JP4672915B2 - Thermal storage body and thermal pad including the same - Google Patents

Thermal storage body and thermal pad including the same Download PDF

Info

Publication number
JP4672915B2
JP4672915B2 JP2001202411A JP2001202411A JP4672915B2 JP 4672915 B2 JP4672915 B2 JP 4672915B2 JP 2001202411 A JP2001202411 A JP 2001202411A JP 2001202411 A JP2001202411 A JP 2001202411A JP 4672915 B2 JP4672915 B2 JP 4672915B2
Authority
JP
Japan
Prior art keywords
storage body
heat storage
moisture
alumina
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001202411A
Other languages
Japanese (ja)
Other versions
JP2003021482A (en
Inventor
克佳 山科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobayashi Pharmaceutical Co Ltd
Original Assignee
Kobayashi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobayashi Pharmaceutical Co Ltd filed Critical Kobayashi Pharmaceutical Co Ltd
Priority to JP2001202411A priority Critical patent/JP4672915B2/en
Publication of JP2003021482A publication Critical patent/JP2003021482A/en
Application granted granted Critical
Publication of JP4672915B2 publication Critical patent/JP4672915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Packages (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱体及びそれを内包する温熱パッドに関する。さらに詳細には、乾燥が妨げられるように放湿しつつ加温をするための温熱パッド、特に、関節痛、肩こり、腰痛などに対する温熱治療を包含する、血行促進等を意図した生体の温浴における適用を始め、食品の保温、加温用等に好適な温熱パッド用の蓄熱体に関するものである。
【0002】
【従来の技術】
従来より、上記温熱治療用を含めた温浴用、ならびに食品の保温及び加温用などの温熱パッドが種々提案されている。特に電子レンジにおける電磁波の付与により加熱可能な温熱パッドは、病院や家庭において手軽に使用され得るため極めて有用である。かかる温熱パッドは、特に温熱治療に使用される場合にあっては、皮膚の過乾燥を防ぎ、また加温効果が所望範囲に充分行きわたり浸透するよう、パッドから温湿(蒸気)が放出されることが好ましい。
【0003】
特表平7−501395号公報には、セラミックビーズを袋に詰め、これを電子レンジで温めることによって温湿熱を発生させる技術が開示されている。ここで前記ビーズは、所定の高温域では液状となるマイクロ波反応物質を含有する固体の担体粒状物質の新規組成物であり、加熱または冷却のための熱伝達媒体として機能する。この組成物は、具体的には、活性アルミナ、活性シリカ、モレキュラーシーブ等の固体である担体材料と、当該担体材料によって保持される、所定の高温にて液化する比較的不揮発性のマイクロ波反応液体(例えば、エチレングリコールとその重合体等を含む)とからなっている。この組成物は、マイクロ波エネルギーで予め加熱すると乾燥熱源または水分を含む熱源として機能し、また、冷蔵庫で予め冷やせば冷気源としても機能する、とされている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の新規組成物は、空気中の水分を充分に吸着させた後に電子レンジで温めた際にのみ温湿熱を生み出し得る機能を備えるようになるものであり、短時間内に連続して加熱すると湿気の発生が少なくなるため、所定時間(すなわち、約4時間以上)放置した後でなければその効果を得ることができなかった。そして、水分吸着量が不充分な状態のままでマイクロ波による処理を行うと、この組成物は所望の効果を達成できないばかりか、発火、ひいては火災という重大な事故を惹起する危険性があるという欠点を有するものであった。また、マイクロ波反応液体が良好な状態にて担体材料に接触していなければ、マイクロ波エネルギーを効率良く吸収し得ない担体材料自体に充分蓄熱させることはできず、加熱むらが生じることもあった。さらに、前記マイクロ波反応液体は、効率の良い相変化熱吸収物質とは云えないため、相変化物質/シリカ粉末の蓄熱量(単位重量当たり)を低下させる場合もあった。また、マイクロ波反応液体は急激な温度変化に曝されることも要因となって、経時的な劣化に伴う品質低下の避けがたいという問題もあった。
【0005】
上記の公知温熱パッドの欠点の要因は、前記担体材料が空気中の水分をあまり吸着できず、その速度も極めて遅いことにあると考えられる。本発明はかかる現状に鑑みてなされたものであって、1)単位重量当たり,単位体積当たりの吸放湿能及び蓄熱密度が大きい、2)安定な物質で,変質しない、3)毒性,危険性及び引火性のおそれがなく安全である、4)熱伝導度が大きく、熱的応答性が良い、5)安価である、5)装置面や操作面での複雑さがない、などといった条件を満たすことができる蓄熱体を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記の目的を達成するために鋭意研究を重ねた結果、本発明者らは、所定の比表面積を有するアルミナが、空気中の水分を速やかに且つ多量に吸着することができ、特に電磁波の照射による加熱に好適であって安全性が高いことを見出し、本発明を完成するに至った。
【0007】
すなわち、本願第一発明は、比表面積が350m2/g以上のアルミナであり、90重量%以上の酸化アルミニウムを90重量%以上含むことを特徴とする蓄熱体である。かかる蓄熱体は、従来のものに比較して高い比表面積を有するので、優れた吸湿、放湿機能を有する。従って、充分に吸湿させた後に加熱すれば、所望される温湿を放出することができる。また本来酸化アルミニウムは、経時的に変化することがなく生体への安全性も高いので、医療分野等の生体への適用のほか、食品等の給湿保温、加温用にも好ましい。
【0008】
そして、本願第二発明は、比較的低温で焼成して構造を不均一化させ、低結晶状態のアルミナを得る工程を含む方法によって製造された、350m2/g以上の比表面積を有する酸化アルミニウムを主成分とするアルミナであることを特徴とする蓄熱体である。すなわち、従来より知られているアルミナの製造方法におけるよりも低い、例えば700〜1000℃という温度にて焼成をすることによって、所定の比表面積を有する酸化アルミニウムを主成分としたアルミナが得られ、これが本願第一発明について前記したように、優れた吸湿、放湿機能を有する蓄熱体として有用である。
【0009】
上記本願第一または第二発明において、比表面積が350〜400m2/gである(本願第三発明)と、特に望ましい吸湿、防湿機能が得られ、従って速やかに吸湿し、そして加熱に伴う温湿の放出を比較的長時間継続できる利点を有する。
【0010】
そして、本願第四発明は、電磁波の照射に伴い放熱可能とされる上記蓄熱体である。電子レンジ等の装置を用いた電磁波の照射による加熱は、迅速且つ利便性が高いが、水分の存在しない対象物を昇温させることはできないため、従来固体担体を加熱すべくマイクロ波反応液体が適用されてきたことは前記のとおりである。本願発明の蓄熱体は、アルミナが高い吸湿能を有し、吸湿されればその粒子が水分で包囲された状態となるので、電磁波の照射による迅速な加熱に好適であり、また電子レンジ等の電磁波照射用の装置に対して負荷や損傷を与える危険性もない。しかも、化学的物理的に安定な材料であるため、長期間の高温や低温に曝されても特に変化をきたすことがないので安全性が高いという点でも好ましい。
【0011】
さらに、前記蓄熱体は、0.1〜15mmの直径を有するビーズである(本願第五発明)ことが、好適な吸湿・放湿機能を提供しつつ、製造及び取扱い上で利便性もあるので好ましい。
【0012】
さらに本願第六発明は、如上の本願第一乃至第四発明にかかる蓄熱体を収容袋に内包する温熱パッドである。上記のとおり吸放湿能に優れた安全性の高い蓄熱体が収容されているので、この温熱パッドは、生体、居住空間、食品等への幅広い適用が可能である。そして、この温熱パッドは、温湿を比較的長時間放出することができ、しばらく放置して水分を再吸収させただけで繰り返して加熱して用いられるので、特に生体の温浴用に好適である(本願第七発明)。
【0013】
【発明の実施の形態】
本発明の蓄熱体は、350m2/g以上、好ましくは350〜400m2/g以上の比表面積を有するアルミナであり、90重量%以上の酸化アルミニウムを含む。比表面積が350m2/gよりも低いと、吸湿能に劣るため、当然放湿効果が低下する。比表面積はより高い方が好ましいが、現在の技術では、比表面積が400m2/gを超えるアルミナの製造は困難であることが知られている。なお、ここで比表面積とは、BET表面積、すなわち、ブルナー・エメット・テラー法(J.A.C.S.60、309(1938))により確立された、ASTM法D3663−78に従う窒素吸着によって決定されるものである。
【0014】
かかる蓄熱体は、以下の方法によって製造される。アルミナ粉(例えば、ジブサイト、バイアライト、ノルストランダイト、ベーマイト等)に水を混ぜて、既知の造粒装置において望ましい粒径となるように造粒し、その後120〜130℃で2〜3時間乾燥させる。次いで、700〜1000℃で焼成、活性化して目的物のアルミナビーズを得る。以上のように1000℃以下の低温で焼成することにより、構造が不均一化し、比表面積の大きい、低結晶性のアルミナを得ることができるのである。
【0015】
蓄熱体の粒径は、必ずしも特段に限定されるものではないが、使用性、特に収容袋に内包させたパッドが、電磁波等を利用して加熱されること、生体に用いる場合には肩、関節等の適用対象の形状にパッドが適合すべきことに鑑み、好ましくは0.1〜15mm、より好ましくは2〜4mmの直径を有するように造粒されたものがよい。粒径が上記範囲を下回ると、微細すぎて使用にも製造にも不都合となりやすく、そして上記範囲を超えた場合には、特に生体への使用などの場合に適用箇所へ適合させにくくなりがちである。
【0016】
また、蓄熱体は、以下の物性すなわち、1000℃における強熱減量:6重量%以下、充填密度:0.5〜1.0g/cm3、吸着容量:15%以上、破壊強度:7kg以上、耐摩耗性:1.0重量%以下を有することが好ましい。
【0017】
そして、前記充填密度を決定するためには、所定重量の試料をメスシリンダーに導入し、次いでそのメスシリンダーを、容積の下降が止まりかつ一定容積が得られるまで振動する。その後、単位容積を占める凝集体の重量を計算する。
【0018】
前記吸着容量は、気温25℃,湿度60%の環境中に乾燥したビーズ35g程度を24時間以上放置して、その間に増加した重量を測定する。吸着容量は、以下の式:吸着容量(%)=(増加した重量)/(放置前のビーズ重量)×100によって求める。
【0019】
前記破壊強度は、木屋式で測定する。すなわち、ビーズ1個を水平で安定な台上に置き、その上から圧力により変形しない程度の硬さを持つ円筒形の棒を押し当て、ビーズが破壊された時の力の強さを破壊強度とする。
【0020】
前記耐摩耗性は、一定量の試料を強い撹拌に付し、粉じんにならなかった残留凝集体の量を測定して、摩擦により消耗しなかった物質の割合を求める。詳細には、この試験を行う前に、試料は300℃に温度制御した炉で2時間熱処理してその状態を調節し、次いでデシケーターで冷却してアフノール篩によって最小の公称寸法まで篩別しておく。篩別された試料の正確な重量(約10g)を秤量して、これをプロラボ社より商品名「ダングマウ」微粉砕機として販売されている振盪機に入れた65ccのステンレス鋼製粉砕容器に入れる。微粉砕機は正確に5分間運転させる。撹拌が終了したら、回収した物質を出発物質の最小寸法の3/4に相当する篩によって篩別する。篩別された物質を300℃の炉に2時間入れる。デシケーターで冷却した後、篩を通過しない凝集体を秤量する。耐摩耗性ARは、式AR=(W2 /W1 )×100(%)(ここでW1 は試料の重量、W2 は試験後に篩上に残った凝集体の重量)によって示される。
【0021】
また、本発明の蓄熱体は、酸化アルミニウム(Al23)を、90重量%以上、好ましくは93重量%以上含有するが、残余の微量成分は、結晶水の他、SiO2、Fe23、Na2O等の無機酸化物が含まれ得る。
【0022】
本発明の蓄熱体を加熱して使用するためには、電磁波、例えば、1メートル未満の波長および300メガヘルツ〜3テラヘルツの周波数を有するマイクロ波を照射して加熱することが好ましい。かかる電磁波照射によって加熱する場合、蓄熱体を予め、常温常圧下に放置して、充分に吸湿させておく必要がある。これは、電磁波反応液としての水が存在しなければ加熱が適切に実施できないためである。加熱前の放置時間は、気温や湿度によって変更可能であるが、概ね1時間以上、好ましくは1.5〜2時間とするとよい。この場合、積極的に加湿した条件とすれば、放置時間を短縮できることは云うまでもない。電磁波による加熱は、例えば温浴を含めた生体への適用が意図される場合、500Wの電子レンジにて、蓄熱体500gあたり約1〜3分間という処理にて、蓄熱体温度が50〜100℃になるように加熱することができるが、この処理時間は、気温や湿度等の処理環境や、使用するレンジの処理機能、求められる達成温度に応じて適宜変更されるとよい。このようにして、蓄熱体の水分が完全に失われるより前に所望温度に加熱することができ、従って使用時には温湿(蒸気)が放出されて望ましい効果を達成できるのである。
【0023】
本発明の蓄熱体は、電子レンジ使用等の電磁波処理のみならず、その他種々の加熱手段によって加熱することも可能であるが、火炎に曝すことは避けるべきである。また、特に適用時に加湿が含意されれば、吸湿されている水分を損なってしまう前に短時間で好熱処理するか、蒸気を供給しつつ加熱してもよい。
【0024】
また、本発明の蓄熱体は、生体は食品への適用が含意されるので、低揮発性の抗菌剤成分、脱臭剤成分など、適宜の添加物を配合しておいてもよい。
【0025】
次に、本発明の温熱パッドは、綿、合成繊維などを素材としたネル等の強度及び透湿性に優れる織物で形成された収容袋に、如上の蓄熱体を内包するものである。その収容袋の形状は、一切限定されず、使用個所、使用目的などに応じて適宜選択することができる。
【0026】
また、必要に応じて、温熱パッドに綿、ポリエステル樹脂製などの洗浄に耐える丈夫な外装包袋を装着するとよい。この外装袋には、適用対象に温熱パッドを固定するための紐やゴム等適宜のもので作成した固定部材を備えてもよい。
【0027】
そして、特に温熱療法等、温熱パッドを生体へ適用することが意図される場合、例えば肩や膝関節などの形状に適合するように、充填率を調整して易変形性のものとするとよい。
【0028】
本発明の温熱パッドを使用するには、蓄熱体の加温につき説明したと同様に予め吸湿させておいてから、加熱し、適切な温度として対象に適用する。加熱時に外装袋を装着しておいてもよい。生体への使用にあっては、加熱された温熱パッドを肩、膝等の関節、腰など、施術すべき個所に接触させ、必要に応じて固定部材を用いて保持する。
【0029】
また、食品の加熱、給湿、保温、保湿等においても同様に、適宜の形状としたものを所望される温度にまで加熱して、対象に適用する。
【0030】
本発明を以下の実施例によりさらに詳説するが、これら実施例は本発明を例証するものであるにすぎず、本発明の範囲はこれらにより限定的に解釈されるべきでない。
【0031】
【実施例】
[製造例]
アルミナビーズを以下の方法によって製造した。
【0032】
アルミナ粉に水を混ぜて、造粒装置において粒子直径約2〜4mmとなるように造粒し、その後120〜130℃で2〜3時間乾燥させた。次いで、700〜1000℃で焼成、活性化して目的物のアルミナビーズを得た。
【0033】
なお、上記方法によって得られるアルミナは、比表面積350m2/g、1000℃における強熱減量が6重量%、充填密度は0.77g/cm3、吸着容量は21.5%、破壊強度は18kg、そしてその耐摩耗性は0.4重量%であった。なお、これらの物性は、発明の実施の形態において前記したとおりの方法によって求めたものである。
【0034】
また、含有成分の分析を行ったところ、Al23:93.6重量%、SiO2:0.02重量%、Fe23:0.02重量%、Na2O:0.35重量%を含有し、残余は結晶水であることが明らかになった。
【0035】
[実施例1]
製造例にて得られた蓄熱体を、常温常圧に24時間放置して、充分に空気中の水分を吸収させた後、35gを500Wの電子レンジにて30秒間加熱した。加熱直後の重量を測定して減少重量を算出し、水分の放出量(放湿量)を求めた。さらに、再び常温常圧にて1時間放置した後に秤量して増加重量を算出し、吸湿量を測定することで、蓄熱体の回復力を調べた。
【0036】
[比較例1]
従来品である、比表面積140m2/g、粒子直径約2〜4mmを有するアルミナビーズ(住友化学工業(株)製、KHO−24(商品名))を、実施例2におけると同様の方法にて処理して、吸湿及び回復について調べた。
【0037】
なお、本比較例において使用したアルミナは、1000℃における強熱減量が2重量%、充填密度は0.82g/cm3、吸着容量は15%、破壊強度は24kg、そして耐摩耗性は0.5重量%であった。
【0038】
[比較例2]
比表面積約400m2/g、粒子直径約2〜4mmを有するシリカゲルビーズを、実施例1におけると同様の方法にて処理して、吸湿及び回復について調べた。
【0039】
実施例1及び比較例1〜2にて得られた結果を以下の表1に示す。
【0040】
【表1】

Figure 0004672915
【0041】
表1において、実施例1にかかる本発明の蓄熱体は、比較例のものに比べて格段に吸湿、放湿能に優れ、その速度も大きいことが示されている。
【0042】
[実施例2]
上記製造例にて得られた蓄熱体を、実施例1におけると同様、充分に空気中の水分を吸収させた後、35g相当を500Wの電子レンジにて30秒間加熱した。加熱直後の重量を測定して減少重量を算出、水分の放出量(放湿量)を求めると共に、ビーズ表面の温度を測定した。さらに、常温常圧にて4分30秒間放置した後に再度30秒間加熱する操作を繰り返し、7回加熱をした直後のビーズ表面の温度を測定した。次いで、常温常圧状態で8時間放置した後、秤量して7回加熱後の重量と放置後の重量の差より吸湿量を測定することで、蓄熱体の回復力を調べた。
【0043】
[比較例3]
比較例1にて用いたと同様のアルミナビーズを、グリセロールに浸漬し、ビーズ重量に対して約15重量%のグリセロールがビーズ表面に付着した蓄熱体を調製した。次に、実施例1におけると同様の方法にて処理して、吸湿及び回復について調べた。
【0044】
実施例2及び比較例3にて得られた結果を以下の表2に示す。
【0045】
【表2】
Figure 0004672915
【0046】
表2において、実施例2にかかる本発明の蓄熱体は、比較例3のものに比べて優れた吸湿、放湿能を有していることが明らかである。さらに、短時間内に反復して加熱を行った場合、比較例3によればビーズ温度が100℃を超えてしまうが、実施例2においては1回加熱後の温度により近く、過度の昇温を回避できることが示唆される。
【0047】
従って、特に電子レンジでの加熱による反復使用が意図される場合にあっても、速やかに吸湿して回復され得るため、所定時間内での使用回数を増加させることができることが明らかになった。さらに、短時間内で繰り返し使用しても、発火等の危険性が低減されることも明らかになった。
【0048】
【発明の効果】
以上説明したように、本発明の蓄熱体は、空気中の水分を速やかに且つ多量に吸着することができるので、電磁波の照射による加熱に好適であって安全性が高い。従って、温熱治療用を含めた温浴用、ならびに食品の保温及び加温用等に幅広く利用され得る。また、この蓄熱体によれば、特に電子レンジでの加熱に伴う発火や、電子レンジへの負荷や損傷の危険性が回避され、短時間内での反復使用が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage body and a thermal pad containing the same. In more detail, in a thermal pad for heating while dehumidifying so as to prevent dryness, particularly in a warm bath of a living body intended to promote blood circulation, including thermal therapy for joint pain, stiff shoulders, low back pain, etc. The present invention relates to a heat accumulator for a thermal pad suitable for heat application, heating, etc. of food.
[0002]
[Prior art]
Conventionally, various thermal pads have been proposed for warm baths including those for thermal therapy, and for keeping food warm and warming. In particular, a heating pad that can be heated by applying electromagnetic waves in a microwave oven is extremely useful because it can be easily used in hospitals and homes. Such a thermal pad, particularly when used for thermal therapy, prevents the skin from over-drying and releases hot / humidity (vapor) from the pad so that the warming effect can reach and penetrate the desired range sufficiently. It is preferable.
[0003]
Japanese Patent Laid-Open No. 7-501395 discloses a technique for generating hot and humid heat by filling ceramic beads in a bag and warming it with a microwave oven. Here, the bead is a novel composition of a solid carrier granular material containing a microwave reactive material that becomes liquid at a predetermined high temperature range, and functions as a heat transfer medium for heating or cooling. Specifically, this composition includes a carrier material that is a solid such as activated alumina, activated silica, and molecular sieve, and a relatively non-volatile microwave reaction that is held by the carrier material and liquefies at a predetermined high temperature. It consists of a liquid (for example, containing ethylene glycol and a polymer thereof). This composition is said to function as a dry heat source or a heat source containing moisture when preheated with microwave energy, and also functions as a cold air source when cooled in advance in a refrigerator.
[0004]
[Problems to be solved by the invention]
However, the above-mentioned new composition has a function capable of generating hot and humid heat only when it is heated in a microwave oven after sufficiently adsorbing moisture in the air, and continuously in a short time. Since the generation of moisture is reduced when heated, the effect cannot be obtained unless it is left for a predetermined time (that is, about 4 hours or longer). And, when the treatment with microwaves is performed with the moisture adsorption amount being insufficient, the composition cannot achieve a desired effect, and there is a risk of causing a serious accident such as ignition and fire. It had a drawback. Further, if the microwave reaction liquid is not in contact with the carrier material in good condition, the carrier material itself that cannot efficiently absorb the microwave energy cannot be sufficiently stored, and uneven heating may occur. It was. Furthermore, since the microwave reaction liquid is not an efficient phase change heat absorbing material, the heat storage amount (per unit weight) of the phase change material / silica powder may be reduced. In addition, the microwave reaction liquid is also exposed to a rapid temperature change, and there is also a problem that it is difficult to avoid quality deterioration due to deterioration over time.
[0005]
It is considered that the cause of the drawback of the above-mentioned known thermal pad is that the carrier material cannot adsorb moisture in the air so much and its speed is very slow. The present invention has been made in view of the present situation, and 1) high moisture absorption / release capacity and heat storage density per unit weight, 2) stable substance, no alteration, and 3) toxicity and danger. 4) High thermal conductivity, good thermal responsiveness, 5) Low cost, 5) No equipment or operation complexity, etc. It aims at providing the thermal storage body which can satisfy | fill.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have made it possible for alumina having a predetermined specific surface area to adsorb moisture in the air quickly and in large quantities, particularly irradiation with electromagnetic waves. The present invention has been completed by finding that it is suitable for heating by the heat treatment and has high safety.
[0007]
That is, the first invention of the present application is an alumina having a specific surface area of 350 m 2 / g or more and containing 90% by weight or more of aluminum oxide of 90% by weight or more. Since this heat storage body has a high specific surface area compared with the conventional one, it has excellent moisture absorption and moisture release functions. Therefore, if it is heated after sufficiently absorbing moisture, the desired temperature and humidity can be released. In addition, since aluminum oxide does not change over time and is highly safe for living bodies, it is preferable not only for application to living bodies in the medical field, but also for moisturizing and warming foods.
[0008]
The second invention of the present application is an aluminum oxide having a specific surface area of 350 m 2 / g or more manufactured by a method including a step of obtaining a low crystalline alumina by firing at a relatively low temperature to make the structure non-uniform. It is a heat storage body characterized by being alumina whose main component is. That is, by firing at a temperature of, for example, 700 to 1000 ° C. lower than that of conventionally known methods for producing alumina, an alumina mainly composed of aluminum oxide having a predetermined specific surface area is obtained. As described above for the first invention of the present application, this is useful as a heat storage body having excellent moisture absorption and moisture release functions.
[0009]
In the first or second invention of the present application, when the specific surface area is 350 to 400 m 2 / g (the third invention of the present application), particularly desirable moisture absorption and moisture prevention functions can be obtained, so that moisture is absorbed quickly and the temperature associated with heating. There is an advantage that the release of moisture can be continued for a relatively long time.
[0010]
The fourth invention of the present application is the above-described heat storage body capable of dissipating heat with the irradiation of electromagnetic waves. Although heating by electromagnetic wave irradiation using a device such as a microwave oven is quick and highly convenient, it is impossible to raise the temperature of an object that does not contain moisture. Therefore, a microwave reaction liquid is conventionally used to heat a solid support. What has been applied is as described above. The heat storage body of the present invention has a high hygroscopic capacity for alumina, and if the moisture is absorbed, the particles are surrounded by moisture, which is suitable for rapid heating by irradiation of electromagnetic waves, and for microwave ovens and the like. There is no risk of damaging or damaging the device for electromagnetic wave irradiation. Moreover, since it is a chemically and physically stable material, it does not change particularly even when exposed to high temperatures and low temperatures for a long period of time.
[0011]
Furthermore, since the heat storage body is a bead having a diameter of 0.1 to 15 mm (the fifth invention of the present application), it provides convenience in manufacturing and handling while providing a suitable moisture absorbing / releasing function. preferable.
[0012]
Further, the sixth invention of the present application is a thermal pad in which the heat storage body according to the first to fourth inventions of the present application is enclosed in an accommodation bag. As described above, since a highly safe heat storage body excellent in moisture absorption / release capacity is accommodated, this thermal pad can be widely applied to living bodies, living spaces, foods, and the like. And this thermal pad can release heat and humidity for a relatively long time, and it is used by repeatedly heating it by simply allowing it to stand for a while and reabsorbing moisture, so it is particularly suitable for a warm bath of a living body. (The seventh invention of the present application).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Regenerator of the present invention, 350 meters 2 / g or more, preferably alumina having the above specific surface area 350~400m 2 / g, containing 90% or more by weight of aluminum oxide. If the specific surface area is lower than 350 m 2 / g, the hygroscopic effect is naturally reduced because the hygroscopicity is poor. A higher specific surface area is preferred, but it is known that current technology makes it difficult to produce alumina having a specific surface area of more than 400 m 2 / g. Here, the specific surface area is a BET surface area, that is, nitrogen adsorption according to ASTM method D3663-78 established by Brunner-Emmett-Teller method (JASC 60, 309 (1938)). It is to be decided.
[0014]
Such a heat storage body is manufactured by the following method. Alumina powder (for example, dibsite, bayerite, norstrandite, boehmite, etc.) is mixed with water and granulated to a desired particle size in a known granulator, and then at 120 to 130 ° C. for 2 to 3 hours. dry. Next, it is fired and activated at 700 to 1000 ° C. to obtain the target alumina beads. As described above, by firing at a low temperature of 1000 ° C. or less, the structure becomes non-uniform, and a low crystalline alumina having a large specific surface area can be obtained.
[0015]
The particle size of the heat accumulator is not particularly limited, but the usability, in particular, the pad enclosed in the containing bag is heated using electromagnetic waves or the like, the shoulder when used for a living body, In view of the fact that the pad should be adapted to the shape of the application target such as a joint, it is preferably granulated to have a diameter of 0.1 to 15 mm, more preferably 2 to 4 mm. If the particle size is below the above range, it is too fine to be inconvenient to use and manufacture, and if it exceeds the above range, it tends to be difficult to adapt to the application site, especially in the case of use on a living body. is there.
[0016]
The heat storage body has the following physical properties: ignition loss at 1000 ° C .: 6% by weight or less, packing density: 0.5 to 1.0 g / cm 3 , adsorption capacity: 15% or more, breaking strength: 7 kg or more, Abrasion resistance: preferably 1.0% by weight or less.
[0017]
In order to determine the packing density, a sample having a predetermined weight is introduced into a graduated cylinder, and then the graduated cylinder is vibrated until the decrease in volume stops and a constant volume is obtained. Thereafter, the weight of the aggregates occupying the unit volume is calculated.
[0018]
As for the adsorption capacity, about 35 g of dried beads are allowed to stand for 24 hours or more in an environment where the temperature is 25 ° C. and the humidity is 60%, and the weight increased during that time is measured. The adsorption capacity is determined by the following formula: adsorption capacity (%) = (increased weight) / (bead weight before standing) × 100.
[0019]
The breaking strength is measured by the Kiyama method. In other words, place one bead on a horizontal and stable table, and press a cylindrical rod that is hard enough not to be deformed by pressure from above, and determine the strength of the force when the bead is broken. And
[0020]
The abrasion resistance is determined by subjecting a certain amount of sample to strong stirring and measuring the amount of residual aggregates that did not become dust, and determining the percentage of the material that was not consumed by friction. Specifically, before performing this test, the sample is heat treated for 2 hours in a furnace controlled at 300 ° C. and then conditioned, then cooled in a desiccator and sieved to the minimum nominal size with an Afnol sieve. The exact weight (about 10 g) of the screened sample is weighed and placed in a 65 cc stainless steel crushing container placed in a shaker sold as a “Dangmau” fine crusher by Prolab. . The mill is operated for exactly 5 minutes. When stirring is complete, the recovered material is sieved through a sieve corresponding to 3/4 of the smallest dimension of the starting material. The screened material is placed in a 300 ° C. oven for 2 hours. After cooling with a desiccator, the aggregates that do not pass through the sieve are weighed. The wear resistance AR is indicated by the formula AR = (W 2 / W 1) × 100 (%) (W 1 is the weight of the sample and W 2 is the weight of the aggregate remaining on the sieve after the test).
[0021]
The heat storage body of the present invention contains aluminum oxide (Al 2 O 3 ) in an amount of 90% by weight or more, preferably 93% by weight or more. The remaining trace components are SiO 2 , Fe 2 in addition to crystal water. Inorganic oxides such as O 3 and Na 2 O may be included.
[0022]
In order to heat and use the heat storage body of the present invention, it is preferable to heat by applying electromagnetic waves, for example, microwaves having a wavelength of less than 1 meter and a frequency of 300 megahertz to 3 terahertz. When heating by such electromagnetic wave irradiation, it is necessary to leave the heat storage body in advance under normal temperature and normal pressure to absorb moisture sufficiently. This is because heating cannot be performed properly unless water as an electromagnetic wave reaction solution is present. The standing time before heating can be changed depending on the temperature and humidity, but is generally about 1 hour or more, preferably 1.5 to 2 hours. In this case, it is needless to say that the standing time can be shortened if the conditions are positively humidified. Heating by electromagnetic waves, for example, when application to a living body including a warm bath is intended, the heat storage body temperature is 50-100 ° C. in a process of about 1-3 minutes per 500 g of the heat storage body in a 500 W microwave oven. The processing time may be appropriately changed according to the processing environment such as temperature and humidity, the processing function of the range to be used, and the required achievement temperature. In this way, the heat storage body can be heated to a desired temperature before the water is completely lost, so that in use, the humidity (steam) is released to achieve the desired effect.
[0023]
The heat storage body of the present invention can be heated not only by electromagnetic wave treatment such as using a microwave oven but also by other various heating means, but exposure to a flame should be avoided. In particular, if humidification is implied at the time of application, heat treatment may be performed in a short time before heating moisture is lost, or heating may be performed while supplying steam.
[0024]
Moreover, since the living body of the present invention implies application to foods, appropriate additives such as a low-volatile antibacterial agent component and a deodorizing agent component may be blended.
[0025]
Next, the thermal pad of the present invention encloses the above heat storage body in a storage bag formed of a woven fabric having excellent strength and moisture permeability, such as flannel made of cotton, synthetic fibers or the like. The shape of the accommodation bag is not limited at all, and can be appropriately selected according to the place of use, purpose of use, and the like.
[0026]
Further, if necessary, a durable outer packaging bag that can withstand washing, such as cotton or polyester resin, may be attached to the thermal pad. The exterior bag may include a fixing member made of an appropriate material such as a string or rubber for fixing the thermal pad to the application target.
[0027]
In particular, when a thermal pad is intended to be applied to a living body, such as a thermotherapy, the filling rate may be adjusted to be easily deformable so as to conform to the shape of, for example, a shoulder or a knee joint.
[0028]
In order to use the thermal pad of the present invention, it is preliminarily moisture-absorbed in the same manner as described for the heating of the heat storage body, and then heated and applied to the subject as an appropriate temperature. An exterior bag may be attached during heating. For use on a living body, a heated thermal pad is brought into contact with a place to be treated such as a shoulder, a joint such as a knee, or a waist, and is held using a fixing member as necessary.
[0029]
Similarly, in food heating, moisture supply, heat retention, moisture retention, etc., an appropriate shape is heated to a desired temperature and applied to the object.
[0030]
The invention is further illustrated by the following examples, which are merely illustrative of the invention and the scope of the invention should not be construed as limited thereby.
[0031]
【Example】
[Production example]
Alumina beads were produced by the following method.
[0032]
Water was mixed into the alumina powder and granulated to a particle diameter of about 2 to 4 mm in a granulator, and then dried at 120 to 130 ° C. for 2 to 3 hours. Subsequently, it fired at 700-1000 degreeC and activated, and obtained the target alumina bead.
[0033]
The alumina obtained by the above method has a specific surface area of 350 m 2 / g, an ignition loss at 1000 ° C. of 6% by weight, a packing density of 0.77 g / cm 3 , an adsorption capacity of 21.5%, and a breaking strength of 18 kg. The wear resistance was 0.4% by weight. These physical properties are obtained by the method as described above in the embodiment of the invention.
[0034]
Further, when the contained components were analyzed, Al 2 O 3 : 93.6 wt%, SiO 2 : 0.02 wt%, Fe 2 O 3 : 0.02 wt%, Na 2 O: 0.35 wt% % And the balance was crystal water.
[0035]
[Example 1]
The heat storage body obtained in the production example was allowed to stand at room temperature and normal pressure for 24 hours to sufficiently absorb moisture in the air, and then 35 g was heated in a 500 W microwave oven for 30 seconds. The weight immediately after heating was measured to calculate the reduced weight, and the amount of moisture released (moisture release amount) was determined. Furthermore, after letting it stand at room temperature and normal pressure again for 1 hour, it was weighed to calculate the increased weight, and the amount of moisture absorption was measured to examine the resilience of the heat storage body.
[0036]
[Comparative Example 1]
A conventional product, alumina beads having a specific surface area of 140 m 2 / g and a particle diameter of about 2 to 4 mm (manufactured by Sumitomo Chemical Co., Ltd., KHO-24 (trade name)) is used in the same manner as in Example 2. And examined for moisture absorption and recovery.
[0037]
The alumina used in this comparative example has an ignition loss at 1000 ° C. of 2% by weight, a packing density of 0.82 g / cm 3 , an adsorption capacity of 15%, a fracture strength of 24 kg, and an abrasion resistance of 0.2%. It was 5% by weight.
[0038]
[Comparative Example 2]
Silica gel beads having a specific surface area of about 400 m 2 / g and a particle diameter of about 2 to 4 mm were treated in the same manner as in Example 1 and examined for moisture absorption and recovery.
[0039]
The results obtained in Example 1 and Comparative Examples 1 and 2 are shown in Table 1 below.
[0040]
[Table 1]
Figure 0004672915
[0041]
In Table 1, it is shown that the heat storage body of the present invention according to Example 1 is much more excellent in moisture absorption and moisture release and has a higher speed than the comparative example.
[0042]
[Example 2]
As in Example 1, the heat storage body obtained in the above production example was sufficiently absorbed with moisture in the air, and then 35 g equivalent was heated in a 500 W microwave oven for 30 seconds. The weight immediately after heating was measured to calculate the reduced weight, the amount of moisture released (moisture release amount) was determined, and the temperature of the bead surface was measured. Furthermore, the operation of heating again for 30 seconds after standing at room temperature and normal pressure for 4 minutes and 30 seconds was repeated, and the temperature of the bead surface immediately after 7 times of heating was measured. Next, after standing at room temperature and normal pressure for 8 hours, weighed and measured the moisture absorption from the difference between the weight after heating 7 times and the weight after standing, and thereby the resilience of the heat storage body was examined.
[0043]
[Comparative Example 3]
The same alumina beads as used in Comparative Example 1 were dipped in glycerol to prepare a heat storage body in which about 15% by weight of glycerol with respect to the weight of the beads was adhered to the surface of the beads. Next, it processed by the method similar to in Example 1, and investigated about moisture absorption and recovery | restoration.
[0044]
The results obtained in Example 2 and Comparative Example 3 are shown in Table 2 below.
[0045]
[Table 2]
Figure 0004672915
[0046]
In Table 2, it is clear that the heat storage body of the present invention according to Example 2 has superior moisture absorption and moisture release ability as compared with that of Comparative Example 3. Further, when heating is repeatedly performed within a short time, the bead temperature exceeds 100 ° C. according to Comparative Example 3, but in Example 2, the temperature is close to the temperature after one heating and excessively high. It is suggested that can be avoided.
[0047]
Accordingly, it has been clarified that the number of times of use within a predetermined time can be increased because moisture can be quickly absorbed and recovered even when repeated use by heating in a microwave oven is intended. Furthermore, it has been clarified that the risk of ignition and the like is reduced even when used repeatedly within a short time.
[0048]
【The invention's effect】
As described above, the heat storage body of the present invention can adsorb moisture in the air quickly and in large quantities, and is therefore suitable for heating by irradiation with electromagnetic waves and has high safety. Therefore, it can be widely used for warm baths including those for hyperthermia treatment, as well as for warming and warming foods. Moreover, according to this heat storage body, the danger of the ignition accompanying especially the heating in a microwave oven, the load to a microwave oven, or the damage of a microwave oven is avoided, and the repeated use in a short time is attained.

Claims (7)

比表面積が350m/g以上のアルミナであり、90重量%以上の酸化アルミニウムを含み、残余の微量成分として、結晶水及び無機酸化物以外の成分を含まないことを特徴とする蓄熱体。A heat storage body characterized in that it is alumina having a specific surface area of 350 m 2 / g or more, contains 90% by weight or more of aluminum oxide, and does not contain components other than crystal water and inorganic oxides as the remaining trace components . 比較的低温で焼成して構造を不均一化させ、低結晶状態のアルミナを得る工程を含む方法によって製造された、350m/g以上の比表面積を有する酸化アルミニウムを主成分とするアルミナであることを特徴とする蓄熱体。An alumina mainly composed of aluminum oxide having a specific surface area of 350 m 2 / g or more, manufactured by a method including a step of obtaining a low crystalline alumina by firing at a relatively low temperature to make the structure non-uniform. A heat storage body characterized by that. 比表面積が350〜400m/gである請求項1または2記載の蓄熱体。The heat storage body according to claim 1, wherein the specific surface area is 350 to 400 m 2 / g. 電磁波の照射に伴い放熱可能とされる請求項1乃至3に記載の蓄熱体。  The heat storage body according to claim 1, wherein heat can be dissipated with irradiation of electromagnetic waves. 0.1〜15mmの直径を有するビーズである請求項1乃至4に記載の蓄熱体。  The heat storage body according to claim 1, wherein the heat storage body is a bead having a diameter of 0.1 to 15 mm. 請求項1乃至5記載の蓄熱体を収容袋に内包する温熱パッド。  A thermal pad for encapsulating the heat storage body according to claim 1 in an accommodation bag. 生体の温浴用である請求項6記載の温熱パッド。  The thermal pad according to claim 6, which is used for a warm bath of a living body.
JP2001202411A 2001-07-03 2001-07-03 Thermal storage body and thermal pad including the same Expired - Fee Related JP4672915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202411A JP4672915B2 (en) 2001-07-03 2001-07-03 Thermal storage body and thermal pad including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001202411A JP4672915B2 (en) 2001-07-03 2001-07-03 Thermal storage body and thermal pad including the same

Publications (2)

Publication Number Publication Date
JP2003021482A JP2003021482A (en) 2003-01-24
JP4672915B2 true JP4672915B2 (en) 2011-04-20

Family

ID=19039222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202411A Expired - Fee Related JP4672915B2 (en) 2001-07-03 2001-07-03 Thermal storage body and thermal pad including the same

Country Status (1)

Country Link
JP (1) JP4672915B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6945117B2 (en) * 2017-09-07 2021-10-06 株式会社モノプロダイム Heating device
JP7433759B2 (en) * 2018-11-27 2024-02-20 小林製薬株式会社 heating equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501395A (en) * 1991-11-25 1995-02-09 ブルーダー ヘルスケアー カンパニー Granular heating/cooling media
JPH09225005A (en) * 1996-02-28 1997-09-02 San Eng:Kk Moxibustion pack and heating method thereof
JPH09268208A (en) * 1996-01-31 1997-10-14 Ube Ind Ltd Trans-1,4-polybutadiene and regenerative material
JPH1130491A (en) * 1997-07-10 1999-02-02 Ngk Insulators Ltd Honeycomb heat storage structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501395A (en) * 1991-11-25 1995-02-09 ブルーダー ヘルスケアー カンパニー Granular heating/cooling media
JPH09268208A (en) * 1996-01-31 1997-10-14 Ube Ind Ltd Trans-1,4-polybutadiene and regenerative material
JPH09225005A (en) * 1996-02-28 1997-09-02 San Eng:Kk Moxibustion pack and heating method thereof
JPH1130491A (en) * 1997-07-10 1999-02-02 Ngk Insulators Ltd Honeycomb heat storage structure

Also Published As

Publication number Publication date
JP2003021482A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
TWI449543B (en) Water absorbing polysaccharide and a process for its production
KR101107381B1 (en) Freeze dried superabsorbent materials
JP5047616B2 (en) Water absorbing agent and method for producing the same
US6720073B2 (en) Material enhancement to maintain high absorbent capacity under high loads following rigorous process conditions
AU2005226426A1 (en) Particulate water absorbing agent with water-absorbing resin as main component
JP4739682B2 (en) Water absorbent
JP2008142714A (en) Water-absorbing agent
CA2804243C (en) Expandable exothermic gel-forming composition
US4076651A (en) Agglomerated siliceous bodies
JP4672915B2 (en) Thermal storage body and thermal pad including the same
JP7046413B2 (en) Highly absorbent resin and its manufacturing method
WO2001022779A1 (en) Microwavable gel containing microencapsulated phase change material
CN107586040B (en) Preparation method of magnetic bioactive glass ceramic with high heat ratio
AU768231B2 (en) Composite exothermic non-woven material and methods for the production and activation thereof
EP3243843B1 (en) Method for preparing superabsorbent polymer treated with water dispersion solution containing microparticles
JP4746292B2 (en) Method for producing water absorbent resin composition
JP4202234B2 (en) Thermal pad
JPH0459905B2 (en)
JP3707850B2 (en) Cold storage material composition
JP4173620B2 (en) Granulated product and heating method thereof
CN108310472A (en) A method of improving calcium phosphate magnetism bone cement magnetic heat generation rate
JP4237909B2 (en) Method for heating and storing powder having heat storage performance
CN107205842B (en) Heating body
RU2522206C1 (en) Local hemostatic agent
JPS58103581A (en) Plastic deformable coolant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4672915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees