JP3459024B2 - Heat storage element for heat storage type burner and method of forming the same - Google Patents

Heat storage element for heat storage type burner and method of forming the same

Info

Publication number
JP3459024B2
JP3459024B2 JP18269795A JP18269795A JP3459024B2 JP 3459024 B2 JP3459024 B2 JP 3459024B2 JP 18269795 A JP18269795 A JP 18269795A JP 18269795 A JP18269795 A JP 18269795A JP 3459024 B2 JP3459024 B2 JP 3459024B2
Authority
JP
Japan
Prior art keywords
heat storage
honeycomb
storage body
combustion air
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18269795A
Other languages
Japanese (ja)
Other versions
JPH0933034A (en
Inventor
豊 鈴川
功 森
淳 須藤
良一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP18269795A priority Critical patent/JP3459024B2/en
Publication of JPH0933034A publication Critical patent/JPH0933034A/en
Application granted granted Critical
Publication of JP3459024B2 publication Critical patent/JP3459024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱式バーナ用蓄
熱体及びその形成方法に関し、詳しくは、熱ストレスに
よる割れが防止でき、長期間安定した運転ができる蓄熱
式バーナ用蓄熱体及びその形成方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerator for a regenerative burner and a method for forming the regenerator, and more particularly to a regenerator for a regenerative burner capable of preventing cracks due to thermal stress and capable of stable operation for a long period of time, and the formation thereof. It relates to the method.

【0002】[0002]

【従来の技術】蓄熱式バーナでは、バーナに付随して蓄
熱体が設けられている。図3は、蓄熱式バーナを用いた
加熱炉の一例を示している。同図において、2は加熱
炉、3a,3bはバーナ、4a,4bは蓄熱体、5a,
5bは燃料遮断弁、6は燃焼用空気と燃焼排ガスとの切
替弁、7は燃焼排ガス排気口である。8は炉内に投入さ
れた被加熱物である。バーナ3a,3bには、燃焼用空
気を供給する管路に通気性個体からなる蓄熱体4a,4
bが設けられ、この蓄熱体4a,4bを通してのみ燃焼
用空気の送り込みと燃焼排ガスの一部の排出がなされて
いる。燃焼用空気を供給する管路に設けられた蓄熱体に
対して反対側の蓄熱体は燃焼排ガスの排出用に用いられ
る。このように燃焼用空気供給手段と燃焼排ガス排気手
段とが交互になされる。すなわち、ある一定時間はバー
ナを経由して高温の燃焼排ガスを吸引し蓄熱体を通過さ
せてこれを加熱しながら排気し、次の一定時間では燃焼
用空気をすでに加熱された蓄熱体を通過させて予熱しな
がらバーナに供給して燃焼させる動作を交互に行う蓄熱
式バーナである。
2. Description of the Related Art In a regenerative burner, a regenerator is provided in association with the burner. FIG. 3 shows an example of a heating furnace using a regenerative burner. In the figure, 2 is a heating furnace, 3a and 3b are burners, 4a and 4b are heat storage bodies, 5a,
5b is a fuel cutoff valve, 6 is a switching valve between combustion air and combustion exhaust gas, and 7 is a combustion exhaust gas exhaust port. Reference numeral 8 is an object to be heated put in the furnace. The burners 3a, 3b are provided with heat storage bodies 4a, 4 made of a gas permeable solid material in a conduit for supplying combustion air.
b is provided, and the combustion air is sent and a part of the combustion exhaust gas is discharged only through the heat storage bodies 4a and 4b. The heat storage body on the opposite side of the heat storage body provided in the pipe supplying the combustion air is used for discharging the combustion exhaust gas. In this way, the combustion air supply means and the combustion exhaust gas exhaust means are alternately arranged. That is, for a certain period of time, high temperature combustion exhaust gas is sucked through the burner and passed through the heat storage body to be exhausted while heating it, and for the next certain time, combustion air is passed through the already heated heat storage body. It is a regenerative burner that alternately performs the operation of supplying and burning the burner while preheating.

【0003】同図は、バーナ3aが燃焼状態であること
を示しており、蓄熱体4aに供給される燃焼空気の温度
は30℃で、それが蓄熱体4aで加熱されて1250℃
の予熱空気となってバーナ3aに供給されている。ま
た、燃焼排ガスの一部はバーナ3bを経て1350℃の
温度で蓄熱体4bに入り、燃焼排ガスによって蓄熱体4
bを加熱して200℃で排気されている。残余の燃焼ガ
スは排気口7から炉外に排気されている。バーナ3aと
バーナ3bとの切り替えは、燃料遮断弁5a,5bと燃
焼用空気と燃焼排ガスとの切替弁6と連動して切り替え
るようになされている。
The figure shows that the burner 3a is in a combustion state, and the temperature of the combustion air supplied to the heat storage body 4a is 30 ° C., which is heated by the heat storage body 4a and is 1250 ° C.
And is supplied to the burner 3a. Further, a part of the combustion exhaust gas enters the heat storage body 4b at a temperature of 1350 ° C. through the burner 3b, and the heat storage body 4 is heated by the combustion exhaust gas.
b is heated and exhausted at 200 ° C. The remaining combustion gas is exhausted outside the furnace through the exhaust port 7. Switching between the burner 3a and the burner 3b is performed by interlocking with the fuel cutoff valves 5a and 5b and the switching valve 6 between the combustion air and the combustion exhaust gas.

【0004】ここで、蓄熱体4a,4bは、単位容積当
たりの熱交換面積が大きく、かつ、ガス通過面積が大き
く、しかも流体通過時の圧力損失の小さな蓄熱体が好ま
しい。従って、このような理由で蓄熱体はハニカム構造
が適し、蓄熱式バーナにはハニカム状蓄熱体が用いられ
ていた。また、蓄熱体の材質としては、例えば、130
0℃以上の高温の燃焼ガスが通過したとしても、高温で
溶融しないセラミックスが用いられている。また、この
ようなセラミックスハニカム状蓄熱体は押出し成型した
セラミックス材料を焼結して製造されている。従って、
セラミックス製のハニカム蓄熱体の断面形状は長手方向
で一定である。
The heat storage bodies 4a and 4b are preferably heat storage bodies having a large heat exchange area per unit volume, a large gas passage area, and a small pressure loss when a fluid passes. Therefore, for this reason, a honeycomb structure is suitable for the heat storage body, and a honeycomb-shaped heat storage body has been used for the heat storage type burner. The material of the heat storage body is, for example, 130
Ceramics that do not melt at high temperatures even when combustion gas at a high temperature of 0 ° C. or higher passes through are used. In addition, such a ceramic honeycomb heat storage body is manufactured by sintering an extruded ceramic material. Therefore,
The cross-sectional shape of the ceramic honeycomb heat storage body is constant in the longitudinal direction.

【0005】[0005]

【発明が解決しようとする課題】従来の蓄熱式バーナに
用いられているセラミックス製のハニカム蓄熱体は使用
時に割れが発生する問題があった。その原因は次のよう
に推定されている。使用状態のハニカム蓄熱体は、バー
ナ側で温度が高く、反バーナ側で温度が低い温度分布状
態となる。ハニカム蓄熱体はこの温度分布に従って熱膨
張して変形しようとするが、不均等な膨張となるため
に、自由な変形が妨げられる。その結果、ハニカム蓄熱
体には内部応力が発生して割れが発生するものと推定さ
れていた。
The honeycomb heat storage body made of ceramics used in the conventional heat storage type burner has a problem that cracking occurs during use. The cause is presumed as follows. The honeycomb heat storage body in use has a temperature distribution state in which the temperature is high on the burner side and low on the non-burner side. The honeycomb heat storage body tends to thermally expand and deform in accordance with this temperature distribution, but since it is unevenly expanded, free deformation is hindered. As a result, it has been estimated that the honeycomb heat storage body generates internal stress and cracks.

【0006】ハニカム蓄熱体に割れが発生すると、ガス
の流路が一部大きくなり、蓄熱体出側の燃焼排ガス温度
が上昇して排ガス熱損失が増加するので、加熱炉の熱効
率が悪化する問題があった。また、ハニカム蓄熱体の割
れが進行すると、微細化したハニカム状の流路が破損し
てガスの流路を一部閉塞して、燃焼排ガスも燃料ガスが
流れ難くなる問題もあった。従って、従来の蓄熱体で
は、出側燃焼ガス温度の経時変化等を見ながら、蓄熱体
の割れを判定して短期間で交換していた。その結果、蓄
熱体交換による設備停止期間の生産機会損失の増加や、
蓄熱体交換費用が過大になる問題があった。
When the honeycomb heat storage body is cracked, a part of the gas flow path becomes large, the temperature of the combustion exhaust gas on the heat storage body outlet side rises, and the exhaust gas heat loss increases, so that the thermal efficiency of the heating furnace deteriorates. was there. Further, when the cracking of the honeycomb heat storage body progresses, there is a problem that the finely-divided honeycomb-shaped flow path is damaged and a part of the gas flow path is blocked, and it becomes difficult for the combustion exhaust gas to flow the fuel gas. Therefore, in the conventional heat storage body, the cracks of the heat storage body were judged and replaced in a short period of time while observing the temporal change in the temperature of the outlet combustion gas. As a result, the increase of production opportunity loss during the facility suspension period due to heat storage element exchange,
There was a problem that the heat storage body replacement cost became excessive.

【0007】本発明は、上述のような課題に鑑みなされ
たもので、熱ストレスによって発生する内部応力で割れ
ない蓄熱式バーナ用蓄熱体及びその形成方法を提供する
ことを目的とするものである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a regenerator for a regenerative burner and a method for forming the regenerator that does not crack due to internal stress generated by thermal stress. .

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、第1の発明は、燃焼用空気と燃焼排ガスが流れ方向
を変えて交互に通過する通気性個体からなる蓄熱式バー
ナ用蓄熱体において、蓄熱体として機能する前記通気性
個体が燃焼用空気の流れ方向に連通した多数の細管の集
合体からなるハニカム構造体であり、ハニカム構造体が
燃焼用空気の流れ方向に少なくも2個以上積層され、且
つ、バーナ側のハニカム構造体は燃焼用空気の流れ方向
の長さを反バーナ側のハニカム構造体の長さより小さく
したことを特徴とする蓄熱式バーナ用蓄熱体である。
の上で、第1の発明はさらに、燃焼用空気の流れ方向に
積層した前記蓄熱式バーナ用蓄熱体のバーナ側のハニカ
ム構造体が燃焼用空気の流れ断面内で複数に分割したこ
とを特徴とする蓄熱式バーナ用蓄熱体である。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a regenerator for a regenerative burner, which comprises a breathable solid body in which combustion air and combustion exhaust gas alternately pass by changing their flow directions. In the above, the breathable solid body functioning as a heat storage body is a honeycomb structure composed of an assembly of a large number of thin tubes communicating with each other in the flow direction of combustion air, and the honeycomb structure has at least two in the flow direction of combustion air. The above-described stacked and burner-side honeycomb structure is a heat storage type burner heat storage body characterized in that the length of the combustion air in the flow direction is smaller than the length of the non-burner side honeycomb structure. So
In the above, the first invention is further characterized in that the honeycomb structure on the burner side of the heat storage body for the heat storage type burner laminated in the flow direction of the combustion air is divided into a plurality in the flow section of the combustion air. Is a heat storage body for a heat storage type burner.

【0009】また、第2の発明は、燃焼用空気と燃焼排
ガスが流れ方向を変えて交互に通過する通気性個体から
なる蓄熱式バーナ用蓄熱体の形成方法において、蓄熱体
として機能する前記通気性個体が、燃焼用空気の流れ方
向に連通した多数の細管の集合体からなるハニカム構造
体であり、燃焼用空気の流れ方向に少なくも2個以上積
層したハニカム構造体からなり、且つ、反バーナ側のハ
ニカム構造体について、下記式により計算される割れ指
数Sの値より、他のハニカム構造体の割れ指数Sの値が
小さくなるように設定したことを特徴とする蓄熱式バー
ナ用蓄熱体の形成方法である。 S=ΔT・A・L・E・b/σ 但し、 ΔT:ハニカム入り出のガス温度差(K) A:ハニカムの流れ方向投影断面積(m2 ) L:ハニカムの流れ方向長さ(m) E:ハニカムのヤング率(N/m2 ) b:ハニカムの線膨張係数(1/K) σ:ハニカムの引張り強度(N/m2
A second aspect of the present invention is a method for forming a heat storage body for a heat storage type burner, which comprises a breathable solid body in which combustion air and combustion exhaust gas are alternately passed by changing their flow directions. The solid individual is a honeycomb structure composed of an assembly of a large number of thin tubes communicating with each other in the flow direction of the combustion air, and is composed of at least two honeycomb structures laminated in the flow direction of the combustion air, and Regarding the burner-side honeycomb structure, the value of the crack index S of another honeycomb structure is set to be smaller than the value of the crack index S calculated by the following formula. Is a method of forming. S = ΔT · A · L · E · b / σ, where ΔT: difference in gas temperature between the entrance and exit of the honeycomb (K) A: projected cross-sectional area of the honeycomb in the flow direction (m 2 ) L: length of the honeycomb in the flow direction (m ) E: Young's modulus of the honeycomb (N / m 2 ) b: Linear expansion coefficient of the honeycomb (1 / K) σ: Tensile strength of the honeycomb (N / m 2 )

【0010】[0010]

【作用】図4(a)は、蓄熱式バーナ運転中の蓄熱体内
部温度分布測定値の時間平均値の例を示したものであ
る。ここで使用した蓄熱体はハニカム構造体をガスの流
れ方向に3個積層したものである。図4から明らかなよ
うに、このような蓄熱体内部では、蓄熱体高温側で温度
勾配が大きくなることがわかる。この例では、高温側の
ハニカム構造体が割れたが、低温側では割れていない。
そこで、割れの原因を調査するために、材質、形状の異
なるハニカム構造体について様々な温度分布を与えて割
れ発生の有無について調査した。
FIG. 4A shows an example of the time average value of the measured temperature distribution inside the regenerator during the regenerative burner operation. The heat storage body used here is a stack of three honeycomb structures in the gas flow direction. As is clear from FIG. 4, in such a heat storage body, the temperature gradient becomes large on the high temperature side of the heat storage body. In this example, the honeycomb structure on the high temperature side cracked, but it did not crack on the low temperature side.
Therefore, in order to investigate the cause of cracking, various temperature distributions were given to honeycomb structures having different materials and shapes, and the presence or absence of cracking was investigated.

【0011】その結果、割れ指数Sを、ハニカム入り出
のガス温度差(ΔT)、ハニカム流れ方向投影断面積
(A)、ハニカム流れ方向長さ(L)、ハニカムヤング
率(E)およびハニカム引張り強度(σ)よりなる関数
である(1)式で定義し、この関数で求められる割れ指
数(S)がある値(Scr値)以上であると割れること
が判明した。 S=ΔT・A・L・E・b/σ ………………(1) 但し、 ΔT:ハニカム入り出のガス温度差(K) A:ハニカムの流れ方向投影断面積(m2 ) L:ハニカムの流れ方向長さ(m) E:ハニカムのヤング率(N/m2 ) b:ハニカムの線膨張係数(1/K) σ:ハニカムの引張り強度(N/m2
As a result, the cracking index S is calculated by calculating the gas temperature difference between the entrance and exit of the honeycomb (ΔT), the projected cross-sectional area of the honeycomb flow direction (A), the length of the honeycomb flow direction (L), the Young's modulus of the honeycomb (E), and the honeycomb tension. It was found that cracking occurs when the crack index (S) defined by the formula (1), which is a function consisting of strength (σ), is more than a certain value (Scr value). S = ΔT · A · L · E · b / σ (1) where ΔT: difference in gas temperature between the entrance and exit of the honeycomb (K) A: projected cross-sectional area of the honeycomb in the flow direction (m 2 ) L : Length of honeycomb in flow direction (m) E: Young's modulus of honeycomb (N / m 2 ) b: Linear expansion coefficient of honeycomb (1 / K) σ: Tensile strength of honeycomb (N / m 2 )

【0012】すなわち、ハニカム構造体の材料を選択す
ると、ヤング率、線膨張係数、引張り強度が決まる。ハ
ニカムが割れないためには、形状(A,L)を小さくす
るか、ハニカム入り出のガス温度差(ΔT)を小さくす
ることが考えられる。しかし、何らかの方法によってハ
ニカム入り出のガス温度差(ΔT)が小さくできたとし
ても、その場合には、ハニカム構造からなる蓄熱体を長
くしないと十分な熱交換ができず、ハニカム状蓄熱体が
大きくなる問題が生じる。従って、形状(A,L)を最
適化してハニカム状蓄熱体の割れを防止する方法が考え
られる。
That is, when the material of the honeycomb structure is selected, Young's modulus, coefficient of linear expansion and tensile strength are determined. In order to prevent the honeycomb from cracking, it is conceivable to reduce the shape (A, L) or reduce the gas temperature difference (ΔT) between entering and exiting the honeycomb. However, even if the gas temperature difference (ΔT) between the entrance and the exit of the honeycomb can be reduced by some method, in that case, sufficient heat exchange cannot be performed unless the heat storage body having the honeycomb structure is lengthened, and the honeycomb heat storage body is The problem of becoming larger arises. Therefore, a method of optimizing the shape (A, L) to prevent cracking of the honeycomb heat storage body can be considered.

【0013】このような知見より、本発明者らは、従来
の課題を解決するための手段としてさらに以下の発明に
至ったのである。すなわち、第1の発明によれば、燃焼
用空気と燃焼排ガスが流れ方向を変えて交互に通過する
通気性個体からなる蓄熱式バーナ用蓄熱体において、蓄
熱体として機能する前記通気性個体は、燃焼用空気の流
れ方向に連通した多数の細管の集合体として形成された
ハニカムを、少なくも2個以上、燃焼用空気の流れ方向
に積層して構成されており、かつ、バーナ側のハニカム
は燃焼用空気の流れ方向の長さ(L)を反バーナ側のハ
ニカムの長さより小さくしたことを特徴とする蓄熱式バ
ーナ用蓄熱体である。
Based on such knowledge, the present inventors have further arrived at the following invention as a means for solving the conventional problems. That is, according to the first aspect of the invention, in the heat storage body for a regenerative burner, which comprises a breathable solid body in which the combustion air and the combustion exhaust gas pass by alternately changing the flow direction, the breathable solid body functioning as a heat storage body is: The honeycomb formed as an aggregate of a large number of thin tubes communicating in the flow direction of the combustion air is laminated by at least two or more in the flow direction of the combustion air, and the honeycomb on the burner side is The heat storage body for a heat storage type burner is characterized in that the length (L) in the flow direction of the combustion air is made smaller than the length of the honeycomb on the side opposite to the burner.

【0014】第1の発明は、高温側のハニカム構造体に
おける割れを防止するものである。しかし、バーナの燃
焼容量が大きい場合は、蓄熱体の流れ方向投影断面積
(A)が大きくなり燃焼用空気の流れ方向の長さ(L)
を小さくしたのみでは(1)式で計算される割れ指数S
の値がScr値より小さくならない場合がある。そこ
で、このような場合に鑑みて、第1の発明ではさらに、
バーナ側のハニカムを燃焼用空気の流れ断面内で複数に
分割して蓄熱体の流れ方向投影断面積(A)をも小さく
したものを組み合わせる。特に、高温側のハニカム構造
体の割れを防止するものである。
The first invention is to prevent cracking in the honeycomb structure on the high temperature side. However, when the burner has a large combustion capacity, the projected cross-sectional area (A) of the heat storage body in the flow direction increases, and the length (L) of the combustion air in the flow direction increases.
The crack index S calculated by Eq.
In some cases, the value of does not become smaller than the Scr value. Therefore, in view of such a case, the first invention further
The honeycomb on the burner side is divided into a plurality in the flow section of the combustion air to reduce the projected cross-sectional area (A) of the heat storage body in the flow direction. In particular, it prevents cracking of the honeycomb structure on the high temperature side.

【0015】第2の発明によれば、蓄熱体を複数のハニ
カムを組合せ形成し、かつ、各ハニカムでの割れ指数S
の値が割れに至る割れ指数S(Scr値)より小さくな
るような形状(A,L)を、それぞれのハニカム構造体
について計算して決めればよい。一般的には最も低温側
である反バーナ側でのSの値がScr値より小さくなる
ようにハニカム構造体の形状を決定し、高温となって熱
膨張が大きくなる高温側のハニカム構造体では形状
(A,L)を低温側のハニカム構造体より順次小さくな
るように選定すればよいことになる。
According to the second aspect of the invention, the heat storage body is formed by combining a plurality of honeycombs, and the cracking index S of each honeycomb is formed.
A shape (A, L) in which the value of is smaller than the cracking index S (Scr value) leading to cracking may be calculated and determined for each honeycomb structure. Generally, the shape of the honeycomb structure is determined so that the value of S on the anti-burner side, which is the lowest temperature side, becomes smaller than the Scr value. It suffices to select the shapes (A, L) so as to become successively smaller than the honeycomb structure on the low temperature side.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る蓄熱式バーナ
用蓄熱体の実施例について図を参照して説明する。図1
は本発明に係る蓄熱式バーナ用蓄熱体の一実施例を示す
図である。同図において、1は蓄熱体であり、図3に示
したような加熱炉に用いられる。蓄熱体1は、セラミッ
クス製のハニカム構造体を燃焼用空気の流れ方向に3個
積層形成した集合体である。1aはバーナ側に設置され
る第1番目のハニカム構造体、1bは第2番目のハニカ
ム構造体、1cは反バーナ側に設置される第3番目のハ
ニカム構造体である。ハニカム構造体1a,1b,1c
には、燃焼用空気や燃焼排ガスが通過する多数の細管2
A,2B,2Cがそれぞれ形成された通気性個体であ
る。細管2A,2B,2Cの流路断面形状は正方形や長
方形或いは六角形等でよく図面形状に限定するものでは
ない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a heat storage body for a heat storage type burner according to the present invention will be described below with reference to the drawings. Figure 1
FIG. 3 is a diagram showing an example of a heat storage body for a heat storage type burner according to the present invention. In the figure, reference numeral 1 denotes a heat storage body, which is used in the heating furnace as shown in FIG. The heat storage body 1 is an assembly in which three honeycomb structures made of ceramics are laminated in the flow direction of combustion air. 1a is a first honeycomb structure installed on the burner side, 1b is a second honeycomb structure, and 1c is a third honeycomb structure installed on the non-burner side. Honeycomb structure 1a, 1b, 1c
Is a large number of thin tubes 2 through which combustion air and combustion exhaust gas pass.
A, 2B, 2C are formed breathable solids. The cross-sectional shape of the channels of the thin tubes 2A, 2B, 2C may be square, rectangular, hexagonal or the like, and is not limited to the drawing shape.

【0017】なお、これらのハニカム構造体1a,1
b,1cの燃焼用空気の流れ方向の幅A,B,Cの長さ
の比は、一例として、1:2:3に設定されている。ま
た、このとき(1)式で計算される割れ指数Sの値は、
第3番目のハニカム構造体1cの割れ指数Sの値は割れ
に至る指数Sの値(Scr値)より小さく、また、第1
番目、第2番目のハニカム構造体1a,1bの割れ指数
Sの値は第3番目のハニカム構造体1cの割れ指数Sの
値よりさらに小さい。すなわち、ハニカム構造体1a,
1b,1cの幅A,B,Cを1:2:3に設定すること
によって、より高温側に位置するハニカム構造体の割れ
指数Sが小さな値に設定されている。
Incidentally, these honeycomb structures 1a, 1
As an example, the ratio of the lengths of widths A, B, and C in the flow direction of the combustion air of b and 1c is set to 1: 2: 3. Further, at this time, the value of the crack index S calculated by the equation (1) is
The value of the cracking index S of the third honeycomb structure 1c is smaller than the value of the index S leading to cracking (Scr value).
The value of the crack index S of the first and second honeycomb structures 1a and 1b is smaller than the value of the crack index S of the third honeycomb structure 1c. That is, the honeycomb structure 1a,
By setting the widths A, B, and C of 1b and 1c to 1: 2: 3, the crack index S of the honeycomb structure located on the higher temperature side is set to a small value.

【0018】このような形状にすることによって、加熱
炉の蓄熱体に使用しても、どのハニカム構造体にも割れ
が発生しない。なお、この実施例では、バーナの燃焼容
量が大きい場合には、ハニカム構造体1a,1b,1c
を組合せた蓄熱体のガスの流路断面積を大きくする。ま
た、実施例のように、三個のハニカム構造体に限定する
ことなく、四個以上を集積したものであってもよい。
With such a shape, no crack occurs in any honeycomb structure even when used as a heat storage body of a heating furnace. In this embodiment, when the burner has a large combustion capacity, the honeycomb structures 1a, 1b, 1c are formed.
The flow passage cross-sectional area of the gas of the heat storage body in which the above is combined is increased. Further, as in the example, the number of honeycomb structures is not limited to three, and four or more honeycomb structures may be integrated.

【0019】次に、本発明に係る蓄熱式バーナ用蓄熱体
の他の実施例について、図2を参照して説明する。同図
において、蓄熱体1がハニカム構造体1d,1b,1c
から積層構成されている。セラミックス製のハニカム構
造体である。高温側であるバーナ側に位置するニカム構
造体1dは、ガス流路断面内で複数に分割されている。
ハニカム構造体1d,1b,1cの燃焼用空気の流れ方
向の幅A,B,Cの長さの比は、一例として、1.5:
2:4に設定されている。また、このとき(1)式で計
算される割れ指数Sの値は、ハニカム構造体1bの割れ
指数Sが最も小さく設定され、ハニカム構造体1c,1
dが順次大きく設定されている。しかし、これらのハニ
カム構造体は、Scr値(割れに至る値)より小さな値
に設定されている。
Next, another embodiment of the heat storage body for a heat storage type burner according to the present invention will be described with reference to FIG. In the figure, the heat storage body 1 is a honeycomb structure 1d, 1b, 1c.
It is composed of layers. It is a honeycomb structure made of ceramics. The Nicam structure 1d located on the burner side, which is the high temperature side, is divided into a plurality in the cross section of the gas flow path.
The ratio of the lengths of the widths A, B, C of the honeycomb structures 1d, 1b, 1c in the flow direction of the combustion air is 1.5:
It is set to 2: 4. Further, at this time, the value of the crack index S calculated by the equation (1) is set so that the crack index S of the honeycomb structure 1b is the smallest, and the honeycomb structure 1c, 1
d is sequentially set to be large. However, these honeycomb structures are set to a value smaller than the Scr value (value leading to cracking).

【0020】ハニカム構造体1d,1b,1cは、燃焼
用空気や燃焼排ガスが通過する多数の細管2D,2B,
2Cがそれぞれ形成された通気性個体である。細管2
D,2B,2Cの流路断面形状は正方形や長方形或いは
六角形等でもよく、図1の実施例と同様に図面形状に限
定するものではない。また、割れ指数SがScr値以下
であれば、実施例に示すように4個に分割することな
く、二個に分割してもよく、実施例のように4個に限定
するものではない。
The honeycomb structures 1d, 1b, 1c are composed of a large number of thin tubes 2D, 2B, through which combustion air and combustion exhaust gas pass.
2C is a breathable solid body formed respectively. Thin tube 2
The channel cross-sectional shape of D, 2B, 2C may be square, rectangular, hexagonal, etc., and is not limited to the shape of the drawing as in the embodiment of FIG. If the crack index S is equal to or less than the Scr value, it may be divided into two instead of being divided into four as shown in the embodiment, and is not limited to four as in the embodiment.

【0021】[0021]

【発明の効果】本発明によれば、(1)式に基づいて蓄
熱体の割れ指数Sを所定の値以下に設定するように、蓄
熱体を形成することで、熱ストレスによる割れが従来よ
り低減できる利点がある。また、蓄熱式バーナ用蓄熱体
の割れが防止できるとともに、加熱炉の熱交換効率を低
下させることなく蓄熱式バーナを長期間安定して運転す
ることができる。従って、従来のように蓄熱体が割れ
て、蓄熱体流路が一部大きくなり、蓄熱体出側燃焼ガス
温度が上昇し、排ガス熱損失が増加し加熱炉の熱効率が
悪化することがなくなる効果を有する。
According to the present invention, the heat storage body is formed so that the cracking index S of the heat storage body is set to a predetermined value or less based on the equation (1). There is an advantage that it can be reduced. Further, the heat storage body for the heat storage type burner can be prevented from cracking, and the heat storage type burner can be stably operated for a long period of time without lowering the heat exchange efficiency of the heating furnace. Therefore, as in the conventional case, the heat storage body is cracked, the heat storage body flow path is partially enlarged, the heat storage body outlet side combustion gas temperature rises, exhaust gas heat loss increases, and the thermal efficiency of the heating furnace does not deteriorate. Have.

【0022】また、従来の蓄熱体では、出側燃焼ガス温
度の上昇等を見ながら、蓄熱体の割れを判定して交換し
たり、数ヶ月毎に定期的に蓄熱体を交換するなどを行っ
ていたため、蓄熱体交換による設備停止期間の生産機会
損失、及び蓄熱体交換費用がかかっていたが、本発明に
よれば、蓄熱体の交換頻度が設備の計画定期修理時期以
上に延長できる効果を有する。従って、設備停止期間の
生産損失がなくなり、蓄熱体交換費用が従来の約1/3
に削減され、極めて効果的である。
In the conventional heat storage body, the heat storage body is checked for cracks and replaced while observing the rise in the temperature of the combustion gas on the outlet side, or the heat storage body is periodically replaced every few months. Therefore, the production opportunity loss during the facility suspension period due to the heat storage element replacement, and the heat storage element replacement cost were required, but according to the present invention, the effect that the replacement frequency of the heat storage element can be extended beyond the planned regular repair time of the equipment. Have. Therefore, there is no production loss during the facility shutdown period, and the heat storage element replacement cost is about 1/3 of the conventional cost.
Is extremely effective.

【0023】なお、本発明によれば、蓄熱式バーナ用蓄
熱体を加熱炉に使用することによって、蓄熱体の点検、
交換の理由は割れではなく、燃焼ガスやガス中ダストと
蓄熱体の化学反応による蓄熱体の劣化の点検や、ダスト
が蓄熱体を閉塞して圧損が上昇する場合に清掃するため
に限られ、蓄熱式バーナ用蓄熱体として極めて効果的で
ある。
In addition, according to the present invention, by using the heat storage body for the heat storage type burner in the heating furnace, inspection of the heat storage body,
The reason for replacement is not cracking, but is limited to inspection of deterioration of heat storage body due to chemical reaction between combustion gas and dust in gas and heat storage body, and cleaning when dust blocks heat storage body and pressure loss rises, It is extremely effective as a heat storage type heat storage type burner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る蓄熱式バーナ用蓄熱体の一実施例
を示す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a heat storage body for a heat storage type burner according to the present invention.

【図2】本発明に係る蓄熱式バーナ用蓄熱体の他の実施
例を示す斜視図である。
FIG. 2 is a perspective view showing another embodiment of the heat storage body for a heat storage type burner according to the present invention.

【図3】蓄熱式バーナを用いた加熱炉の概要を示す概略
図である。
FIG. 3 is a schematic diagram showing an outline of a heating furnace using a regenerative burner.

【図4】蓄熱体の温度分布を示す図である。FIG. 4 is a diagram showing a temperature distribution of a heat storage body.

【符号の説明】[Explanation of symbols]

1 蓄熱体 1a〜1c ハニカム構造体 1d 分割したハニカム構造体 2A〜2D 細管 2 加熱炉 3a,3b バーナ 4a,4b 蓄熱体 5a,5b 燃料遮断弁 6 燃焼用空気と燃焼排ガスとの切替弁 7 排気口 8 被加熱物 1 heat storage 1a to 1c honeycomb structure 1d Divided honeycomb structure 2A-2D thin tube 2 heating furnace 3a, 3b burner 4a, 4b heat storage body 5a, 5b Fuel cutoff valve 6 Switching valve between combustion air and combustion exhaust gas 7 exhaust port 8 Heated object

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 功 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 須藤 淳 神奈川県横浜市鶴見区尻手二丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 田中 良一 神奈川県横浜市鶴見区尻手二丁目1番53 号 日本ファーネス工業株式会社内 (56)参考文献 特開 平6−201276(JP,A) 特開 平8−94066(JP,A) 特開 平8−261673(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23L 15/02 F27D 17/00 101 F28D 17/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Isao Mori 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Steel Pipe Co., Ltd. (72) Atsushi Sudo 2-53, Shirate, Tsurumi-ku, Kanagawa Prefecture Japan Furnace Industry Co., Ltd. (72) Inventor Ryoichi Tanaka 2-53, Shirate, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industry Co., Ltd. (56) Reference JP-A-6-201276 (JP, A) Flat 8-94066 (JP, A) JP 8-261673 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F23L 15/02 F27D 17/00 101 F28D 17/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼用空気と燃焼排ガスが流れ方向を変
えて交互に通過する通気性個体からなる蓄熱式バーナ用
蓄熱体において、 蓄熱体として機能する前記通気性個体が燃焼用空気の流
れ方向に連通した多数の細管の集合体からなるハニカム
構造体であり、ハニカム構造体が燃焼用空気の流れ方向
に少なくも2個以上積層され、且つ、バーナ側のハニカ
ム構造体は燃焼用空気の流れ方向の長さを反バーナ側の
ハニカム構造体の長さより小さくし、燃焼用空気の流れ
方向に積層した前記蓄熱式バーナ用蓄熱体のバーナ側の
ハニカム構造体を燃焼用空気の流れ断面内で複数に分割
したことを特徴とする蓄熱式バーナ用蓄熱体。
1. A heat storage body for a heat storage type burner, comprising a permeable solid body in which combustion air and flue gas are alternately changed in flow direction, and wherein the permeable solid body functioning as a heat storage body has a flow direction of combustion air. Is a honeycomb structure composed of an assembly of a large number of thin tubes communicating with each other, and at least two or more honeycomb structures are laminated in the flow direction of the combustion air, and the honeycomb structure on the burner side is the flow of the combustion air. The length in the direction is made smaller than the length of the honeycomb structure on the non-burner side, and the flow of combustion air is reduced.
On the burner side of the heat storage body for the heat storage type burner stacked in the direction
Dividing the honeycomb structure into multiple pieces within the flow section of the combustion air
Regenerative burners heat storage body, characterized in that the.
【請求項2】 燃焼用空気と燃焼排ガスが流れ方向を変
えて交互に通過する通気性個体からなる蓄熱式バーナ用
蓄熱体の形成方法において、 蓄熱体として機能する前記通気性個体が燃焼用空気の流
れ方向に連通した多数の細管の集合体からなるハニカム
構造体であり、燃焼用空気の流れ方向に少なくも2個以
上積層したハニカム構造体からなり、且つ、反バーナ側
のハニカム構造体について下記式によって求められる割
れ指数Sの値より、他のハニカム構造体の割れ指数Sの
値が小さくなるように設定したことを特徴とする蓄熱式
バーナ用蓄熱体の形成方法。 S=ΔT・A・L・E・b/σ 但し、ΔT:ハニカム入り出のガス温度差(K) A:ハニカムの流れ方向投影断面積(m 2 L:ハニカムの流れ方向長さ(m) E:ハニカムのヤング率(N/m 2 b:ハニカムの線膨張係数(1/K) σ:ハニカムの引張り強度(N/m 2
2. The flow directions of combustion air and combustion exhaust gas are changed.
For regenerative burners consisting of breathable solids that alternately pass through each other
In the method of forming a heat storage body, the breathable solid that functions as a heat storage body is a flow of combustion air.
Honeycomb consisting of an assembly of many thin tubes communicating in one direction
It is a structure, and at least two or more in the flow direction of combustion air.
Composed of a honeycomb structure laminated on top, and on the side opposite to the burner
The honeycomb structure of
From the value of the breaking index S, the cracking index S of other honeycomb structures
Heat storage formula characterized by setting to a small value
Method of forming heat storage body for burner. S = ΔT · A · L · E · b / σ However, ΔT: difference in gas temperature between the entrance and exit of the honeycomb (K) A: projected cross-sectional area in the flow direction of the honeycomb (m 2 ) L: length in the flow direction of the honeycomb (m ) E: Young's modulus of the honeycomb (N / m 2 ) b: Linear expansion coefficient of the honeycomb (1 / K) σ: Tensile strength of the honeycomb (N / m 2 )
JP18269795A 1995-07-19 1995-07-19 Heat storage element for heat storage type burner and method of forming the same Expired - Fee Related JP3459024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18269795A JP3459024B2 (en) 1995-07-19 1995-07-19 Heat storage element for heat storage type burner and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18269795A JP3459024B2 (en) 1995-07-19 1995-07-19 Heat storage element for heat storage type burner and method of forming the same

Publications (2)

Publication Number Publication Date
JPH0933034A JPH0933034A (en) 1997-02-07
JP3459024B2 true JP3459024B2 (en) 2003-10-20

Family

ID=16122858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18269795A Expired - Fee Related JP3459024B2 (en) 1995-07-19 1995-07-19 Heat storage element for heat storage type burner and method of forming the same

Country Status (1)

Country Link
JP (1) JP3459024B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709007B2 (en) * 2011-11-09 2015-04-30 東京窯業株式会社 Heat storage body for heat storage type burner and method for manufacturing heat storage body for heat storage type burner

Also Published As

Publication number Publication date
JPH0933034A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
US4130160A (en) Composite ceramic cellular structure and heat recuperative apparatus incorporating same
EP0687879B1 (en) Honeycomb Regenerator
US5531593A (en) Regenerative thermal oxidizer with heat exchanger columns
JP3459024B2 (en) Heat storage element for heat storage type burner and method of forming the same
US20200003502A1 (en) Heat transfer media
JP3260580B2 (en) Thermal storage for thermal storage burners
US5707229A (en) Regenerative thermal oxidizer with heat exchanger columns
JP2002174403A (en) Heating equipment
JPH0739913B2 (en) Honeycomb heat storage
JPH11248378A (en) Honeycomb heat accumulator
US20070160943A1 (en) Monolith for use in regenerative oxidizer systems
AU2001253600B2 (en) Angled bed for regenerative heat exchanger
JP3106124B2 (en) Combustion air preheating method and honeycomb-shaped heat storage body
JPS5937588Y2 (en) Gitter bricks in glass tank kiln
CA2360988A1 (en) Glassmaking furnace regenerator
JP3529852B2 (en) Honeycomb regenerator
JP2003287379A (en) Honeycomb-shaped heat accumulator and heat accumulating burner using this heat accumulator
AU2001253600A1 (en) Angled bed for regenerative heat exchanger
JPH1130491A (en) Honeycomb heat storage structure
JP2857360B2 (en) Honeycomb regenerator
JP3557010B2 (en) Heat storage device
JPH07280253A (en) Heat storage type burner
JP3720905B2 (en) Industrial furnace combustion equipment
JP2639593B2 (en) Empty stack of refractories for heat storage
JP2002228144A (en) Burner heat storage unit and high temperature regenerative radiant tube burner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030715

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees