JPH0739913B2 - Honeycomb heat storage - Google Patents

Honeycomb heat storage

Info

Publication number
JPH0739913B2
JPH0739913B2 JP2415583A JP41558390A JPH0739913B2 JP H0739913 B2 JPH0739913 B2 JP H0739913B2 JP 2415583 A JP2415583 A JP 2415583A JP 41558390 A JP41558390 A JP 41558390A JP H0739913 B2 JPH0739913 B2 JP H0739913B2
Authority
JP
Japan
Prior art keywords
heat storage
storage body
honeycomb
cell
cell wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2415583A
Other languages
Japanese (ja)
Other versions
JPH04251190A (en
Inventor
雅男 川本
Original Assignee
日本ファーネス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ファーネス工業株式会社 filed Critical 日本ファーネス工業株式会社
Priority to JP2415583A priority Critical patent/JPH0739913B2/en
Publication of JPH04251190A publication Critical patent/JPH04251190A/en
Publication of JPH0739913B2 publication Critical patent/JPH0739913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ハニカム状の多数の流
路を有する蓄熱体に関する。更に詳述すると、本発明は
蓄熱式ラジアントチューブバーナや蓄熱式オープンフレ
ームバーナ(直火式蓄熱方式バーナ)等の燃焼装置の排
熱回収システムにおいて例えば20秒〜60秒の短時間
で蓄熱−放熱サイクルを繰返す(以下高周期蓄熱とい
う)のに用いて好適なハニカム状蓄熱体に関する。尚、
本明細書においてハニカム状とは本来の六角形の穴を有
する場合だけでなく、四角形、三角形の穴を無数にあけ
たものも含む。また、セルとは多数の隔壁(セル壁)に
よって区画された蓄熱体の長手方向に貫通する流路を意
味する。
BACKGROUND OF THE INVENTION The present invention relates to a large number of honeycomb-shaped streams.
The present invention relates to a heat storage body having a passage . More specifically, the present invention relates to an exhaust heat recovery system of a combustion device such as a heat storage type radiant tube burner or a heat storage type open frame burner (a direct fire type heat storage type burner). The present invention relates to a honeycomb heat storage body suitable for use in repeating a cycle (hereinafter referred to as high cycle heat storage). still,
In the present specification, the term "honeycomb shape" includes not only the original hexagonal holes but also the number of square and triangular holes. In addition, cells are used for many partition walls (cell walls).
Therefore, the flow path that penetrates the partitioned heat storage body in the longitudinal direction is defined.
To taste.

【0002】[0002]

【従来の技術】近年、廃棄ガスから相当量の熱量を回収
して熱効率を高めるため燃焼用空気のプレヒート技術が
開発されている。例えば、図示していないが、ラジアン
トチューブの両端に蓄熱体を有するバーナをそれぞれ設
け、これらを交互に燃焼させてその燃焼ガスを燃焼させ
ていないバーナ側の蓄熱体を通して排出し、蓄熱体に蓄
熱された燃焼ガスの熱を使って燃焼用空気をプレヒート
する蓄熱式ラジアントチューブバーナが提供されている
(工業加熱Vol.23,NO.6,P71 日本工業
炉協会発行)。
2. Description of the Related Art In recent years, a technique for preheating combustion air has been developed in order to recover a considerable amount of heat from waste gas and improve thermal efficiency. For example, although not shown, burners each having a heat storage body are provided at both ends of the radiant tube, and these burners are alternately burned to discharge the combustion gas through the burner-side heat storage body which is not burned, and the heat storage body stores the heat. A heat storage type radiant tube burner that preheats combustion air using the heat of the generated combustion gas is provided (Industrial heating Vol. 23, NO. 6, P71 published by Japan Industrial Reactor Association).

【0003】このような交互燃焼型ラジアントチューブ
バーナ装置に用いるような顕熱を利用する蓄熱システム
に使用される従来の蓄熱体としては、製鉄や窯業などの
工業炉で用いられる蓄熱レンガや、金属製蓄熱材等が一
般的に知られている。蓄熱レンガは6cm程度の厚さの
ものが格子状に配列されて積み重ねて使用され、また金
属製の蓄熱材は2〜3cmの厚みの純鉄等が使用されて
いる。また、近年、アルミナボールのようなセラミック
の球体を蓄熱体として使用することも考えられている。
Such alternating combustion type radiant tube
As a conventional heat storage body used in a heat storage system that uses sensible heat such as used in a burner device, a heat storage brick used in an industrial furnace such as iron making or a ceramic industry, or a metal heat storage material is generally known. It As the heat storage bricks, those having a thickness of about 6 cm are arranged in a lattice and stacked and used, and as the heat storage material made of metal, pure iron or the like having a thickness of 2 to 3 cm is used. In recent years, it has been considered to use a ceramic sphere such as an alumina ball as a heat storage body.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、蓄熱レ
ンガの場合、数十分から1時間の蓄熱−放熱サイクルを
繰返すものであり、熱の出し入れの速度が遅くなり、平
均温度が下がって熱効率が悪くなる。即ち、蓄熱体容量
が大きいために十分蓄熱されかつ十分放熱されるには十
分長い時間が必要となる。このため、20〜60秒の短
時間で蓄熱−放熱サイクルを繰返す高周期蓄熱には適し
ていない。また金属製蓄熱材の場合、分単位で蓄熱−放
熱サイクルを繰返すことができるが、燃焼排ガスのよう
な酸化性のガスに対しての使用には向かない。また、1
000℃程度以上の高温燃焼ガスの場合も耐熱上の理由
で使用できない。
However, in the case of the heat storage brick, the heat storage-heat radiation cycle of several tens of minutes to one hour is repeated, and the rate of heat input and output becomes slow, the average temperature decreases, and the thermal efficiency deteriorates. Become. That is, since the capacity of the heat storage body is large, a sufficiently long time is required for sufficient heat storage and sufficient heat dissipation. Therefore, it is not suitable for high cycle heat storage in which a heat storage-heat radiation cycle is repeated in a short time of 20 to 60 seconds. Further, in the case of the metal heat storage material, the heat storage-heat radiation cycle can be repeated in units of minutes, but it is not suitable for use with oxidizing gas such as combustion exhaust gas. Also, 1
Even in the case of a high temperature combustion gas of about 000 ° C or higher, it cannot be used due to heat resistance.

【0005】そこで、本発明者が種々検討の結果、燃焼
ガスに対して不活性でかつ耐熱性に優れるセラミックを
用い、比表面積が大きなハニカム状の筒体に形成するこ
とを考えた。このような形態をとるセラミックとして
は、従来、自動車の排気ガス中のNOxを減少させるた
めの触媒セラミックが存在する。
Therefore, as a result of various studies, the present inventor has considered forming a honeycomb cylindrical body having a large specific surface area by using a ceramic which is inert to combustion gas and has excellent heat resistance. Conventionally, ceramics having such a form have been used to reduce NOx in exhaust gas of automobiles .
There is a catalytic ceramic for.

【0006】しかし、この触媒用セラミックは、できる
だけ多くの触媒を担持するために広い表面積を得ること
を第1の目的としている。このため、ハニカムのセル壁
厚さをできるだけ薄くしてピッチを細かくするようにし
ている。通常、製造技術の極限に達するまで薄く形成さ
れている。しかしながら、このような構成では通風抵抗
が大きくなる問題がある。圧力比の高い自動車用エンジ
ンの場合にはそれほど問題とならないが、バーナ等の燃
焼装置においては圧力損失の増大は無視できなく、燃焼
装置用蓄熱体としては不向きである。反面、通風抵抗を
小さくするため、セル壁厚さを変えずにピッチを大きく
して通気性を良くすれば蓄熱容量が低下する。このた
め、自動車用触媒セラミックを単に蓄熱体として転用す
るだけでは燃焼装置の蓄熱体としては不向きである。斯
様に従来の蓄熱体ではコンパクトサイズで通風抵抗が小
さい上に蓄熱容量も伝熱面面積も適度に大きいという関
係、即ち燃焼装置の蓄熱体として好適なハニカム状の蓄
熱体を得ることは難しかった。
However, the primary purpose of this ceramic for catalyst is to obtain a large surface area in order to support as much catalyst as possible. For this reason, the cell wall thickness of the honeycomb is made as thin as possible to make the pitch finer. Usually, it is formed thin until it reaches the limit of the manufacturing technology. However, such a configuration has a problem that ventilation resistance increases. In the case of an automobile engine having a high pressure ratio, this is not a serious problem, but in a combustion device such as a burner, an increase in pressure loss cannot be ignored, and it is unsuitable as a heat storage body for a combustion device. On the other hand, in order to reduce the ventilation resistance, if the pitch is increased and the air permeability is improved without changing the cell wall thickness, the heat storage capacity decreases. Therefore, simply diverting the automotive catalyst ceramic as a heat storage body is not suitable as a heat storage body for a combustion device. As described above, the conventional heat storage body has a compact size, a small ventilation resistance, and a reasonably large heat storage capacity and heat transfer surface area, that is, it is difficult to obtain a honeycomb heat storage body suitable as a heat storage body of a combustion device. It was

【0007】本発明は燃焼装置用蓄熱体として妥当なハ
ニカム状蓄熱体を提供することを目的とする。
An object of the present invention is to provide a honeycomb-shaped heat storage body suitable as a heat storage body for a combustion device.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
め、本発明者が種々検討した結果、次のことを知見する
に至った。
[Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have made various studies and found the following.
Came to.

【0009】即ち、このような排熱回収システムに使用
される蓄熱体として高性能なもの、換言すれば最適なも
のとしての条件は、例えば図4の(A)〜(D)に示す
ようなハニカム状の蓄熱体を仮定すれば次の通りであ
る。尚、図4の(A)〜(D)において、Dは蓄熱体の
外径、Lは蓄熱体の長さ、Pは蓄熱体のセルピッチ(セ
ル壁と垂直な重心間の距離)、Tは蓄熱体のセル壁厚
さ、Aは蓄熱体の空筒断面積である。 Vc/Vが大きいこと、即ち限られた容積の中で蓄熱
容量が大きいことである 。コンパクトなサイズで大量の
熱を蓄え得るようにするためである。ここで、Vは蓄熱
体の空筒容積、Vcは蓄熱体の蓄熱容積(蓄熱に寄与す
る真の体積)である。 At/Vが大きいこと、即ち単位空筒容積当たりの伝
熱面面積が大きいことである。一定量の熱を蓄熱する速
度は、一定蓄熱容量に対し伝熱面面積が広いほど速くな
り高レスポンスとなる。結果として高周期蓄熱が実現さ
れる。熱の出入りは速い方が好ましいからである。 単位空筒断面積当りの通風抵抗ΔPが小さいことであ
る。 以上の条件はセル形状が四角形でなくとも、三角形や六
角形などでも成立するものである。
That is, used in such an exhaust heat recovery system
A high-performance heat storage body, in other words, an optimal one
The conditions as are shown in (A) to (D) of FIG. 4, for example.
Assuming such a honeycomb heat storage body, it is as follows.
It In addition, in (A)-(D) of FIG. 4, D is a heat storage body.
Outer diameter, L is the length of the heat storage body, P is the cell pitch of the heat storage body (cell
(The distance between the vertical center of gravity and the center of gravity), T is the cell wall thickness of the heat storage body
Now, A is an empty cylinder cross-sectional area of the heat storage body. Large Vc / V, that is, heat storage in a limited volume
It has a large capacity . Compact size and large quantity
This is so that heat can be stored. Where V is heat storage
The empty cylinder volume of the body, Vc is the heat storage volume of the heat storage body (which contributes to heat storage
True volume). Large At / V, that is, transmission per unit empty cylinder volume
The hot surface area is large. The speed to store a certain amount of heat
The larger the heat transfer surface area, the faster
It becomes a high response. As a result, high cycle heat storage is realized.
Be done. This is because it is preferable that heat can flow in and out quickly. The ventilation resistance ΔP per unit empty cylinder cross-sectional area is small.
It The above conditions are triangular or hexagonal even if the cell shape is not square.
It is also valid for polygons.

【0010】そこで、本発明のハニカム状蓄熱体、次
式 f={(Vc/V)×(At/V)×(1/ΔP)}=(1−β)β3 但し、β=蓄熱体の開口割合 β=(P−T)2 /P2 P=蓄熱体のセルピッチ(セル壁と垂直な重心間の距
離) T=蓄熱体のセル壁厚さ で求まるfが最大値あるいはその近傍の値を示す範囲で
PとTとを設定するようにしている。
[0010] Therefore, honeycomb-shaped heat storage member of the present invention, the following equation f = {(Vc / V) × (At / V) × (1 / ΔP)} = (1-β) β 3 where, beta = Opening rate of heat storage body β = (P−T) 2 / P 2 P = cell pitch of heat storage body (distance between center of gravity perpendicular to cell wall and cell wall)
Separation) T = P and T are set in a range in which f obtained by the cell wall thickness of the heat storage body shows a maximum value or a value in the vicinity thereof.

【0011】また、本発明の蓄熱体においてPとTは、
P/T比が5〜10の範囲、より好ましくは約7.5と
なるように設定されている
In the heat storage body of the present invention, P and T are
The P / T ratio is in the range of 5 to 10, more preferably about 7.5.
It is set to be.

【0012】[0012]

【作用】例えば、図4の(A)及び(B)に示すような
構造のハニカムセラミックスを仮定すると、セル単位で
考察した場合の蓄熱体の開口割合βは、 β=(P−T)2 /P2 と表わすことができる。したがって、上述の蓄熱容積割
合Vc/Vは、 Vc/V=1−β となる。また、単位空筒容積当たりの伝熱面面積割合
At/Vは
[Action] For example, assuming a honeycomb ceramics structure as shown in (A) and (B) in FIG. 4, in cell units
The open ratio beta of the heat storage body when considered, β = (P-T) 2 / P 2 and can Wath table. Therefore, the above-mentioned heat storage volume ratio Vc / V is Vc / V = 1-β. Also, the heat transfer surface area ratio per unit empty cylinder volume
At / V is

【数1】 At/V=40(P−T)/P (cm/cm) ∝(P−T)/P={1/(P−T)}β となる。ここで、40は定数であるので説明の便宜上省
いている。尚、Atは伝熱面面積である。
[Number 1] At / V = 40 (P- T) / P 2 (cm 2 / cm 3) α (P-T) / P 2 = {1 / (P-T)} β and ing. Here, since 40 is a constant, it is omitted for convenience of explanation.
I am In addition, At is a heat transfer surface area.

【0013】また、上記の圧力損失ΔPは ΔP=λ・(γ/2g)・v2 ・L/de で表される。 ここで、λ:摩擦係数 γ:流体の比重量(kg/m3 ) v:流体の流速(m/sec) g:重力加速度(9.8m/sec2 ) de:セルの相当直径(mm) である。上記 流体の流速vは v=G/3600AR ここで、G:流体の流量(m3 /H) AR 蓄熱体のセル断面積(m2 蓄熱体のセル 断面積AR は AR =βAで表せる。また、蓄熱体のセル相当 直径deは The pressure loss ΔP is expressed by ΔP = λ · (γ / 2g) · v 2 · L / de. Here, λ: friction coefficient γ: specific weight of fluid (kg / m 3 ) v: flow velocity of fluid (m / sec) g: acceleration of gravity (9.8 m / sec 2 ) de: equivalent diameter of cell (mm) Is. The flow velocity v of the fluid is v = G / 3600A R where G: flow rate of the fluid (m 3 / H) A R : cell cross-sectional area of the heat storage body (m 2 ) cell cross-sectional area A R of the heat storage body is A R = expressed by βA. Also, the cell equivalent diameter de of the heat storage body is

【数2】 で表せる。ここで、4/πは定数であることから式の展
開を簡単にするため省く。したがって、圧力損失ΔPの
式は次のように展開される。
[Equation 2] Can be expressed as Here, since 4 / π is a constant, the expression
Omitted to simplify opening. Therefore, the pressure loss ΔP
The expression is expanded as follows.

【0014】まず、単位長さあたりのハニカム圧力損失
の逆数1/ΔPは
[0014] First, the reciprocal 1 / [Delta] P of the honeycomb pressure drop per unit position length

【数3】 となる。よって、上式に流体流速vを代入すると、単位
流量あたりの蓄熱体の圧力損失の逆数1/ΔPは
[Equation 3] Becomes Therefore , by substituting the fluid velocity v into the above equation, the reciprocal 1 / ΔP of the pressure loss of the heat storage body per unit flow rate is

【数4】 1/△P∝(A・de=(βA)・deとなる。 よって単位空筒断面あたりの蓄熱体圧力損失の
逆数1/ΔPは
(4) 1 / ΔP∝ (A R ) 2 · de = (βA) 2 · de . Therefore, the reciprocal 1 / ΔP of the pressure drop of the heat storage body per unit empty cylinder cross section is

【数5】 1/△P∝β・de∝β(P−T) となり、1/ΔPはβ 2 (P−T) として表せる。尚、
相当直径とは任意の断面形状を持つ1つのセルのセル
(流路)断面積に等しい断面積を持つ円形流路の直径を
意味している。したがって、相当直径deはセル形状に
よって異なることとなり、図4の(C)に示す六角形断
面の場合には、
[Equation 5] 1 / ΔP ∝ β 2 · de ∝ β 2 (P-T) And 1 / ΔP can be expressed as β 2 (P−T). still,
Equivalent diameter is a cell of one cell with arbitrary cross-sectional shape
(Channel) The diameter of a circular channel with a cross-sectional area equal to the cross-sectional area
I mean. Therefore, the equivalent diameter de is
Therefore, it will be different, and the hexagonal section shown in FIG.
In case of face,

【数6】 となり、図4の(D)に示す三角形の場合には、 [Equation 6] Therefore, in the case of the triangle shown in FIG.

【数7】 となる。しかしながら、いずれの場合にも定数部分が変
わるだけであるから、1 /ΔPはβ 2 (P−T) として
表せる。
[Equation 7] Becomes However, in either case, the constant part is
Therefore, 1 / ΔP is β 2 (P−T)
Can be represented.

【0015】そして、ハニカム状蓄熱体として最適なも
のは、前述の〜の3条件が全て最大のときと考えら
れる。したがって、高性能ハニカム状蓄熱体の条件
を評価する評価式として、 f={(Vc/V)×(At/V)×(1/ΔP)} =(1−β)×(β/P−T)×(P−T)β2 =(1−β)β3 が得られる。ここで、(P/T)の値に対してfを算出
した結果(図1のグラフ参照)、fはP/T=7.5の
時最大値を示すことが分かる。そこで、Tの値即ちセル
壁厚さが定まればその7.5倍のピッチをとるときが蓄
熱用ハニカムとしては最適である。また、P/T比が5
〜10の範囲であれば、おおよそ最適条件に近い条件を
得ることができる。
And, it is most suitable as a honeycomb heat storage body.
Is considered to be when all of the above three conditions are maximum.
Be done. Therefore, as an evaluation formula for evaluating the condition of the high-performance honeycomb heat storage body , f = {(Vc / V) x (At / V) x (1 / ∆P)} = (1-β) x (β / P- T) × (P−T) β 2 = (1−β) β 3 is obtained. Here, as a result of calculating f with respect to the value of (P / T) (see the graph in FIG. 1), it can be seen that f shows the maximum value when P / T = 7.5. Therefore, when the value of T, that is, the cell wall thickness is determined, a pitch 7.5 times that value is optimal for the heat storage honeycomb. Also, the P / T ratio is 5
Within the range of -10, the conditions close to the optimum conditions
Obtainable.

【0016】[0016]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0017】図4の(A)及び(B)にセラミックス
ら成るハニカム状蓄熱体の概略構造を示す。このハニカ
ムセラミックス2は、ハニカムのセルピッチとハニカ
ムのセル壁厚さとの関係に特徴を有し、蓄熱体として
全体の形状やセル形状に特に特徴を有するものではな
い。例えば、本実施例では図4の(B)に示す四角形の
セル2aを無数に長手方向に有する円柱形状のセラミッ
クス製ハニカム蓄熱体例に挙げて主に説明するがこれ
に特に限定されるものではない。このハニカムセラミッ
クスにおいてセルピッチPとセル壁厚さTとの比P/T
は次式の評価式 f={(Vc/V)×(At/V)×(1/ΔP)}=(1−β)β3 但し、β=蓄熱体の開口割合 β=(P−T)2 /P2 P=蓄熱体のセルピッチ(セル壁Wに垂直な重心C,C
間の距離) T=蓄熱体のセル壁厚さ で求まるfが最大値あるいはその近傍の値を示す範囲で
PとTとを設定するようにしている。例えば、図4
(A)及び(B)のハニカム状蓄熱体に関しセルピッチ
とセル壁厚さとの関係を求めた結果を示す図1のグラフ
からも明らかなようにfはP/Tが7.5の時に最大
値を示すことがわかる。そこで、セル壁厚さTが定まれ
ばその7.5倍のピッチをとるときが蓄熱用ハニカム
としては最適である。また、P/T比が5〜10の範囲
内でPとTを設定する場合にも、おおよそ最適条件に近
いものが得られる。
[0017] shown in FIG. 4 (A) and (B) or ceramics
1 shows a schematic structure of a honeycomb-shaped heat storage body made of The honeycomb ceramics 2, characterized by the relationship between cell wall thickness T of the cell pitch P and the honeycomb of the honeycomb, as a heat storage body
Does not have any particular characteristics in the overall shape or cell shape. For example, it is limited to mainly described to Rugakore by way of example ceramic honeycomb regenerator cylindrical shape having cells 2a square in myriad longitudinal direction shown in (B) of FIG. 4 in this embodiment Not a thing. In this honeycomb ceramic, the ratio P / T of the cell pitch P and the cell wall thickness T
Is an evaluation formula of the following formula f = {(Vc / V) × (At / V) × (1 / ΔP)} = (1−β) β 3 where β = opening ratio of the heat storage body β = (P−T ) 2 / P 2 P = cell pitch of the heat storage body (center of gravity C, C perpendicular to the cell wall W)
(Distance between) T = P and T are set in a range where f obtained by the cell wall thickness of the heat storage body shows a maximum value or a value in the vicinity thereof. For example, in FIG. 4
As is clear from the graph of FIG. 1, which shows the result of obtaining the relationship between the cell pitch and the cell wall thickness for the honeycomb heat storage bodies of (A) and (B) , f is the maximum when P / T is 7.5. It turns out that it shows a value. Therefore, when the cell wall thickness T is determined, it is optimal for the heat storage honeycomb to have a pitch of about 7.5 times that. Also, the P / T ratio is in the range of 5 to 10.
Even when setting P and T in the
You can get something good.

【0018】一方、燃焼装置用ハニカム状蓄熱体として
適当なセル壁厚さTは、切り換え時間毎に最適な最大セ
ル壁厚さが存在する。例えば、切換え時間が長い場合は
セル壁厚さTが増加するとqはほぼ比例して増加する
が、切換え時間が短い場合はセル壁厚さTがある程度以
上になるとそれ以上厚くしてもqは増加しなくなる。こ
れは短い時間ではセル壁厚さTが厚い場合、奥まで十分
熱が入り込まず、かつ放出されないことによる。これを
蓄熱効率の観点から算出した結果を示す図3からも明ら
かなように、一定の蓄熱効率に対し表1に示すような切
換え時間とセル壁厚さの関係が存在することがわかっ
。また、セルピッチとセル壁厚さとの関係に対する蓄
熱容量と伝熱面面積の大きさを示す図2からも明らかな
ように、圧力損失を無視すればセルピッチPとセル壁厚
さTとの比x(=P/T)が約2のときに蓄熱容量と伝
熱面面積の双方が最大となる。しかし、この場合、圧力
損失が無視できないバーナ等の燃焼装置の排ガスから熱
回収するシステムへの使用には向かない。そこで、例え
ば40秒切り替えのハニカム状蓄熱体を想定すると、好
適なセル壁厚さTは1.6mm〜2.4mmとなり、よ
り好ましくは表1からも明らかなように1.76mm程
度である。すると、好適なセル壁ピッチPは13.2m
mである。このようなセル壁厚さ及びセルピッチを設定
するとき、ハニカム状蓄熱体は蓄熱容量と伝熱面面積と
通気性の全てがバランスがとれた状態で大きくなる。ま
た、後述の実施例1に示すようなバーナ装置の蓄熱体と
しては1mm以下のセル壁厚さでは好ましくないと考え
られるが、1mmを越えれば好適なものと考えられる。
On the other hand, the cell wall thickness T suitable as a honeycomb heat storage body for a combustion apparatus has an optimum maximum cell wall thickness for each switching time. For example, when the switching time is long, q increases almost proportionally as the cell wall thickness T increases. However, when the switching time is short, when the cell wall thickness T becomes a certain amount or more, q increases even further. It will not increase. This is because when the cell wall thickness T is large in a short time, the heat does not sufficiently penetrate into the interior and is not released. As is clear from FIG. 3 showing the result of calculation from the viewpoint of heat storage efficiency, it was found that there is a relationship between the switching time and the cell wall thickness as shown in Table 1 for a constant heat storage efficiency . Further , as is clear from FIG. 2 showing the heat storage capacity and the size of the heat transfer surface area with respect to the relationship between the cell pitch and the cell wall thickness, if the pressure loss is neglected, the ratio x between the cell pitch P and the cell wall thickness T When (= P / T) is about 2, both the heat storage capacity and the heat transfer surface area are maximized. However, in this case, it is not suitable for use in a system for recovering heat from exhaust gas of a combustion device such as a burner whose pressure loss cannot be ignored. Then, for example, assuming a honeycomb-shaped heat storage body that is switched for 40 seconds, a suitable cell wall thickness T is 1.6 mm to 2.4 mm, and more preferably about 1.76 mm as is clear from Table 1. Then, the preferable cell wall pitch P is 13.2 m.
m. When such cell wall thickness and cell pitch are set, the honeycomb heat storage body becomes large in a state where all of the heat storage capacity, the heat transfer surface area, and the air permeability are balanced. Further, it is considered that a cell wall thickness of 1 mm or less is not preferable as a heat storage body of a burner device as described in Example 1 described later, but it is considered that a cell wall thickness exceeding 1 mm is preferable.

【0019】[0019]

【表1】 セル壁厚さと切り換え時間の関係 切り換え時間 蓄熱効率 (%) (SEC) 99 98 97 96 20 0.8514 1.0031 1.1084 1.2012 30 1.3251 1.5356 1.6811 1.8019 40 1.7647 2.0341 2.2291 2.3839 50 2.2043 2.5139 2.7368 2.9164 60 2.6223 2.9783 3.2353 3.4520 70 3.0031 3.4118 3.7121 3.9474 80 3.3963 3.8421 4.1734 4.4334 90 3.7771 4.2632 4.6130 4.8916 [Table 1] Relationship between cell wall thickness and switching time Switching time Thermal storage efficiency (%) (SEC) 99 98 97 97 96 20 0.8514 1.0031 1.1084 1.2012 30 1.3251 1.5356 1.6811 1.8019 40 1.7647 2.0341 2.2291 2.3839 50 2.2043 2.5139 2.7368 2.9164 6000 2.6223 2.9783 3.2353 3.4520 70 3.0031 3.4118 3.7121 3.9474 80 3.3963 3.8421 4.1734 4.4334 90 3.7771 4.2632 4.6130 4.8916

【0020】これらを考慮するとき、ハニカムセラック
スのセル壁厚さTと切り換え時間との間には相関関係が
あり、0.004〜0.006mm/secの範囲に肉
厚Tを設定すると高い蓄熱効率で通風抵抗の上昇を最小
限に抑えることができる。
In consideration of these, there is a correlation between the cell wall thickness T of the honeycomb cerax and the switching time, and it is high if the wall thickness T is set in the range of 0.004 to 0.006 mm / sec. The heat storage efficiency can minimize the increase in ventilation resistance.

【0021】ここでハニカムセラミックスのセル形状と
しては、図示の四角形のものが製造上安易であり好適な
形状の1つとして挙げることができるが、特にこれに限
定されるものではない。例えば、図4の(C)に示す六
角形状のセル2aを多数有するハニカム状蓄熱体や図4
の(D)に示す三角形状のハニカム状蓄熱体に対して
も、前述の評価式は該当する。このケースにおけるP及
びTは、図示の関係を有するが、いずれもセル相当直径
における定数部分が異なるだけで圧力損失ΔPを示す式
は、1/ΔPはβ 2 (P−T) で表されることから同じ
評価式が使える。また、このハニカムセラミックスとし
ては、例えばコージライト、ムライト等を材料とし押出
し成形によって製造されたものが好適なものの1つとし
て挙げられる。
Here, as the cell shape of the honeycomb ceramics, the quadrangular shape shown in the figure can be cited as one of the preferable shapes because it is easy to manufacture, but it is not particularly limited thereto. For example, as shown in FIG.
A honeycomb heat storage body having a large number of prismatic cells 2a, and FIG.
For the triangular honeycomb heat storage body shown in (D) of
However, the above-mentioned evaluation formula is applicable. P and P in this case
And T have the relationship shown in the figure, but both are equivalent cell diameters.
Expression showing pressure loss ΔP only by different constant part in
Is the same as 1 / ΔP is represented by β 2 (P−T)
Evaluation formula can be used. Further, as the honeycomb ceramic, for example, one manufactured by extrusion molding using cordierite, mullite or the like as a material can be cited as one preferable example.

【0022】実施例1 図5に本発明のハニカム状蓄熱体を用いた蓄熱式ラジア
ントチューブバーナ装置の一例を示す。この蓄熱式ラジ
アントチューブバーナ装置は、ラジアントチューブ1
と、その両端に夫々装備されたバーナ3A,3Bと、各
バーナ3A,3Bのバーナシェル5内に設けられた蓄熱
体2と、各バーナ3A,3Bを燃焼用空気供給系9と燃
焼ガス排気系10とに選択的に接続する四方弁8と、各
バーナ3A,3Bに燃料供給系13を選択的に接続して
いずれか一方のバーナに燃料を供給する三方弁7及びパ
イロットバーナ6とから構成されている。バーナ3A,
3Bは交互に燃焼してその燃焼ガスを燃焼させていない
他方のバーナ側から蓄熱体2を通して排出させる一方、
燃焼させている側のバーナには蓄熱体2を通して燃焼用
空気を予熱してから供給する。
Example 1 FIG. 5 shows an example of a heat storage type radiant tube burner apparatus using the honeycomb heat storage body of the present invention. This heat storage type radiant tube burner device is a radiant tube 1
A burner 3A, 3B respectively installed at both ends thereof, a heat storage body 2 provided in a burner shell 5 of each burner 3A, 3B, a burner air supply system 9 and a combustion gas exhaust gas. From a four-way valve 8 that is selectively connected to the system 10, a three-way valve 7 and a pilot burner 6 that selectively connect a fuel supply system 13 to each of the burners 3A and 3B to supply fuel to one of the burners. It is configured. Burner 3A,
3B alternately burns and discharges the combustion gas from the other unburned burner side through the heat storage body 2,
Combustion air is preheated and supplied to the burner on the burning side through the heat storage body 2.

【0023】蓄熱体2は、ラジアントチューブ1を通過
した燃焼ガスの顕熱を回収して蓄えるためのものであ
り、一般には燃焼ガスと反応したり燃焼用空気に悪影響
を与えない材質から成るハニカム状セラミックス等の使
用が好ましい。また、この蓄熱体2は中央にバーナガン
4を貫通させている。蓄熱体2はバーナガン4の噴出口
よりも上流側、例えばバーナガン4を包囲するようにバ
ーナシェル5内に設置したり、場合によってはバーナシ
ェル5の外に設置されている。勿論、蓄熱体2はバーナ
シェル5内に収容せず円柱形状のままバーナシェル5の
外に配置することも可能である。蓄熱体2としては、例
えばコージライト、ムライト等を材料とし、押出し成形
によって成形された四角穴のハニカム体が好適なものの
1つとして挙げられる。そして、このハニカムのセル壁
厚さTとセル壁ピッチPとの関係はP/Tが5〜10、
好ましくは6〜8、最も好ましくは約7.5に設定する
ことである。
The heat storage body 2 is for recovering and storing the sensible heat of the combustion gas that has passed through the radiant tube 1. Generally, the honeycomb is made of a material that does not react with the combustion gas or adversely affect the combustion air. It is preferable to use ceramics and the like. The heat storage body 2 has a burner gun 4 penetrating through the center thereof. The heat storage body 2 is installed upstream of the ejection port of the burner gun 4, for example, inside the burner shell 5 so as to surround the burner gun 4, or outside the burner shell 5 in some cases. Of course, the heat storage body 2 may not be housed in the burner shell 5 but may be arranged outside the burner shell 5 in a cylindrical shape. As the heat storage body 2, for example, a honeycomb body having a square hole formed by extrusion molding using cordierite, mullite, or the like as a material can be cited as one preferable example. The relationship between the cell wall thickness T and the cell wall pitch P of this honeycomb is P / T of 5 to 10,
It is preferably set to 6 to 8, and most preferably about 7.5.

【0024】両バーナ3A,3Bのバーナシェル5には
四方弁8を介して燃焼用空気供給系9と燃焼ガス排気系
10とが接続され、四方弁8の操作によって燃焼用空気
供給系9の押込み送風機11から供給される燃焼用空気
を2つのバーナ3A,3Bのいずれか一方へ供給して燃
焼させる一方、この燃焼ガスを他方のバーナの蓄熱体2
を経て排気ブロワ12によって誘引排気するように設け
られている。この燃焼用空気と燃焼ガスの流れの切替え
は、タイマ(図示省略)を使って一定時間置き例えば2
0秒〜90秒、好ましくは20秒〜60秒毎、最も好ま
しくは40秒毎に行なわれるか、あるいは蓄熱体2を通
過した燃焼ガス温度をサーモセンサ(図示省略)で測定
してこれが所定温度に達したときに行なわれる。
A combustion air supply system 9 and a combustion gas exhaust system 10 are connected to the burner shell 5 of both burners 3A and 3B via a four-way valve 8, and the operation of the four-way valve 8 causes the combustion air supply system 9 to operate. The combustion air supplied from the forced air blower 11 is supplied to either one of the two burners 3A and 3B for combustion, and this combustion gas is stored in the heat storage body 2 of the other burner.
After that, the exhaust blower 12 is provided to attract and exhaust the air. The flow of the combustion air and the combustion gas is switched by a timer (not shown) for a certain period of time, for example, 2
It is performed every 0 seconds to 90 seconds, preferably every 20 seconds to 60 seconds, and most preferably every 40 seconds, or the temperature of the combustion gas passing through the heat storage body 2 is measured by a thermo sensor (not shown), and this is a predetermined temperature. Will be performed when.

【0025】[0025]

【発明の効果】以上の説明より明らかなように、本発明
のハニカム状蓄熱体は、 f={(Vc/V)×(At/V)×(1/ΔP)}=(1−β)β3 で求まるfが最大値あるいはその近傍の値を示す範囲で
PとTとを設定するようにしているので、蓄熱容量と伝
熱面面積が大きくかつ通風抵抗が小さなハニカム状蓄熱
体として好適な蓄熱体を得ることができる
As is apparent from the above description, the honeycomb heat storage body of the present invention has the following formula: f = {(Vc / V) × (At / V) × (1 / ΔP)} = (1-β) Since P and T are set in a range in which f obtained by β 3 shows a maximum value or a value in the vicinity thereof, a honeycomb heat storage having a large heat storage capacity and heat transfer surface area and a small ventilation resistance
And the body can be obtained suitable regenerator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のハニカム状蓄熱体を説明するためのf
値とセル壁厚さとピッチとの関係を示すグラフである。
FIG. 1 f for explaining a honeycomb heat storage body of the present invention
It is a graph which shows the relationship between a value, a cell wall thickness, and a pitch.

【図2】蓄熱型バーナシステム用ハニカムにおけるセル
ピッチとセル壁厚さとの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between cell pitch and cell wall thickness in a honeycomb for a heat storage type burner system.

【図3】切換え時間が蓄熱効率とセル壁厚さの関係に与
える影響を示すグラフである。
FIG. 3 is a graph showing the effect of switching time on the relationship between heat storage efficiency and cell wall thickness.

【図4】 (A)は ハニカム状蓄熱体の外観の例を示す斜
視図、(B)は矩形セルのハニカム状蓄熱体のセル壁と
セルピッチとの関係を示す拡大図、(C)は六角形セル
のハニカム状蓄熱体のセル壁とセルピッチとの関係を示
す拡大図、(D)は三角形セルのハニカム状蓄熱体のセ
ル壁とセルピッチとの関係を示す拡大図である。
[4] (A) is a perspective view showing an example of appearance of the honeycomb regenerator, (B) is an enlarged view showing the relationship between the cell walls and the cell pitch of the honeycomb regenerator rectangular cells, (C) is six Square cell
The relationship between the cell wall and the cell pitch of the honeycomb heat storage body of
(D) is a cell of a honeycomb-shaped heat storage body with triangular cells.
FIG. 7 is an enlarged view showing the relationship between the wall and the cell pitch .

【図5】ハニカム状蓄熱体と応用した排熱回収システム
の一例を示す概略図である。
FIG. 5 is a schematic diagram showing an example of an exhaust heat recovery system applied to a honeycomb heat storage body.

【符号の説明】[Explanation of symbols]

2 ハニカム状蓄熱体 P ニカムのセルピッチ(セル壁に垂直な重心間距
離) T ハニカムのセル壁厚さC セルの重心 W セル壁 2a セル
Vertical center of gravity between the distance in 2 honeycomb regenerator P honeycomb cell pitch (cell walls
Separation) T Honeycomb cell wall thickness C Cell center of gravity W Cell wall 2a Cell

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ハニカム状の多数の流路を有する蓄熱体
において、次式 f={(Vc/V)×(At/V)×(1/ΔP)}=(1−β)β3 但し、β=蓄熱体の開口割合 β=(P−T)2 /P2 P=蓄熱体のセルピッチ(セル壁と垂直な重心間の距
離) T=蓄熱体のセル壁厚さ で求まるfが最大値あるいはその近傍の値を示す範囲で
PとTとを設定することを特徴とするハニカム状蓄熱
体。
1. In a heat storage body having a large number of honeycomb-shaped flow paths , the following expression f = {(Vc / V) × (At / V) × (1 / ΔP)} = (1-β) β 3 , Β = opening ratio of heat storage body β = (P−T) 2 / P 2 P = cell pitch of heat storage body (distance between center of gravity perpendicular to cell wall
Separation) T = Honeycomb-shaped heat storage body, wherein P and T are set within a range in which f obtained by the cell wall thickness of the heat storage body shows a maximum value or a value in the vicinity thereof.
【請求項2】前記P/T比が5〜10の範囲であること
を特徴とする請求項1記載のハニカム状蓄熱体。
2. The honeycomb heat storage body according to claim 1, wherein the P / T ratio is in the range of 5 to 10 .
【請求項3】前記P/T比が約7.5で設定されること
を特徴とする請求項記載のハニカム状蓄熱体。
3. A honeycomb regenerator according to claim 1, wherein the P / T ratio is set at about 7.5.
JP2415583A 1990-12-28 1990-12-28 Honeycomb heat storage Expired - Fee Related JPH0739913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2415583A JPH0739913B2 (en) 1990-12-28 1990-12-28 Honeycomb heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2415583A JPH0739913B2 (en) 1990-12-28 1990-12-28 Honeycomb heat storage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10135278A Division JP3106124B2 (en) 1998-05-18 1998-05-18 Combustion air preheating method and honeycomb-shaped heat storage body

Publications (2)

Publication Number Publication Date
JPH04251190A JPH04251190A (en) 1992-09-07
JPH0739913B2 true JPH0739913B2 (en) 1995-05-01

Family

ID=18523922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2415583A Expired - Fee Related JPH0739913B2 (en) 1990-12-28 1990-12-28 Honeycomb heat storage

Country Status (1)

Country Link
JP (1) JPH0739913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210064A (en) * 2014-04-30 2015-11-24 東京窯業株式会社 Heat storage body

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2678964B2 (en) * 1993-01-19 1997-11-19 日本ファーネス工業株式会社 Switching heat storage type heat exchanger
JP2744756B2 (en) * 1993-07-19 1998-04-28 日本ファーネス工業株式会社 Heat storage type heat exchanger and heat storage type burner system using the same
JP2955179B2 (en) * 1994-04-05 1999-10-04 日本碍子株式会社 Rotary incinerator and method of operating the same
JP2703728B2 (en) 1994-06-17 1998-01-26 日本碍子株式会社 Honeycomb regenerator
CA2167991C (en) 1995-01-25 1999-12-14 Kazuhiko Kumazawa Honeycomb regenerator
JP2862864B1 (en) 1998-02-27 1999-03-03 日本碍子株式会社 Honeycomb regenerator
JP5807083B2 (en) * 2014-03-18 2015-11-10 東京窯業株式会社 Honeycomb structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210064A (en) * 2014-04-30 2015-11-24 東京窯業株式会社 Heat storage body

Also Published As

Publication number Publication date
JPH04251190A (en) 1992-09-07

Similar Documents

Publication Publication Date Title
JP3147372B2 (en) Exhaust gas particulate collection filter
US7107763B2 (en) Ceramic honeycomb filter and exhaust gas-cleaning method
US5963709A (en) Hot air blower having two porous materials and gap therebetween
US3163256A (en) Muffler with ceramic honeycomb baffle
JPS61167798A (en) Ceramic honeycomb structure
JPH0739913B2 (en) Honeycomb heat storage
US4355973A (en) Radiant heating apparatus
US5992504A (en) Honeycomb regenerator
CN106482533A (en) A kind of gas cleaning and heat-exchange integrated device
US5695002A (en) High-cycle regenerative heat exchanger
CN107842851B (en) Regenerative combustion system and control method
JP3106124B2 (en) Combustion air preheating method and honeycomb-shaped heat storage body
JP2986982B2 (en) Small gas fired air heater
JPH04500093A (en) Coke oven heating chamber and heating method
JP2001248917A (en) Indirect hot air generator
JPH0223950Y2 (en)
KR940015358A (en) Combustion Method and Apparatus for Pipe Heat Exchanger Furnace
JPS61186715A (en) Heat accumulation type heating system
JP2997655B2 (en) Combustion method for industrial combustion equipment
WO1997024554A1 (en) Gas flow circulation type tubular heating equipment
JPH0979524A (en) Single end type regenerative radiant tube burner
JP3720905B2 (en) Industrial furnace combustion equipment
KR100362846B1 (en) Heat accumulator for furnace regenerative combustion system_
JP2996618B2 (en) Thermal storage combustion burner
JPH0638003B2 (en) Heat exchanger for water heater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees