JP3694150B2 - Honeycomb heat storage - Google Patents

Honeycomb heat storage Download PDF

Info

Publication number
JP3694150B2
JP3694150B2 JP18494997A JP18494997A JP3694150B2 JP 3694150 B2 JP3694150 B2 JP 3694150B2 JP 18494997 A JP18494997 A JP 18494997A JP 18494997 A JP18494997 A JP 18494997A JP 3694150 B2 JP3694150 B2 JP 3694150B2
Authority
JP
Japan
Prior art keywords
honeycomb
honeycomb structure
heat storage
temperature side
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18494997A
Other languages
Japanese (ja)
Other versions
JPH1130491A (en
Inventor
義幸 笠井
一彦 梅原
亘 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP18494997A priority Critical patent/JP3694150B2/en
Publication of JPH1130491A publication Critical patent/JPH1130491A/en
Application granted granted Critical
Publication of JP3694150B2 publication Critical patent/JP3694150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数のハニカム構造体を積み重ねてなり、貫通孔から構成される流路に排ガスと被加熱ガスとを交互に通過させて排ガス中の廃熱を回収するハニカム状蓄熱体に関し、特に高温の排ガスに対して好適に使用できるハニカム状蓄熱体に関するものである。
【0002】
【従来の技術】
従来から、鉄鋼、アルミ、ガラス等の溶融及び加熱加工等に用いる一般産業用の燃焼加熱炉において、エネルギー効率を改善するために、排ガス中の廃熱を回収し燃焼用空気を予め加熱する方法が行われている。これに用いる蓄熱体として、従来は、例えば特開昭58−26036号公報に記載の如くセラミックボール、サドル、ペレット等が使用されていたが、排ガスあるいは燃焼用空気等が蓄熱体を通過する際圧力損失が高く、また、容積当たりの熱交換面積が小さいため、蓄熱体容積を大きくする必要があった。
【0003】
これを改善するために、近年は蓄熱体としてハニカム構造体を用いる事が、例えば特開平4−251190号公報に記載されているように行われている。ハニカム構造体では排ガス等の通過における圧力損失が低く、容積当たりの熱交換面積も大きいことから、ハニカム構造体は非常に効率的な熱交換を行うことができる。しかしながら、これらのハニカム構造体にも以下のような問題点があった。すなわち、ハニカム構造体は非常に薄いセル壁から構成されているため、従来使用されていたセラミックボール等と比較すると強度、熱耐久性等に問題があった。そのため、衝撃や異常高温ガスの接触等によってハニカム構造体が破損し蓄熱体として機能しなくなる場合が発生し、最悪の場合、システムの停止につながる問題があった。
【0004】
【発明が解決しようとする課題】
上述したこれらの問題を解消するために、本出願人は特願平7−342634号においてアルミニウムチタネート製ハニカム構造体を使用した蓄熱体を提案した。アルミニウムチタネートは耐熱性に優れる材料であることが知られている。しかし、長期間の使用ではアルミニウムチタネートは分解する傾向があり、また、非常に高価な材料である。そのため、アルミニウムチタネート製ハニカム構造体を使用することで熱効率を改善しても、これらアルミニウムチタネート製ハニカム構造体を使用すると、従来のセラミックボール等に対するコストメリットが同等もしくは若干しか望めない問題があった。従って、ランニングコストを含めたコストメリットが有効に発揮できる蓄熱体の開発が必要であった。
【0005】
本発明の目的は上述した課題を解消して、高温の排ガスに対しても破壊せず効率良く熱交換を行うことができ、しかもランニングコストを含めたコストメリットが有効に発揮できるハニカム状蓄熱体を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明のハニカム状蓄熱体は、複数のハニカム構造体を積み重ねてなり、貫通孔から構成される流路に排ガスと被加熱ガスとを交互に通過させて排ガス中の廃熱を回収するハニカム状蓄熱体において、少なくとも高温の排ガスに接する高温側のハニカム構造体の気孔率が、それ以外の低温側のハニカム構造体の気孔率よりも低く、前記高温側のハニカム構造体と低温側のハニカム構造体とが同一素材からなることを特徴とするものである。
【0007】
本発明における実施の形態を説明する前に、上記構成の技術的作用について以下に説明する。ハニカム構造体を蓄熱体として使用する場合の問題点は、上述したように、強度、耐熱性による破壊及び高コストである。耐熱性を改善するために、材料的に実際の使用温度に耐え得る材料を使用することは当業者として当然である。例えば、従来から知られているアルミナを使用した場合、アルミナの耐熱温度は十分に実使用に耐え得るものであるが、アルミナの熱膨張が高く耐熱衝撃に非常に弱い材料であることが当業者に広く知られている。
【0008】
ハニカム構造体を積み重ねることで組み合わせてハニカム状蓄熱体とする場合、ハニカム構造体に変形等があると、その部位で積み重ねた上下のハニカム構造体の外周壁間に隙間が発生し、ハニカム構造体中を通過する排ガスや燃焼用空気の流速が速くなり、また、これらのガスが熱交換されずにハニカム状蓄熱体を通過するため、ハニカム状蓄熱体に熱衝撃を発生する要因となっていた。本発明では、強度における問題をクリアするために、少なくとも高温の排ガスに接する高温側のハニカム構造体として、気孔率がその他の低温側のハニカム構造体よりも低く、強度に強いハニカム構造体で同一組成からなるハニカム構造体を用いる。
【0009】
また、一般的に気孔率を低くするためには、ハニカム構造体の焼成温度を高くして収縮させることが最も容易な方法であるが、収縮率が大きいためにハニカム構造体が変形することが多々発生する。このように変形したハニカム構造体を蓄熱体全てに使用すると、先に記載したように隙間が生じて高温排ガスあるいは燃焼用空気が熱交換されずに通過する。そのため、ハニカム構造体に熱衝撃が発生し、ハニカム構造体にクラックや割れを生じさせる。
【0010】
よって、本発明では、低温側の耐熱特性への要求が小さい部位のハニカム構造体には、焼成温度が低く気孔率が高い、寸法精度に優れたハニカム構造体を使用する。そうすることで、積み重ねてハニカム状蓄熱体を構成した場合でも、上下のハニカム構造体の外周壁間に隙間を生じさせず、クラックの問題を解決するだけでなくハニカム構造体の製造コストをも安価にすることができる。
【0011】
上記本発明の構成を実施するには、アルミナ、ジルコニア等の単一金属酸化物を使用することが好適である。すなわち、単一金属酸化物は焼成温度によって容易に気孔率を変更することが可能である。これに対し、複合金属化合物等を使用すると、焼成温度によっては分解、異物質生成等が発生するため焼成温度のみによる気孔率変更が難しくなり、結果として製造コストが高くなる。ここで、材料を選択するにあたり、使用される排ガス温度に対して融点が高く軟化し難い材料であれば、上記技術を使用することでクラック等の問題は解決するため、従来から公知のいずれの材料も使用することができる。
【0012】
また、本発明では、さらに好適な例として、高温側のハニカム構造体の開口率を低温側のハニカム構造体の開口率よりも大きくする。これにより、高温排ガスから廃熱を回収する際において吸温速度が緩やかになり、高温に使用されるハニカム構造体の耐久特性を一層向上させることが可能となる。
【0013】
【発明の実施の形態】
図1は本発明のハニカム状蓄熱体の一例の構成を示す図である。図1に示す例において、ハニカム状蓄熱体1は、直方体形状のハニカム構造体2を、一方向に貫通孔3から構成される流路が揃うよう複数個積み重ねて(ここでは2段に積み重ねて)構成されている。図1において、図中上方が排ガスに接する高温側のハニカム構造体2であり、図中下方がそれ以外の低温側のハニカム構造体2である。本発明の特徴は、上記構成のハニカム状蓄熱体1において、高温側のハニカム構造体2の気孔率を、低温側のハニカム構造体2の気孔率よりも低く構成するとともに、高温側のハニカム構造体2と低温側のハニカム構造体2とを同一素材で形成した点である。
【0014】
気孔率を変えたハニカム構造体2を得るためには、上述したように収縮率を小さく保ちハニカム構造体2の変形を防止する観点から、焼成温度を変えることにより気孔率を変化させることが好ましい。また、高温側のハニカム構造体2と低温側のハニカム構造体2の材質としては、アルミナ、ジルコニア等の従来から蓄熱体用の材料として知られているいずれの材料をも使用することができるが、アルミナ、ジルコニア等の単一金属酸化物を使用することが、焼成温度を変えることで容易に気孔率を変更できるため好ましい。これに対し、複合金属化合物等を使用すると、焼成温度によっては分解、異物質生成等が発生するため焼成温度のみによる気孔率変更が難しくなり、結果として製造コストが高くなる。
【0015】
図2は本発明のハニカム状蓄熱体の他の例の構成を示す図である。図2に示す例において、ハニカム状蓄熱体11は、図1に示す構成の高温側のハニカム構造体2と低温側のハニカム構造体2とからなるハニカム状蓄熱体1において、低温側のハニカム構造体の被加熱ガスと接する面上にコージェライト、ムライト等からなるハニカム構造体12からなる層を設けて構成されている。図2に示す例では、図1に示す例と同様の効果を得ることができるのに加えて、図1に示す例と比較してコージェライト、ムライト等を使用できる分だけ安価にハニカム状蓄熱体11を作製することができる。また、コージェライト、ムライト等からなるハニカム構造体12は温度の低い箇所にのみ設けられているため、高温の排ガスと接触することによる熱衝撃の影響を受ける可能性の少ないため、好ましい例となる。
【0016】
なお、図1および図2に示す例では、高温側のハニカム構造体2と低温側のハニカム構造体2とのセル開口率については特に言及しなかったが、いずれの場合も、高温側のハニカム構造体2の開口率を低温側のハニカム構造体2の開口率よりも大きくすると、高温排ガスから廃熱を回収する際において吸温速度が緩やかになり、高温に使用されるハニカム構造体の耐久特性を一層向上させることが可能となるため好ましい。
【0017】
図3は本発明のハニカム状蓄熱体を使用した熱交換体を燃焼加熱炉の燃焼室に設置した例を示す図である。図3に示す例において、21は燃焼室、22−1、22−2は図1または図2に示す構造のハニカム状蓄熱体、23−1、23−2はハニカム状蓄熱体22−1、22−2から構成される熱交換体、24−1、24−2は熱交換体23−1、23−2に設けた燃料投入口である。図3に示す例において、2個の熱交換体23−1、23−2を設けたのは、一方が高温の排ガスを流すことにより蓄熱を行っているとき、同時に他方が低温の被加熱ガスを加熱できるよう構成して、熱交換を効率的に行うためである。
【0018】
図3に示す例において、片側のハニカム状蓄熱体22−1の下方より燃焼用空気が進入する。ハニカム状蓄熱体22−1を通過した後に、燃料投入口24−1から供給された燃料と混合され、燃焼室21内で点火される。燃焼された排ガスは他方のハニカム状蓄熱体22−2の上部より進入し、廃熱はハニカム状蓄熱体22−2に蓄熱され、低温となった排ガスは外部へ放出される。次に、燃焼用空気の進入方向が切り替えられ、先程廃熱を回収した側のハニカム状蓄熱体22−2の下部より燃焼用空気が進入する。この際、熱交換が行われ、燃焼用空気は予熱されハニカム状蓄熱体22−2の上部で燃料投入口24−2から供給された燃料と混合され、燃焼室21内で点火される。排ガスは他方のハニカム状蓄熱体22−1を通って排出されるが、この際、先程同様にハニカム状蓄熱体22−1に廃熱が回収される。
【0019】
【実施例】
以下、実際の例について説明する。
以下の表1に示す形状および特性を有するアルミナからなるハニカム構造体A〜Dを準備し、高温側の蓄熱体Aと低温側の蓄熱体Bとを以下の表2に示すように上記アルミナハニカム構造体A〜Dから選択して、図1に示す形状のハニカム状蓄熱体(試験No.1〜16)を作製した。次に、得られた各ハニカム状蓄熱体を実験装置に組み込み、所定の温度で1000時間保持するエージング試験を実施した。エージング試験終了後、各蓄熱体の外観および寸法収縮を調査した。また、各ハニカム状蓄熱体の焼成エネルギー比および熱交換面積比を求めた。結果を表2に示す。
【0020】
表2の結果において、蓄熱体AおよびBの外観は、欠陥が全く存在しない例を◎、若干欠陥が存在するが実使用に支障がない例を○、クラックが発生した例を△、割れが発生した例を×として示した。蓄熱体AおよびBの寸法収縮は、焼成前後の各蓄熱体の寸法から求めた。また、各ハニカム状蓄熱体の焼成エネルギー比は、焼成に一番エネルギーを必要としないアルミナハニカム構造体Dを電気炉で焼成するのに必要なエネルギーを基準として、各ハニカム状蓄熱体を電気炉で焼成するのに必要なエネルギーとの比として求めた。さらに、各ハニカム状蓄熱体の熱交換面積比は、幾何学的比表面積から求めた貫通孔のガスと接触する部分の面積から求めた。
【0021】
【表1】

Figure 0003694150
【0022】
【表2】
Figure 0003694150
【0023】
表1および表2の結果から明らかなように、本発明例のハニカム状蓄熱体(試験No.2、4、10、12)では、高温側(蓄熱体A)、低温側(蓄熱体B)ともにハニカム構造体にはクラックや割れの発生の問題がなかった。一方、高温側も低温側も全て同一の気孔率が低いハニカム構造体(アルミナハニカム構造体A、D)を使用した比較例のハニカム状蓄熱体(試験No.1、11)では、ハニカム構造体にクラックや割れが発生していた。これは、低温側に使用したハニカム構造体を組み合わせる際に変形が大きく、ハニカム構造体間に隙間が生じており、低温の焼成用空気が熱交換されずに上部まで進入し、熱衝撃によってクラックが発生したものと考えられる。また、低温側に使用したハニカム構造体にも若干のクラックが発生しているが、これは高温の排ガスが上記の隙間を通過し熱交換されずに低温部まで進入することで、熱衝撃が発生したことによりクラックが生じたものと考えられる。
【0024】
さらに、高温側に気孔率が高いハニカム構造体を使用した比較例のハニカム状蓄熱体(試験No.5〜8、13〜16)では、高温排ガスによる収縮が大きく、これによって割れが発生していた。この場合は、下方の低温側に気孔率が高いハニカム構造体を使用しようと気孔率の低いハニカム構造体を使用しようと、いずれの場合も、上部の高温側のハニカム構造体が収縮して隙間が開くため、高温排ガスあるいは低温燃焼用空気が隙間から進入して、先程同様にクラックが生じたものと考えられる。また、下部の低温側ハニカム構造体の収縮も大きくなり、上記クラックの発生を助長する結果となった。
【0025】
一方、上部高温側に気孔率が低いハニカム構造体を使用し、下部低温側に気孔率が高いハニカム構造体を使用した本発明例のハニカム状蓄熱体では、上部および下部のハニカム構造体ともに収縮が小さく、クラックや割れも発生していなかった。また、本発明例のうち高温側のハニカム構造体に開口率が大きいものを使用した本発明例のハニカム状蓄熱体(試験No.4)は、さらに耐久性が向上していた。
【0026】
本発明は上述した実施例にのみ限定されるものでなく、幾多の変形、変更が可能である。例えば、上述した実施例では、高温の排ガスと接する高温側のハニカム構造体を一層のみ設けたが、一層に限定されないことはいうまでもない。例えば、一層の高さが低いような場合は、二層以上の気孔率の低いハニカム構造体から高温側のハニカム構造体を構成しても良い。
【0027】
【発明の効果】
以上の説明から明らかなように、本発明によれば、高温側のハニカム構造体の気孔率を、低温側のハニカム構造体の気孔率よりも低くするとともに、両者を同一素材から構成してるため、高温の排ガスに対しても破壊せず効率よく熱交換を行うことができるハニカム状蓄熱体を得ることができる。また、アルミニウムチタネートのような高価な材料を使用する必要がなく、またその場合気孔率を焼成温度を変えることで制御できるため、低コストで上記ハニカム状蓄熱体を得ることができる。
【図面の簡単な説明】
【図1】本発明のハニカム状蓄熱体の一例の構成を示す図である。
【図2】本発明のハニカム状蓄熱体の他の例の構成を示す図である。
【図3】本発明のハニカム状蓄熱体を使用した熱交換体を燃焼加熱炉の燃焼室に設置した例を示図である。
【符号の説明】
1、11、22−1、22−2 ハニカム状蓄熱体、2、12、 ハニカム構造体、3 貫通孔、23−1、23−2 熱交換体、24−1、24−2 燃料投入口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a honeycomb-shaped heat storage body in which a plurality of honeycomb structures are stacked and exhaust gas and a heated gas are alternately passed through a flow path constituted by through holes to recover waste heat in the exhaust gas. The present invention relates to a honeycomb-shaped heat storage body that can be suitably used for high-temperature exhaust gas.
[0002]
[Prior art]
Conventionally, in a general industrial combustion heating furnace used for melting and heat processing of steel, aluminum, glass, etc., in order to improve energy efficiency, a method of pre-heating combustion air by recovering waste heat in exhaust gas Has been done. Conventionally, ceramic balls, saddles, pellets, and the like have been used as heat storage materials for this purpose, as described in, for example, Japanese Patent Laid-Open No. 58-26036. However, when exhaust gas or combustion air passes through the heat storage materials, Since the pressure loss is high and the heat exchange area per volume is small, it is necessary to increase the heat storage body volume.
[0003]
In order to improve this, in recent years, a honeycomb structure has been used as a heat storage body as described in, for example, JP-A-4-251190. Since the honeycomb structure has a low pressure loss when passing exhaust gas or the like and a large heat exchange area per volume, the honeycomb structure can perform very efficient heat exchange. However, these honeycomb structures also have the following problems. That is, since the honeycomb structure is composed of very thin cell walls, there are problems in strength, thermal durability, and the like as compared with ceramic balls and the like that have been conventionally used. For this reason, the honeycomb structure may be damaged due to an impact or contact with an abnormally high temperature gas, and may not function as a heat storage body. In the worst case, there is a problem that leads to system shutdown.
[0004]
[Problems to be solved by the invention]
In order to solve these problems described above, the present applicant has proposed a heat storage body using an aluminum titanate honeycomb structure in Japanese Patent Application No. 7-342634. Aluminum titanate is known to be a material with excellent heat resistance. However, aluminum titanate tends to decompose over long periods of use and is a very expensive material. Therefore, even if the thermal efficiency is improved by using an aluminum titanate honeycomb structure, there is a problem that the cost merit over the conventional ceramic balls or the like can be expected to be the same or only slightly if these aluminum titanate honeycomb structures are used. . Therefore, it is necessary to develop a heat storage body that can effectively exhibit cost merit including running cost.
[0005]
The object of the present invention is to solve the above-mentioned problems, and can efficiently perform heat exchange without destroying even high-temperature exhaust gas, and can effectively exhibit cost merit including running cost. Is to provide.
[0006]
[Means for Solving the Problems]
The honeycomb-shaped heat storage body of the present invention is a honeycomb-shaped structure in which a plurality of honeycomb structures are stacked, and exhaust gas and a heated gas are alternately passed through a flow path constituted by through holes to recover waste heat in the exhaust gas. In the heat storage body, at least the porosity of the high temperature side honeycomb structure in contact with the high temperature exhaust gas is lower than the porosity of the other low temperature side honeycomb structure, and the high temperature side honeycomb structure and the low temperature side honeycomb structure The body is made of the same material.
[0007]
Before describing the embodiment of the present invention, the technical operation of the above configuration will be described below. The problems in using the honeycomb structure as a heat storage body are, as described above, destruction due to strength and heat resistance and high cost. In order to improve heat resistance, it is natural for a person skilled in the art to use a material that can withstand the actual use temperature. For example, when conventionally known alumina is used, the heat-resistant temperature of alumina can sufficiently withstand actual use, but those skilled in the art that alumina has a high thermal expansion and is very weak against heat shock. Widely known.
[0008]
When the honeycomb structure is combined by stacking honeycomb structures to form a honeycomb-shaped heat storage body, if the honeycomb structure is deformed or the like, a gap is generated between the outer peripheral walls of the upper and lower honeycomb structures stacked at that portion. The flow rate of exhaust gas and combustion air passing through the inside becomes faster, and these gases pass through the honeycomb-shaped heat storage body without being subjected to heat exchange, which causes a thermal shock to the honeycomb-shaped heat storage body. . In the present invention, in order to clear the problem in strength, the honeycomb structure on the high temperature side that contacts at least the high temperature exhaust gas has the same porosity as the honeycomb structure that has a lower porosity than other low temperature honeycomb structures and is strong in strength. A honeycomb structure having a composition is used.
[0009]
In general, in order to lower the porosity, it is the easiest method to shrink the honeycomb structure by increasing the firing temperature. However, since the shrinkage ratio is large, the honeycomb structure may be deformed. It often occurs. When the honeycomb structure deformed in this way is used for all the heat accumulators, a gap is generated as described above, and the high-temperature exhaust gas or combustion air passes through without being subjected to heat exchange. Therefore, a thermal shock is generated in the honeycomb structure, and the honeycomb structure is cracked or broken.
[0010]
Therefore, in the present invention, a honeycomb structure having a low firing temperature and a high porosity and excellent in dimensional accuracy is used as a honeycomb structure in a portion where the requirement for heat resistance characteristics on the low temperature side is small. By doing so, even when a honeycomb-shaped heat storage body is formed by stacking, a gap is not generated between the outer peripheral walls of the upper and lower honeycomb structures, which not only solves the problem of cracks but also increases the manufacturing cost of the honeycomb structures. It can be made cheap.
[0011]
In order to implement the configuration of the present invention, it is preferable to use a single metal oxide such as alumina or zirconia. That is, the porosity of a single metal oxide can be easily changed depending on the firing temperature. On the other hand, when a composite metal compound or the like is used, decomposition or generation of foreign substances occurs depending on the firing temperature, making it difficult to change the porosity only by the firing temperature, resulting in an increase in manufacturing cost. Here, in selecting a material, if the material has a high melting point with respect to the exhaust gas temperature to be used and is difficult to soften, the above technique can be used to solve problems such as cracks. Materials can also be used.
[0012]
Further, in the present invention, as a more preferable example, the aperture ratio of the honeycomb structure on the high temperature side is made larger than the aperture ratio of the honeycomb structure on the low temperature side. Thereby, when recovering waste heat from the high-temperature exhaust gas, the temperature absorption rate becomes gentle, and the durability characteristics of the honeycomb structure used at high temperatures can be further improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a view showing a configuration of an example of a honeycomb-shaped heat storage body of the present invention. In the example shown in FIG. 1, a honeycomb-shaped heat storage body 1 is formed by stacking a plurality of rectangular parallelepiped honeycomb structures 2 so that flow paths composed of through holes 3 are aligned in one direction (here, stacked in two stages). )It is configured. In FIG. 1, the upper side is the high-temperature side honeycomb structure 2 in contact with the exhaust gas, and the lower side is the other low-temperature side honeycomb structure 2 in the figure. The present invention is characterized in that, in the honeycomb-shaped heat accumulator 1 having the above-described configuration, the porosity of the honeycomb structure 2 on the high temperature side is lower than the porosity of the honeycomb structure 2 on the low temperature side, and the honeycomb structure on the high temperature side. The body 2 and the honeycomb structure 2 on the low temperature side are formed of the same material.
[0014]
In order to obtain the honeycomb structure 2 with a changed porosity, it is preferable to change the porosity by changing the firing temperature from the viewpoint of keeping the shrinkage rate small and preventing the deformation of the honeycomb structure 2 as described above. . As the material for the high-temperature side honeycomb structure 2 and the low-temperature side honeycomb structure 2, any material conventionally known as a material for a heat storage body such as alumina or zirconia can be used. It is preferable to use a single metal oxide such as alumina or zirconia because the porosity can be easily changed by changing the firing temperature. On the other hand, when a composite metal compound or the like is used, decomposition or generation of foreign substances occurs depending on the firing temperature, making it difficult to change the porosity only by the firing temperature, resulting in an increase in manufacturing cost.
[0015]
FIG. 2 is a view showing a configuration of another example of the honeycomb-shaped heat storage body of the present invention. In the example shown in FIG. 2, the honeycomb-shaped heat storage body 11 is a honeycomb-shaped heat storage body 1 composed of the high-temperature side honeycomb structure 2 and the low-temperature side honeycomb structure 2 configured as shown in FIG. A layer made of a honeycomb structure 12 made of cordierite, mullite or the like is provided on the surface of the body in contact with the gas to be heated. In the example shown in FIG. 2, in addition to being able to obtain the same effect as the example shown in FIG. 1, in comparison with the example shown in FIG. 1, the honeycomb-like heat storage is inexpensive as much as cordierite, mullite, etc. can be used. The body 11 can be produced. Further, since the honeycomb structure 12 made of cordierite, mullite or the like is provided only at a low temperature portion, it is less likely to be affected by thermal shock caused by contact with high-temperature exhaust gas, which is a preferable example. .
[0016]
In the examples shown in FIG. 1 and FIG. 2, the cell opening ratio of the high-temperature side honeycomb structure 2 and the low-temperature side honeycomb structure 2 is not particularly mentioned. When the opening ratio of the structure 2 is larger than the opening ratio of the honeycomb structure 2 on the low temperature side, the temperature absorption rate becomes slow when recovering waste heat from the high temperature exhaust gas, and the durability of the honeycomb structure used at high temperatures is increased. It is preferable because the characteristics can be further improved.
[0017]
FIG. 3 is a view showing an example in which a heat exchanger using the honeycomb-shaped heat storage body of the present invention is installed in a combustion chamber of a combustion heating furnace. In the example shown in FIG. 3, 21 is a combustion chamber, 22-1 and 22-2 are honeycomb-shaped heat accumulators having the structure shown in FIG. 1 or FIG. 2, 23-1 and 23-2 are honeycomb-shaped heat accumulators 22-1, Heat exchangers 24-1 and 24-2 constituted by 22-2 are fuel inlets provided in the heat exchangers 23-1 and 23-2. In the example shown in FIG. 3, the two heat exchangers 23-1 and 23-2 are provided when one is storing heat by flowing a high-temperature exhaust gas, and at the same time the other is a low-temperature heated gas. This is because the heat exchange can be efficiently performed.
[0018]
In the example shown in FIG. 3, combustion air enters from below the honeycomb-shaped heat storage element 22-1 on one side. After passing through the honeycomb-shaped heat accumulator 22-1, it is mixed with the fuel supplied from the fuel inlet 24-1 and ignited in the combustion chamber 21. The combusted exhaust gas enters from the upper part of the other honeycomb-shaped heat storage body 22-2, waste heat is stored in the honeycomb-shaped heat storage body 22-2, and the exhaust gas having a low temperature is released to the outside. Next, the entering direction of the combustion air is switched, and the combustion air enters from the lower part of the honeycomb-shaped heat storage body 22-2 on the side from which the waste heat has been recovered. At this time, heat exchange is performed, and the combustion air is preheated and mixed with the fuel supplied from the fuel inlet 24-2 at the upper part of the honeycomb-shaped heat accumulator 22-2 and ignited in the combustion chamber 21. The exhaust gas is discharged through the other honeycomb-shaped heat storage body 22-1 and, at this time, the waste heat is recovered in the honeycomb-shaped heat storage body 22-1 as before.
[0019]
【Example】
Hereinafter, an actual example will be described.
Prepared are honeycomb structures A to D made of alumina having the shape and characteristics shown in Table 1 below, and the high temperature side heat storage body A and the low temperature side heat storage body B are prepared as shown in Table 2 below. A honeycomb-shaped heat storage body (test Nos. 1 to 16) having the shape shown in FIG. Next, an aging test was carried out in which each of the obtained honeycomb-shaped heat accumulators was incorporated into an experimental apparatus and held at a predetermined temperature for 1000 hours. After the aging test, the appearance and dimensional shrinkage of each heat storage were examined. Further, the firing energy ratio and the heat exchange area ratio of each honeycomb-shaped heat storage element were obtained. The results are shown in Table 2.
[0020]
In the results of Table 2, the external appearances of the heat storage elements A and B are ◎, in which no defect is present at all, ◯, in which some defects are present but there is no problem in actual use, ◯, an example in which a crack is generated, The generated examples are shown as x. The dimensional shrinkage of the heat storage bodies A and B was determined from the dimensions of the heat storage bodies before and after firing. Further, the firing energy ratio of each honeycomb-shaped heat storage body is determined based on the energy required to fire the alumina honeycomb structure D that requires the least energy for firing in the electric furnace. It calculated | required as ratio with the energy required for baking by. Furthermore, the heat exchange area ratio of each honeycomb-shaped heat storage element was determined from the area of the portion of the through hole that contacts the gas determined from the geometric specific surface area.
[0021]
[Table 1]
Figure 0003694150
[0022]
[Table 2]
Figure 0003694150
[0023]
As apparent from the results of Tables 1 and 2, in the honeycomb-shaped heat storage body (test Nos. 2, 4, 10, and 12) of the present invention example, the high temperature side (heat storage body A) and the low temperature side (heat storage body B). In both cases, there was no problem of cracks or cracks in the honeycomb structure. On the other hand, in the honeycomb-shaped heat storage body (test Nos. 1 and 11) using the honeycomb structures (alumina honeycomb structures A and D) having the same low porosity on both the high temperature side and the low temperature side, the honeycomb structure Cracks and cracks occurred. This is because deformation is large when the honeycomb structure used on the low temperature side is combined, gaps are formed between the honeycomb structures, and the low-temperature firing air enters the upper part without heat exchange and cracks due to thermal shock. Is considered to have occurred. In addition, some cracks are also generated in the honeycomb structure used on the low temperature side. This is because the high temperature exhaust gas passes through the gap and enters the low temperature part without heat exchange. It is thought that cracks occurred due to the occurrence.
[0024]
Further, in the honeycomb-shaped heat storage bodies (test Nos. 5 to 8 and 13 to 16) of the comparative examples using the honeycomb structure having a high porosity on the high temperature side, the shrinkage due to the high temperature exhaust gas is large, which causes cracks. It was. In this case, whether the honeycomb structure having a high porosity or the honeycomb structure having a low porosity is used on the lower temperature side below, the honeycomb structure on the upper high temperature side contracts to form a gap. Therefore, the high temperature exhaust gas or the low temperature combustion air enters from the gap, and it is considered that the crack was generated as before. In addition, the shrinkage of the lower temperature side honeycomb structure in the lower part was increased, and the generation of the cracks was promoted.
[0025]
On the other hand, in the honeycomb-shaped heat accumulator of the present invention example using a honeycomb structure having a low porosity on the upper high temperature side and a honeycomb structure having a high porosity on the lower low temperature side, both the upper and lower honeycomb structures shrink. Was small and no cracks or cracks occurred. Moreover, the durability of the honeycomb-shaped heat storage body (test No. 4) of the present invention example in which the honeycomb structure on the high temperature side having a large aperture ratio was used among the examples of the present invention was further improved.
[0026]
The present invention is not limited to the above-described embodiments, and many variations and modifications are possible. For example, in the above-described embodiments, only one layer of the honeycomb structure on the high temperature side in contact with the high temperature exhaust gas is provided, but it goes without saying that the structure is not limited to one layer. For example, when the height of one layer is low, the honeycomb structure on the high temperature side may be configured from a honeycomb structure having two or more layers and a low porosity.
[0027]
【The invention's effect】
As is apparent from the above description, according to the present invention, the porosity of the honeycomb structure on the high temperature side is made lower than the porosity of the honeycomb structure on the low temperature side, and both are made of the same material. In addition, a honeycomb-shaped heat accumulator that can efficiently exchange heat without destroying high-temperature exhaust gas can be obtained. In addition, it is not necessary to use an expensive material such as aluminum titanate, and in that case, the porosity can be controlled by changing the firing temperature. Therefore, the honeycomb-shaped heat storage body can be obtained at low cost.
[Brief description of the drawings]
FIG. 1 is a view showing a configuration of an example of a honeycomb-shaped heat storage body of the present invention.
Fig. 2 is a diagram showing a configuration of another example of the honeycomb-shaped heat storage body of the present invention.
FIG. 3 is a view showing an example in which a heat exchanger using the honeycomb-shaped heat storage body of the present invention is installed in a combustion chamber of a combustion heating furnace.
[Explanation of symbols]
1, 11, 22-1, 22-2 Honeycomb heat storage body 2, 12, honeycomb structure, 3 through hole, 23-1, 23-2 heat exchanger, 24-1, 24-2 fuel inlet

Claims (5)

複数のハニカム構造体を積み重ねてなり、貫通孔から構成される流路に排ガスと被加熱ガスとを交互に通過させて排ガス中の廃熱を回収するハニカム状蓄熱体において、少なくとも高温の排ガスに接する高温側のハニカム構造体の気孔率が、それ以外の低温側のハニカム構造体の気孔率よりも低く、前記高温側のハニカム構造体と低温側のハニカム構造体とが同一素材からなることを特徴とするハニカム状蓄熱体。A honeycomb-shaped heat accumulator in which a plurality of honeycomb structures are stacked and exhaust gas and a heated gas are alternately passed through a flow path constituted by through holes to recover waste heat in the exhaust gas. The porosity of the high-temperature side honeycomb structure in contact is lower than the porosity of the other low-temperature side honeycomb structures, and the high-temperature side honeycomb structure and the low-temperature side honeycomb structure are made of the same material. A honeycomb-shaped heat storage element. 前記低温側のハニカム構造体の被加熱ガスと接する面上にコージェライトまたはムライトからなるハニカム構造体からなる層を設けた請求項1記載のハニカム状蓄熱体。The honeycomb-shaped heat storage body according to claim 1, wherein a layer made of a honeycomb structure made of cordierite or mullite is provided on a surface of the low-temperature-side honeycomb structure in contact with a heated gas. 前記高温側のハニカム構造体の開口率が、それ以外の低温側のハニカム構造体の開口率よりも大きい請求項1または2記載のハニカム状蓄熱体。The honeycomb-shaped heat storage body according to claim 1 or 2, wherein an opening ratio of the honeycomb structure on the high temperature side is larger than an opening ratio of the other honeycomb structure on the low temperature side. 前記高温側のハニカム構造体の気孔率と、それ以外の低温側のハニカム構造体の気孔率とを、同一原料系からなる焼成前のハニカム構造体の焼成温度を変更することで制御する請求項2または3記載のハニカム状蓄熱体。The porosity of the high temperature side honeycomb structure and the porosity of the other low temperature side honeycomb structure are controlled by changing the firing temperature of the honeycomb structure before firing comprising the same raw material system. The honeycomb-shaped heat storage body according to 2 or 3. 前記ハニカム構造体の主成分が単一金属酸化物である請求項1〜4のいずれか1項に記載のハニカム状蓄熱体。The honeycomb-shaped heat storage body according to any one of claims 1 to 4, wherein a main component of the honeycomb structure is a single metal oxide.
JP18494997A 1997-07-10 1997-07-10 Honeycomb heat storage Expired - Fee Related JP3694150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18494997A JP3694150B2 (en) 1997-07-10 1997-07-10 Honeycomb heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18494997A JP3694150B2 (en) 1997-07-10 1997-07-10 Honeycomb heat storage

Publications (2)

Publication Number Publication Date
JPH1130491A JPH1130491A (en) 1999-02-02
JP3694150B2 true JP3694150B2 (en) 2005-09-14

Family

ID=16162182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18494997A Expired - Fee Related JP3694150B2 (en) 1997-07-10 1997-07-10 Honeycomb heat storage

Country Status (1)

Country Link
JP (1) JP3694150B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089835A (en) * 2000-09-13 2002-03-27 Nkk Corp Heat reservoir for regenerative combustion burner
WO2002026655A1 (en) * 2000-09-26 2002-04-04 Ngk Insulators, Ltd. Alumina honeycomb structure, method for manufacture of the same, and heat-storing honeycomb structure using the same
JP4672915B2 (en) * 2001-07-03 2011-04-20 小林製薬株式会社 Thermal storage body and thermal pad including the same
JP2003287379A (en) * 2002-03-28 2003-10-10 Ngk Insulators Ltd Honeycomb-shaped heat accumulator and heat accumulating burner using this heat accumulator
KR20160025396A (en) * 2014-08-27 2016-03-08 부산대학교 산학협력단 Counterflow heat exchanger and heat exchanger assembly comprising them

Also Published As

Publication number Publication date
JPH1130491A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
EP0687879B1 (en) Honeycomb Regenerator
EP1508354B1 (en) Honeycomb structural body
JP3694150B2 (en) Honeycomb heat storage
JP2862864B1 (en) Honeycomb regenerator
EP0724126A3 (en) Honeycomb regenerator
JP3081550B2 (en) Honeycomb regenerator for aluminum melting furnace
EP1325898A1 (en) Alumina honeycomb structure, method for manufacture of the same, and heat-storing honeycomb structure using the same
JP3529852B2 (en) Honeycomb regenerator
JPH08114391A (en) Honeycomb heat storage unit
JPH0719754A (en) Ceramic fiber module
US20070160943A1 (en) Monolith for use in regenerative oxidizer systems
JP2005238208A (en) High temperature air filter
JP2857361B2 (en) Honeycomb regenerator
JPH02307512A (en) Platy catalyst unit
JPH08261673A (en) Honeycomblike thermal storage unit
JP2001263973A (en) Honeycomb-like heat storage body
JP2002107072A (en) Ceramic heat exchanger component
CN117858751A (en) Exhaust gas purifying device and method for manufacturing the same
JP2002228144A (en) Burner heat storage unit and high temperature regenerative radiant tube burner
JP2000193395A (en) Honeycomb structure heat storage medium
WO2023032857A1 (en) Exhaust gas purification device and manufacturing method thereof
JPH04324011A (en) Catalytic combustion apparatus
JP2690999B2 (en) Regenerative heat exchanger
JPH039396B2 (en)
JP2023034800A (en) Exhaust gas purification device for wood stove and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees