、焼成炉
の定常運転時に少なくとも1200℃以上となる部分は
鉄および時としてアルカリ成分による腐食が問題となる
ため、耐食性に優れたアルミナを主結晶相とするハニカ
ム構造体を用いることが必要となる。
The reason for using the honeycomb structure containing alumina as the main crystal phase at a temperature lower than the use range of the honeycomb structure containing aluminum-titanate as the main crystal phase is that aluminum-titanate is expensive, so that at least direct It is sufficient to use it in the part that comes into contact with high-temperature exhaust gas, and even with a honeycomb structure whose main crystal phase is alumina, which has a high coefficient of thermal expansion, if it does not come into direct contact with high-temperature exhaust gas, the thermal shock will be mitigated and it will be sufficient This is to endure. In addition, since the corrosion of iron and sometimes alkali components becomes a problem at least at a temperature of 1200 ° C. or higher during steady operation of the firing furnace, it is necessary to use a honeycomb structure having alumina as a main crystal phase having excellent corrosion resistance. Become.

【0017】また、本発明では、低温部にコージェライ
ト、ムライトを主結晶相とするハニカム構造体または耐
食性磁器質ハニカム構造体のうち少なくとも1つ以上を
組み合わせて使用することが必要である。1200℃以
下の温度であれば、鉄やアルカリによる腐食は穏やかに
しか進行せず、低熱膨張係数で耐熱衝撃性に優れるコー
ジェライトハニカム構造体を使用することができる。そ
のため、ハニカム構造体を大きくすることができ、取扱
いが容易になる利点がある。また、焼成炉からの鉄、ア
ルカリの排出量が多い場合には、コージェライトよりも
高熱膨張係数を有するが耐熱性、耐食性に優れたムライ
トを主結晶相とするハニカム構造体を使用することが好
ましく、さらに温度の低い部分にのみコージェライトを
主結晶相とするハニカム構造体を使用することができ
る。
Further, in the present invention, it is necessary to use at least one of a honeycomb structure having cordierite and mullite as a main crystal phase or a corrosion-resistant porcelain honeycomb structure in combination in the low temperature portion. If the temperature is 1200 ° C. or lower, corrosion by iron or alkali proceeds only moderately, and a cordierite honeycomb structure having a low thermal expansion coefficient and excellent thermal shock resistance can be used. Therefore, there is an advantage that the honeycomb structure can be made large and the handling becomes easy. Further, when the amount of iron and alkali discharged from the firing furnace is large, it is possible to use a honeycomb structure having mullite as a main crystal phase, which has a higher coefficient of thermal expansion than cordierite, but has excellent heat resistance and corrosion resistance. Preferably, it is possible to use a honeycomb structure having cordierite as a main crystal phase only in a portion having a lower temperature.

【0018】さらに、燃料として重油を使用する場合に
は、重油中に含まれる硫黄分によりSOxが発生し、露
点以下の温度となる蓄熱体部分では腐食し長期間の使用
に耐えない。このような場合には、耐食性磁器質ハニカ
ム構造体を使用することが望ましい。耐食性磁器には長
石質磁器、アルミナ質磁器等があるが、いずれも開気孔
率が零に近く、特に耐酸性に優れる。このような工業炉
においては、それぞれの炉により使用温度、排出ガス雰
囲気等がまちまちであり、条件に合わせて最適な蓄熱体
構成にすることが必要である。
Further, when heavy oil is used as the fuel, SOx is generated by the sulfur content in the heavy oil, and the portion of the heat storage body having a temperature below the dew point is corroded and cannot be used for a long time. In such a case, it is desirable to use a corrosion-resistant porcelain honeycomb structure. Corrosion-resistant porcelain includes feldspar porcelain, alumina-based porcelain, etc., all of which have an open porosity close to zero and are particularly excellent in acid resistance. In such an industrial furnace, the operating temperature, the exhaust gas atmosphere, etc. are different depending on the furnace, and it is necessary to have an optimal heat storage structure according to the conditions.

【0019】図2は本発明のハニカム状蓄熱体を使用し
た熱交換体を燃焼加熱炉の燃焼室に設置した例を示す図
である。図2に示す例において、11は燃焼室、12−
1、12−2は図1に示す構造のハニカム状蓄熱体、1
3−1、13−2はハニカム状蓄熱体12−1、12−
2から構成される熱交換体、14−1、14−2は熱交
換体13−1、13−2に設けた燃料投入口である。図
2に示す例において、2個の熱交換体13−1、13−
2を設けたのは、一方が高温の排ガスを流すことにより
蓄熱を行っているとき、同時に他方が低温の被加熱ガス
を加熱できるよう構成して、熱交換を効率的に行うため
である。
FIG. 2 is a view showing an example in which a heat exchanger using the honeycomb heat storage body of the present invention is installed in a combustion chamber of a combustion heating furnace. In the example shown in FIG.
Reference numerals 1 and 12-2 denote a honeycomb-shaped regenerator having the structure shown in FIG.
3-1 and 13-2 are honeycomb-shaped regenerators 12-1 and 12-
The heat exchangers 14-1, 14-2 are fuel inlets provided in the heat exchangers 13-1, 13-2. In the example shown in FIG. 2, two heat exchangers 13-1, 13-
The reason why 2 is provided is that, when one is storing heat by flowing high-temperature exhaust gas, the other can simultaneously heat the low-temperature gas to be heated, so that heat exchange can be performed efficiently.

【0020】図2に示す例では、まず、図中矢印で示し
たように、予めハニカム状蓄熱体12−1に蓄熱した熱
交換体13−1に被加熱ガスである空気を供給すると同
時に燃料投入口14−1から燃料を投入するとともに、
熱交換体13−2には燃焼室11内の高温の排ガスを通
過させる。この状態で、空気は予熱され燃料とともに燃
焼室11へ供給されるとともに、熱交換体13−2のハ
ニカム状蓄熱体12−2は蓄熱される。
In the example shown in FIG. 2, first, as indicated by an arrow in the figure, air as a gas to be heated is supplied to the heat exchange element 13-1 which has previously stored heat in the honeycomb heat storage element 12-1, and at the same time fuel is supplied. While injecting fuel from the inlet 14-1,
The high temperature exhaust gas in the combustion chamber 11 is passed through the heat exchanger 13-2. In this state, the air is preheated and supplied to the combustion chamber 11 together with the fuel, and the honeycomb-shaped regenerator 12-2 of the heat exchanger 13-2 is stored.

【0021】次に、ガスの流れを切り換えて、図中矢印
と反対方向にガスを流れるようにして、熱交換体13−
2に被加熱ガスである空気を流し燃料投入口14−2か
ら燃料を投入するとともに、熱交換体13−2には燃焼
室11内の高温の排ガスを通過させる。以上の工程を連
続的に繰り返すことにより、熱交換を行うことができ
る。
Next, by switching the flow of gas so that the gas flows in the direction opposite to the arrow in the figure, the heat exchanger 13-
Air, which is the gas to be heated, is caused to flow through 2 to feed the fuel from the fuel inlet 14-2, and the high temperature exhaust gas in the combustion chamber 11 is passed through the heat exchanger 13-2. By repeating the above steps continuously, heat exchange can be performed.

【0022】[0022]

【実施例】以下、実際の例について説明する。実施例1 本発明で使用する各種材料のハニカム構造体を準備し、
それぞれのハニカム構造体について、融点、40〜80
0℃における熱膨張係数、電気炉スポーリング破壊温
度、耐アルカリ性、耐酸性を調べた。ここで、電気炉ス
ポーリング破壊温度は、75mm×75mm×50mm
の形状のハニカム構造体を、各温度で電気炉中に1時間
保持した後取り出し空冷しクラックが発生するかどうか
を調査し、クラックが発生しなかった最大の温度として
求めた。また、耐アルカリ性および耐酸性とも、各例の
相対的な評価を、良い方から◎>○>△>×の順で表記
した。結果を以下の表1に示す。
An actual example will be described below. Example 1 A honeycomb structure of various materials used in the present invention is prepared,
Melting point, 40-80, for each honeycomb structure
The thermal expansion coefficient at 0 ° C., electric furnace spalling breakdown temperature, alkali resistance and acid resistance were examined. Here, the electric furnace spalling breakdown temperature is 75 mm × 75 mm × 50 mm
The honeycomb structure having the above shape was held in an electric furnace at each temperature for 1 hour and then taken out and air-cooled to investigate whether cracks occurred, and the maximum temperature at which no cracks occurred was determined. In addition, regarding the alkali resistance and the acid resistance, the relative evaluation of each example is described in the order of ⊚>○>Δ> x from the better. The results are shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】表1の結果から、本発明で用いられるアル
ミニウム−チタネートからなるハニカム構造体は、融点
が1800℃と高く熱膨張係数も低くさらに電気炉スポ
ーリング破壊温度も高いことから、熱衝撃に強いハニカ
ム構造体を形成することがわかった。また、耐アルカ
リ、耐酸性の評価についても、本発明で用いられるアル
ミニウム−チタネートは他の材料に比べて同等かそれ以
上の好ましい結果を得ることができることがわかった。
一方、本発明でハニカム状蓄熱体の低温部に用いられる
磁器ハニカム構造体においては、熱膨張係数が高く熱衝
撃に対しては優れていないものの、耐酸性の評価におい
ては他の材料よりも優れていることがわかった。
From the results shown in Table 1, the honeycomb structure made of aluminum-titanate used in the present invention has a high melting point of 1800 ° C., a low thermal expansion coefficient, and a high electric furnace spalling breakdown temperature. It was found to form a strong honeycomb structure. In addition, regarding the evaluation of alkali resistance and acid resistance, it was found that the aluminum-titanate used in the present invention can obtain preferable results equal to or higher than those of other materials.
On the other hand, in the porcelain honeycomb structure used in the low temperature portion of the honeycomb-shaped heat storage body in the present invention, although the thermal expansion coefficient is high and not excellent against thermal shock, it is superior to other materials in the evaluation of acid resistance. I found out.

【0025】実施例2 次に、本発明例および比較例として数種の異なる構成に
よるハニカム状蓄熱体について、実際に蓄熱体として使
用した時の使用状況について観察した。まず、本発明例
および比較例ではハニカム構造体をその流路が揃うよう
に積み重ねるとともに、以下の表2に示すように、高温
部(a)、中温部(b)、低温部(c)の材質を変えて
(比較例中には同材質のものもあり)構成し、図3に示
す構造の本発明例および比較例のハニカム状蓄熱体を準
備した。各ハニカム構造体のサイズは全て同一サイズの
75mm×75mm×50mmであった。なお、試験に
使用した炉内の雰囲気はアルカリ、鉄の飛散が多く厳し
い条件下であった。ここで用いられるバーナーの使用燃
料としては、天然ガスおよび重油があり、重油を燃料と
して用いた場合には酸露点以下になる温度で硫酸の発生
が確認された。
Example 2 Next, with respect to the honeycomb-shaped heat storage body having several different configurations as examples of the present invention and comparative examples, the usage conditions when actually used as the heat storage body were observed. First, in the example of the present invention and the comparative example, the honeycomb structures were stacked so that the flow paths thereof were aligned, and as shown in Table 2 below, the high temperature part (a), the middle temperature part (b), and the low temperature part (c) were formed. The honeycomb heat storage bodies of the present invention example and the comparative example having the structure shown in FIG. 3 were prepared by changing the material (some of the materials are the same in the comparative examples). All the honeycomb structures had the same size of 75 mm × 75 mm × 50 mm. The atmosphere in the furnace used for the test was under severe conditions in which alkali and iron were often scattered. The burner used here includes natural gas and heavy oil, and when heavy oil is used as a fuel, generation of sulfuric acid was confirmed at a temperature below the acid dew point.

【0026】準備した本発明例および比較例のハニカム
状蓄熱体に対して、図4に示すようなスケジュールで吸
熱、廃熱を繰り返し行った。ここで、最も蓄熱体全体が
高温になる高温排気ガス通過時と、最も低温となる冷却
空気通過時の温度差は約150℃であった。以下の表2
に各ハニカム状蓄熱体の構成と使用状況について示す。
ここで測定された蓄熱体温度は、図3に示す温度測定位
置(1)〜(4)の各測定ポイントにおいて、蓄熱体平
面上最も温度の高くなる点で最も蓄熱体全体が高温にな
った時、即ち高温排気ガス通過中の温度を測定したもの
である。なお、ここで使用したハニカム状蓄熱体は、吸
気側(温度測定位置(4))の温度が常に300℃以下
となるように使用温度によって蓄熱体全体の長さ(L
寸)を変更した。これは配管、弁などの装置の保護のた
めである。
The prepared honeycomb-shaped heat storage bodies of the present invention and comparative examples were repeatedly subjected to heat absorption and waste heat according to the schedule shown in FIG. Here, the temperature difference between when the high temperature exhaust gas where the temperature of the entire heat storage body is the highest and when the cooling air where the temperature is the lowest is passed is about 150 ° C. Table 2 below
The configuration and usage of each honeycomb heat storage body is shown in Fig.
The heat storage body temperature measured here is the highest in the whole heat storage body at the point where the temperature is highest on the plane of the heat storage body at each measurement point of the temperature measurement positions (1) to (4) shown in FIG. It is a measurement of the temperature during time, that is, during passage of high-temperature exhaust gas. The honeycomb-shaped heat storage body used here has a length (L) of the entire heat storage body depending on the operating temperature so that the temperature on the intake side (temperature measurement position (4)) is always 300 ° C. or lower.
Dimension) was changed. This is to protect equipment such as piping and valves.

【0027】[0027]

【表2】 [Table 2]

【0028】表2の結果から以下のことが判明した。比
較例試験No.1では、蓄熱体の高、中、低温部全てに
コージェライト材質のハニカム構造体を用いたために、
温度がコージェライトの融点を越える高温部においては
ハニカム構造体が溶損し、また1200℃を越える中温
部に用いたコージェライトハニカム構造体でもアルカ
リ、鉄などの腐食の急速な進行により軟化および破損が
生じている。従って、ハニカム状蓄熱体としては不適で
あることがわかった。また、比較例試験No.2では、
高温部の溶損を防ぐためにアルミナハニカム構造体を用
いたが、アルミナハニカム構造体の熱膨張係数が高く耐
熱衝撃性に劣ることがら、アルミナハニカム構造体の破
損が生じた。同時に中温部のコージェライトハニカム構
造体においても比較例試験No.1と同様腐食による破
損が生じており使用不可であった。
From the results shown in Table 2, the following was found. Comparative Example Test No. In No. 1, since the honeycomb structure made of cordierite was used in all of the high, medium and low temperature parts of the heat storage body,
The honeycomb structure is melted in a high temperature portion where the temperature exceeds the melting point of cordierite, and the cordierite honeycomb structure used in the medium temperature portion exceeding 1200 ° C. is also softened and damaged due to rapid progress of corrosion of alkali, iron and the like. Has occurred. Therefore, it was found that it is not suitable as a honeycomb heat storage body. In addition, the comparative test No. In 2,
An alumina honeycomb structure was used to prevent melting damage in the high temperature portion, but the alumina honeycomb structure was damaged due to its high thermal expansion coefficient and poor thermal shock resistance. At the same time, for the cordierite honeycomb structure in the middle temperature part, the comparative example test No. As in No. 1, it was unusable because of damage due to corrosion.

【0029】さらに、高温部にアルミナよりも熱膨張係
数の小さいムライトハニカム構造体を用い、中温部にア
ルミナハニカム構造体を用いた比較例試験No.3で
は、中温部での腐食による破損はおこらず、また、高温
部よりも熱衝撃が弱いことから、アルミナハニカム構造
体でも熱衝撃による破損は生じなかった。しかし、高温
部では熱衝撃によりムライトハニカム構造体の破損が生
じた。そこで、本発明例試験No.6、7、8、9、1
0では、熱衝撃およびアルカリ、鉄などによる腐食の大
きい高温側に、アルミニウム−チタネート単味からなる
ハニカム構造体、アルミニウム−チタネートに5重量%
のMgOと5重量%のFe2 3 を添加したハニカム構
造体またはアルミニウム−チタネートとムライトからな
るハニカム構造体を用い、蓄熱体全体が最も温度が高く
なる1200℃以上の温度になる中温部にアルミナハニ
カム構造体を用い、そして1200℃以下の温度になる
低温部にコージェライト、ムライト、コージェライトと
ムライトのそれぞれのハニカム構造体を用いて評価し
た。
Furthermore, the thermal expansion coefficient is higher than that of alumina in the high temperature portion.
A mullite honeycomb structure with a small number is used to
Comparative Example Test No. Using Lumina Honeycomb Structure At three
Is not damaged by corrosion in the medium temperature part, and
Alumina honeycomb structure because the thermal shock is weaker than the
The body was not damaged by thermal shock. But high temperature
In the part, the mullite honeycomb structure was damaged due to thermal shock.
I did Therefore, the present invention example test No. 6, 7, 8, 9, 1
At 0, thermal shock and corrosion due to alkali, iron, etc. are large.
On the high temperature side, consists of pure aluminum-titanate
Honeycomb structure, aluminum-titanate 5% by weight
MgO and 5 wt% FeTwo O Three Honeycomb structure with addition of
Made of aluminium-titanate and mullite
Using a honeycomb structure that has the highest temperature
Alumina hani
Uses a cam structure and results in temperatures below 1200 ° C
Cordierite, mullite and cordierite in the low temperature area
Evaluation was performed using each mullite honeycomb structure.
Was.

【0030】その結果、本発明のアルミニウム−チタネ
ートは耐アルカリ性および鉄に対する耐性に優れ、熱膨
張係数も小さいため熱衝撃にも強く、高温で腐食の厳し
い高温部のハニカム構造体として問題なく使用すること
ができた。また、中温部のアルミナハニカム構造体、低
温部の各種のハニカム構造体においても問題なく使用で
き、ハニカム状蓄熱体として破壊せず熱効率よく熱交換
を行うことができることが判った。しかし、比較例試験
No.4では、中温部に用いられたアルミナハニカム構
造体が1200℃以上での使用であったために、高温
部、中温部のハニカム構造体には異常がみられなかった
ものの、低温部のコージェライトハニカムに溶損が生じ
て使用不可となった。また、本発明例試験No.6、
7、8、9で中温部に使用したアルミナハニカム構造体
は、低温部即ち温度測定位置(3)よりも低温域にまで
使用されても何等問題ないものである。
As a result, the aluminum-titanate of the present invention is excellent in alkali resistance and resistance to iron, has a small coefficient of thermal expansion, is also resistant to thermal shock, and can be used without problems as a honeycomb structure in a high temperature portion where corrosion is severe at high temperatures. I was able to. It was also found that it can be used without problems in an alumina honeycomb structure in the middle temperature part and various honeycomb structures in the low temperature part, and heat exchange can be performed with good heat efficiency without destruction as a honeycomb heat storage body. However, the comparative test No. In No. 4, since the alumina honeycomb structure used in the medium temperature part was used at 1200 ° C. or higher, no abnormality was observed in the honeycomb structure in the high temperature part and the medium temperature part, but the cordierite honeycomb in the low temperature part. It became unusable due to melting damage. The invention example test No. 6,
The alumina honeycomb structure used in the medium temperature part in 7, 8 and 9 has no problem even if it is used in the low temperature part, that is, in the low temperature region from the temperature measurement position (3).

【0031】ここまでの試験で用いられた焼成炉のバー
ナー用の燃料は天然ガスが用いられ、冷却時、低温部に
硫酸による腐食は見られなかった。しかし、比較例試験
No.5ではバーナー用の燃料に重油を用いたため、冷
却時に低温部でSOxの結露による硫酸の発生が起こ
り、低温部のコージェライトハニカム構造体が硫酸によ
り腐食した。そこで、本発明では、バーナー用の燃料と
して重油を用いた場合、低温部にコージェライトハニカ
ム構造体と磁器ハニカム構造体とを組み合わせて耐酸性
の必要な部分に磁器ハニカム構造体を用いることで、低
温部においてもハニカム状蓄熱体として破壊および溶損
を起こさず問題ないものとなった。
Natural gas was used as the fuel for the burner of the firing furnace used in the tests so far, and no corrosion by sulfuric acid was observed in the low temperature part during cooling. However, the comparative test No. In Example 5, since heavy oil was used as the fuel for the burner, sulfuric acid was generated due to the condensation of SOx in the low temperature portion during cooling, and the cordierite honeycomb structure in the low temperature portion was corroded by the sulfuric acid. Therefore, in the present invention, when using heavy oil as the fuel for the burner, by using a porcelain honeycomb structure in a portion where acid resistance is required by combining a cordierite honeycomb structure and a porcelain honeycomb structure in the low temperature part, Even in the low temperature part, there was no problem as the honeycomb-shaped heat storage body did not break or melt.

【0032】実施例3 アルミニウム−チタネートハニカム構造体に対するMg
OおよびFe23 の添加の効果について調査した。ま
ず、図5に本発明で用いられたアルミニウム−チタネー
トに含有するMgOによる特性の変化を示す。ここで、
熱膨張係数は、焼成後のハニカム構造体の流路方向の4
0〜800℃の熱膨張係数を示す。また、耐アルカリ性
の指標である重量減少率は、10重量%のNaOH水溶
液の中にハニカム構造体を150℃で20時間浸漬させ
たときの重量減少率を測定したものである。重量減少率
が少ないほど耐アルカリ性に優れていることになる。な
お、Fe23 の添加量はいずれの場合も5重量%であ
った。
Example 3 Mg for Aluminum-Titanate Honeycomb Structure
The effect of the addition of O and Fe 2 O 3 was investigated. First, FIG. 5 shows a change in characteristics due to MgO contained in the aluminum-titanate used in the present invention. here,
The coefficient of thermal expansion is 4 in the flow direction of the honeycomb structure after firing.
The coefficient of thermal expansion of 0-800 degreeC is shown. The weight reduction rate, which is an index of alkali resistance, is a measurement of the weight reduction rate when the honeycomb structure is immersed in a 10 wt% NaOH aqueous solution at 150 ° C. for 20 hours. The smaller the weight loss rate, the better the alkali resistance. The addition amount of Fe 2 O 3 was 5% by weight in each case.

【0033】図5の結果から、MgOの添加量によりア
ルミニウム−チタネートハニカム構造体の熱膨張係数及
び体アルカリ性の特性は変化することがわかる。MgO
を添加していくことにより、熱膨張係数は一時的に減少
傾向を見せるが、ある添加量を越えると徐々に上昇して
いく。また、耐アルカリ性はMgO添加により重量減少
率は低下し、あるレベルに達するとそれ以上は低下しな
くなる。図4から、ハニカム状蓄熱体として必要な熱膨
張係数と耐アルカリ性の双方の特性を満足する範囲とし
て、MgOの添加量は4〜10重量%であると好ましい
ことがわかる。
From the results shown in FIG. 5, it can be seen that the characteristics of the thermal expansion coefficient and the body alkalinity of the aluminum-titanate honeycomb structure change depending on the addition amount of MgO. MgO
The coefficient of thermal expansion tends to decrease temporarily with the addition of, but when it exceeds a certain addition amount, it gradually increases. Further, the alkali resistance has a lower weight reduction rate due to the addition of MgO, and when it reaches a certain level, it does not further decrease. From FIG. 4, it is understood that the addition amount of MgO is preferably 4 to 10% by weight within a range satisfying both the characteristics of the thermal expansion coefficient and the alkali resistance required for the honeycomb heat storage body.

【0034】次に、図6に様々な組成の焼成後のハニカ
ム構造体について電気炉にて1100℃の温度で各時間
保持した後の熱膨張係数を示している。アルミニウム−
チタネートのみでMgO、Fe23 の添加の無いハニ
カム構造体(AT)は、短時間の熱処理においてすぐに
熱膨張係数が上昇している。また、アルミニウム−チタ
ネートにMgOを10重量%添加したハニカム構造体
(MAT)では、長時間の熱処理で熱膨張係数は徐々に
上昇している。従って、この組成のハニカム構造体を高
温で長時間使用することにより、熱膨張係数が上昇し熱
衝撃により破壊する確率が高くなることになる。
Next, FIG. 6 shows the thermal expansion coefficients of the honeycomb structures having various compositions after firing, which were held in an electric furnace at a temperature of 1100 ° C. for each time. Aluminum −
The honeycomb structure (AT) containing only titanate and no addition of MgO and Fe 2 O 3 has a thermal expansion coefficient immediately increased after a short time heat treatment. Further, in the honeycomb structure (MAT) in which 10% by weight of MgO is added to aluminum-titanate, the thermal expansion coefficient is gradually increased by the heat treatment for a long time. Therefore, when a honeycomb structure having this composition is used at a high temperature for a long time, the coefficient of thermal expansion increases and the probability of destruction due to thermal shock increases.

【0035】そこで、アルミニウム−チタネートにMg
O及びFe23 を同時に添加したハニカム構造体(M
ATF)において、長時間熱処理を行った後の熱膨張係
数の測定を行ったところ、Fe23 を1重量%添加し
たハニカム構造体(MATF−1)では熱膨張係数の上
昇が見られるが、2重量%添加したハニカム構造体(M
ATF−2)、5重量%添加したハニカム構造体(MA
TF−5)及び10重量%添加したハニカム構造体(M
ATF−10)については、低熱膨張で高温での長時間
の熱処理においても安定した低いままの熱膨張を維持す
るハニカム構造体を得ることができた。しかし、Fe2
3 の添加量を多くして15重量%添加したハニカム構
造体(MATF−15)では、熱膨張係数の長時間の熱
処理による上昇は無いものの未熱処理のハニカム構造体
の熱膨張係数が極端に上昇して使用に耐えない。なお、
上記MATF系のMgO添加量は一律に5重量%とし
た。以上のことから、Fe23 の添加量は2〜10重
量%であると好ましいことがわかる。
Then, Mg is added to aluminum titanate.
Honeycomb structure (M and O 2 and Fe 2 O 3 added simultaneously)
In ATF), the coefficient of thermal expansion was measured after the heat treatment for a long time, but it was found that the coefficient of thermal expansion increased in the honeycomb structure (MATF-1) containing 1% by weight of Fe 2 O 3. 2% by weight added honeycomb structure (M
ATF-2), 5% by weight added honeycomb structure (MA
TF-5) and 10 wt% added honeycomb structure (M
Regarding ATF-10), it was possible to obtain a honeycomb structure which has a low thermal expansion and maintains a stable low thermal expansion even during a heat treatment at a high temperature for a long time. However, Fe 2
In the honeycomb structure (MATF-15) in which the amount of O 3 added was increased to 15% by weight, the coefficient of thermal expansion did not increase due to the long-time heat treatment, but the coefficient of thermal expansion of the unheated honeycomb structure was extremely high. It rises and cannot be used. In addition,
The amount of the above-mentioned MATF-based MgO added was uniformly 5% by weight. From the above, it is understood that the addition amount of Fe 2 O 3 is preferably 2 to 10% by weight.

【0036】従って、本発明に使用されるアルミニウム
−チタネートハニカム構造体は、MgOを4〜10重量
%、Fe23 を2〜10重量%添加されることが好ま
しいことがわかる。
Therefore, it is understood that the aluminum-titanate honeycomb structure used in the present invention preferably contains MgO in an amount of 4 to 10% by weight and Fe 2 O 3 in an amount of 2 to 10% by weight.

【0037】なお、上述した実施例において、高温部、
中温部、低温部の各ハニカム構造体を構成するコージェ
ライト、ムライト、アルミニウム−チタネート等の原料
は、一般に使用される生の原料、シャモット等を単独ま
たは組み合わせて使用することができる。
In the above embodiment, the high temperature part,
As raw materials such as cordierite, mullite, and aluminum-titanate, which form each honeycomb structure of the middle temperature portion and the low temperature portion, generally used raw materials, chamotte and the like can be used alone or in combination.

【0038】[0038]

【発明の効果】以上の説明から明かなように、本発明に
よれば、高温排ガスの上流側から下流側に向かって
(1)アルミニウム−チタネートを主結晶相とするハニ
カム構造体またはアルミニウム−チタネートとムライト
からなるハニカム構造体、(2)アルミナを主結晶相と
するハニカム構造体、(3)コージェライトを主結晶相
とするハニカム構造体、ムライトを主結晶相とするハニ
カム構造体および耐食性磁器質ハニカムの内から選ばれ
た少なくとも1つのハニカム構造体によりハニカム状蓄
熱体を構成しているため、高温で腐食性の排ガスに対し
ても破壊せず効率良く熱交換を行うことができるハニカ
ム状蓄熱体を得ることができる。
As is apparent from the above description, according to the present invention, from the upstream side to the downstream side of high temperature exhaust gas, (1) a honeycomb structure or an aluminum-titanate having aluminum-titanate as a main crystal phase is formed. And mullite honeycomb structure, (2) honeycomb structure containing alumina as a main crystal phase, (3) honeycomb structure containing cordierite as a main crystal phase, honeycomb structure containing mullite as a main crystal phase, and corrosion-resistant porcelain Since at least one honeycomb structure selected from the quality honeycombs constitutes the honeycomb heat storage body, it is possible to efficiently perform heat exchange without destroying corrosive exhaust gas even at high temperatures. A heat storage body can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のハニカム状蓄熱体の一例の構成を示す
図である。
FIG. 1 is a diagram showing a configuration of an example of a honeycomb heat storage body of the present invention.

【図2】本発明のハニカム状蓄熱体を使用した熱交換体
を燃焼加熱炉の燃焼室に設置した例を示す図である。
FIG. 2 is a diagram showing an example in which a heat exchanger using the honeycomb-shaped regenerator of the present invention is installed in a combustion chamber of a combustion heating furnace.

【図3】実施例で使用するハニカム状蓄熱体の構成を示
す図である。
[Fig. 3] Fig. 3 is a diagram showing a configuration of a honeycomb heat storage body used in an example.

【図4】実施例におけるハニカム状蓄熱体の運転時の温
度曲線を示すグラフである。
FIG. 4 is a graph showing a temperature curve during operation of the honeycomb heat storage body in the example.

【図5】アルミニウム−チタネートハニカム構造体のM
gO添加による耐アルカリ性および熱膨張係数の変化を
示すグラフである。
FIG. 5: M of aluminum-titanate honeycomb structure
5 is a graph showing changes in alkali resistance and thermal expansion coefficient due to addition of gO.

【図6】アルミニウム−チタネートハニカム構造体にM
gOおよびFe23 を添加したときのエージング時間
と熱膨張係数との関係を示すグラフである。
FIG. 6 shows an aluminum-titanate honeycomb structure with M
6 is a graph showing the relationship between the aging time and the coefficient of thermal expansion when gO and Fe 2 O 3 are added.

【符号の説明】[Explanation of symbols]

1 ハニカム状蓄熱体、2 ハニカム構造体、3 貫通
孔、11 燃焼室、12−1、12−2 熱交換体、1
3−1、13−2 ハニカム状蓄熱体、14−1、14
−2 燃料投入口
DESCRIPTION OF SYMBOLS 1 honeycomb heat storage body, 2 honeycomb structure, 3 through holes, 11 combustion chambers, 12-1, 12-2 heat exchange body, 1
3-1, 13-2 Honeycomb-shaped heat storage body, 14-1, 14
-2 fuel inlet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数のハニカム構造体を積み重ねてなり、
貫通孔から構成される流路に排ガスと被加熱ガスとを交
互に通過させて排ガス中の廃熱を回収するハニカム状蓄
熱体において、高温の排ガスに接する蓄熱体の高温部を
アルミニウム−チタネートを主結晶相とするハニカム構
造体またはアルミニウム−チタネートとムライトからな
るハニカム構造体から構成し、焼成炉の定常運転時に、
少なくとも1200℃以上の温度となる蓄熱体部分をア
ルミナを主結晶相とするハニカム構造体で構成し、この
アルミナを主結晶相とするハニカム構造体よりも低温側
の蓄熱体を、コージェライトを主結晶相とするハニカム
構造体、ムライトを主結晶相とするハニカム構造体およ
び耐食性磁器質ハニカム構造体の内から選ばれた少なく
とも一つを組み合わせてなることを特徴とするハニカム
状蓄熱体。
1. A stack of a plurality of honeycomb structures,
In a honeycomb heat storage body for recovering the waste heat in the exhaust gas by alternately passing the exhaust gas and the heated gas through the flow path constituted by the through hole, the high temperature part of the heat storage body in contact with the high temperature exhaust gas is aluminum-titanate. A honeycomb structure as a main crystal phase or aluminum-composed of a honeycomb structure composed of titanate and mullite, during steady operation of the firing furnace,
A portion of the heat storage body having a temperature of at least 1200 ° C. or higher is constituted by a honeycomb structure having an alumina main crystal phase, and the heat storage body at a temperature lower than the honeycomb structure having an alumina main crystal phase is mainly cordierite. A honeycomb heat storage body, which is formed by combining at least one selected from a honeycomb structure having a crystal phase, a honeycomb structure having mullite as a main crystal phase, and a corrosion-resistant porcelain honeycomb structure.
【請求項2】前記高温部がアルミニウム−チタネートを
主結晶相とするハニカム構造体で、前記中温部がアルミ
ナを主結晶相とするハニカム構造体で、前記低温部がコ
ージェライトを主成分とするハニカム構造体である請求
項1記載のハニカム状蓄熱体。
2. The high temperature portion is a honeycomb structure having aluminum-titanate as a main crystal phase, the medium temperature portion is a honeycomb structure having alumina as a main crystal phase, and the low temperature portion is mainly composed of cordierite. The honeycomb heat storage body according to claim 1, which is a honeycomb structure.
【請求項3】前記アルミニウム−チタネートを主結晶相
とするハニカム構造体またはアルミニウム−チタネート
とムライトからなるハニカム構造体のアルミニウム−チ
タネート部分が、MgOを4〜10重量%、Fe23
を2〜10重量%含有している請求項1記載のハニカム
状蓄熱体。
3. The aluminum-titanate portion of the honeycomb structure containing aluminum-titanate as a main crystal phase or the honeycomb structure containing aluminum-titanate and mullite contains 4 to 10% by weight of MgO and Fe 2 O 3.
2 to 10% by weight of the honeycomb-shaped heat storage body according to claim 1.
【請求項4】前記アルミニウム−チタネートを主結晶相
とするハニカム構造体またはアルミニウム−チタネート
とムライトからなるハニカム構造体の40〜800℃の
間の熱膨張係数が1.0×10-6/℃以下である請求項
3記載のハニカム状蓄熱体。
4. The coefficient of thermal expansion of the honeycomb structure containing aluminum-titanate as a main crystal phase or the honeycomb structure containing aluminum-titanate and mullite at 40 to 800 ° C. of 1.0 × 10 −6 / ° C. The honeycomb heat storage body according to claim 3, wherein:
【請求項5】前記アルミナを主結晶相とするハニカム構
造体よりも低温側の蓄熱体部分において、少なくとも酸
露点以下の温度になる部分を前記耐食性ハニカム構造体
とする請求項1記載のハニカム状蓄熱体。
5. The honeycomb structure according to claim 1, wherein a portion of the heat storage body at a temperature lower than that of the honeycomb structure having alumina as a main crystal phase has a temperature at least below an acid dew point as the corrosion-resistant honeycomb structure. Heat storage body.
JP7342634A 1995-01-25 1995-12-28 Honeycomb regenerator Expired - Fee Related JP2857361B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7342634A JP2857361B2 (en) 1995-12-28 1995-12-28 Honeycomb regenerator
CA002167991A CA2167991C (en) 1995-01-25 1996-01-24 Honeycomb regenerator
EP96300516A EP0724126B1 (en) 1995-01-25 1996-01-25 Honeycomb regenerator
DE69620490T DE69620490T2 (en) 1995-01-25 1996-01-25 honeycomb regenerator
US08/591,117 US6210645B1 (en) 1995-01-25 1996-01-25 Honeycomb regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7342634A JP2857361B2 (en) 1995-12-28 1995-12-28 Honeycomb regenerator

Publications (2)

Publication Number Publication Date
JPH09178377A true JPH09178377A (en) 1997-07-11
JP2857361B2 JP2857361B2 (en) 1999-02-17

Family

ID=18355295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7342634A Expired - Fee Related JP2857361B2 (en) 1995-01-25 1995-12-28 Honeycomb regenerator

Country Status (1)

Country Link
JP (1) JP2857361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286649A (en) * 2008-05-28 2009-12-10 Kyocera Corp Heat-resistant ceramic and heat-insulating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286649A (en) * 2008-05-28 2009-12-10 Kyocera Corp Heat-resistant ceramic and heat-insulating material

Also Published As

Publication number Publication date
JP2857361B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
EP0687879B1 (en) Honeycomb Regenerator
US6210645B1 (en) Honeycomb regenerator
KR102514610B1 (en) Corrosion-resistant enamel composition applicable to corrosion-resistant steel
JPH09178377A (en) Honeycomb-like thermal storage unit
JP2862864B1 (en) Honeycomb regenerator
EP1325898A1 (en) Alumina honeycomb structure, method for manufacture of the same, and heat-storing honeycomb structure using the same
JP3694150B2 (en) Honeycomb heat storage
JP2857360B2 (en) Honeycomb regenerator
KR102526876B1 (en) Heating element coated with corrosion-resistant enamel composition applicable to corrosion-resistant steel
JP3081550B2 (en) Honeycomb regenerator for aluminum melting furnace
JP2738654B2 (en) Honeycomb regenerator
US20070160943A1 (en) Monolith for use in regenerative oxidizer systems
JP3529852B2 (en) Honeycomb regenerator
JP3422527B2 (en) Regenerative heat exchanger
CN108472914B (en) Regenerative combustor with enhanced surface area media
JP2002098489A (en) HONEYCOMB STRUCTURAL BODY OF ALUMINA CONTAINING Na, MANUFACTURING METHOD THEREOF AND HONEYCOMB HEAT STORAGE BODY EMPLOYING THE SAME
JP3422520B2 (en) Regenerative heat exchanger
JP3459024B2 (en) Heat storage element for heat storage type burner and method of forming the same
JP2002098488A (en) Aluminum honeycomb structural body, manufacturing method thereof and honeycomb heat storage body employing the same
JPH0311295A (en) Flame retardant heat transfer element integrate for rotary regenerative heat exchanger
JPH08178564A (en) Honeycomb heat storage unit
JP2001263973A (en) Honeycomb-like heat storage body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees