JP4237909B2 - Method for heating and storing powder having heat storage performance - Google Patents

Method for heating and storing powder having heat storage performance Download PDF

Info

Publication number
JP4237909B2
JP4237909B2 JP2000054743A JP2000054743A JP4237909B2 JP 4237909 B2 JP4237909 B2 JP 4237909B2 JP 2000054743 A JP2000054743 A JP 2000054743A JP 2000054743 A JP2000054743 A JP 2000054743A JP 4237909 B2 JP4237909 B2 JP 4237909B2
Authority
JP
Japan
Prior art keywords
heat storage
powder
heating
water
storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000054743A
Other languages
Japanese (ja)
Other versions
JP2001288458A (en
Inventor
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2000054743A priority Critical patent/JP4237909B2/en
Publication of JP2001288458A publication Critical patent/JP2001288458A/en
Application granted granted Critical
Publication of JP4237909B2 publication Critical patent/JP4237909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【発明の属する技術分野】
本発明は、電気又は燃料等によるエネルギーを連続的に用いることなく対象物を加熱又は保温することが可能な蓄熱性能を有する粉体の加熱方法に関するものであり、本発明の蓄熱性能を有する粉体を包材に充填したものは、従来から知られているカイロ、湯たんぽ、行火等と同様の用途に寒冷所における温熱器具として利用可能である。本発明の蓄熱性能を有する粉体は一旦加熱することにより保温効果が長時間持続するものである。
【0002】
【従来の技術】
電気や燃料のエネルギーを使用しないで用いられる保温材、特に寒冷時に暖を取るための保温材として、カイロ、行火、湯たんぽ等が挙げられる。カイロは最近では鉄粉の酸化反応を利用した使い捨て化学カイロがその簡便さと安価さが受け入れられ大きな市場へと成長を遂げているが再利用や細かな温度調節が出来ないという問題がある。
【0003】
また蓄熱型の暖房用具として湯たんぽが一般に用いられている。湯たんぽは水(熱湯)の顕熱を利用した蓄熱タイプの保温材であるが、お湯を沸かしたり充填したりする煩雑さや火傷の危険性、そして重さの割には温度保持性が劣る等の欠点を有する。一般に、蓄熱型の保温材の持続時間を長くする手段としては保温材の熱容量を高めてやればよく、そのためには、1.蓄熱材(湯たんぽの場合は熱湯)の量を増す、2.水の代わりに相変化を有する化合物すなわち潜熱蓄熱材を用いる等の方法がある。
【0004】
しかしながら1.の方法では保温材の重量が増し、持運びに苦労するばかりでなく蓄熱材である熱湯を沸かすにも時間と多大なエネルギーを必要とする。一方、2.の方法を実現しようとすると少なくとも30℃以上の融点を有する化合物、例えば、無機共晶塩やパラフィンワックスの如き潜熱蓄熱材をお湯の代わりに湯たんぽの中に投入することになり、その結果凝固点以下の温度での取出しが煩雑であったり、加熱する際にも引火の危険性を伴う等実用性に欠けるものであった。
【0005】
本発明者は、前記課題を解決するために特開平8−19564号公報中で、蓄熱材を内包するマイクロカプセルの水性分散液を包材中に充填した保温材を加熱することにより適温が長時間持続する保温材を提案した。更にこの保温材は電子レンジ等より発せられるマイクロ波を照射することにより容易に加熱できることが特徴である。しかしながら使用上の問題点として過度にマイクロ波を照射し続けると内容物の水分が次第に蒸発し、膨張して包材が破損する危険性を孕んでいた。また、水分が半分近くを占めるため潜熱蓄熱材の含有量が高まらなかったり、携帯用とするには重いという難点もあった。
【0006】
【発明が解決しようとする課題】
本発明の課題は、従来の湯たんぽで行なわれていた様な熱湯を注ぎ込むような操作は必要とせず簡単な操作で繰り返し蓄熱と放熱を可能とし、保温時間が長時間に及ぶ蓄熱性能を有する粉体を得ることにあり、同時にマイクロ波を長時間照射しても膨張や変形が生じない安全な保温材を提供することにある。
【0007】
【課題を解決するための手段】
上記課題は、潜熱蓄熱材を内包するマイクロカプセルの固形物と吸水性の高い顔料を混合することにより得られ、単一の粒子内に両者を併せ持つ粉体を得ることにより達成される。この粉体を適当な包材に充填してマイクロ波を照射することにより簡単かつ短時間に加熱と蓄熱が可能となる。すなわち本発明は、潜熱蓄熱材を内包するマイクロカプセルの固形物と吸水性顔料が混合された粉体を得ることと、その粉体にマイクロ波を照射し加熱して使用することにより達成される。この時マイクロカプセル粉体と吸水性の粉体同士を別々に混合しても本発明の効果は達成されるが、同一粒子内に両者を併せ持つ粉体の方が短時間のうちに蓄熱が完了し、しかも蓄熱保持時間も長時間に及ぶため好ましい態様である。
【0008】
マイクロカプセルとは直径約0.1μm〜数mmの微小な容器であり、液体中に分散されておれば蓄熱材の相変化状態に関わらず常に液体である。本発明においては蓄熱材を内包するマイクロカプセル分散液中に吸水性顔料を添加し分散液とした後乾燥工程を経て本発明の蓄熱性能を有する粉体が得られる。一般にマイクロカプセルの粒径は小さいほど強度的に強く、逆に大きいほど弱く乾燥工程またはそれ以降の取り扱い時に壊れやすくなるために適度の粒子系に設定される必要があり、最適な粒子系としては0.5〜50μm、更に好ましくは1〜20μmの範囲が好ましい。尚、マイクロカプセルの平均粒子系とは、米国コールター社製粒度測定装置マルチサイザーII型を用いて測定した体積平均粒子系を示す。
【0009】
本発明でマイクロカプセルの固形物とともに混合される吸水性顔料とは空気中の水分を比較的容易かつ多量に吸収し、吸収した後でも潮解性を示さずに粒状の形態を維持し得る固形粒子であり、吸水率が3%〜76%、好ましくは5%〜40%の顔料を示す。尚、本発明で述べる吸水率とは、以下の計算式により導かれる。
【0010】
【数1】

Figure 0004237909
ここに、a:300℃、3時間熱処理後の顔料の重量(g)、b:1気圧、相対湿度50%、23℃の雰囲気下に24時間静置した後の顔料の重量(g)を示す。
【0011】
吸水率が5%以下の顔料では発熱に必要な水分が少ないためマイクロ波を照射しても充分な温度まで上昇しないため好ましくなく、また70%以上の顔料になるとべたつきが生じ粉体混合物が固まりやすくなるため好ましくない。
【0012】
本発明で用いられる吸水性顔料としては、塩化カルシウム、塩化マグネシウム、硫酸アルミニウム等の多水塩を形成しうる無機塩類やベントナイト、カオリン、フラーズアース、酸性白土、活性白土、モンモリロナイト、アタパルガイト、セピオライト、ハロイサイト、パイロフィライト、セリサイト、バーミキュライト、クロライト、アロフェン等の粘土好物顔料などが用いられるが、好ましくはシリカゲル、活性アルミナ、珪酸マグネシウム、ゼオライト等の高吸水性の顔料が好ましく、これらは単一または2種以上を組み合わせて用いられる。また、有機系では高吸水性高分子樹脂粒に上記吸水率の範囲で水を配したものを用いても良い。これら吸水性の顔料はマイクロ波が照射されることにより発熱材としての役目を有し、その熱は直接または間接的に接触しているマイクロカプセルに伝熱される。
【0013】
これらの吸水性顔料とマイクロカプセルの固形重量の混合比率は目的に応じ如何なる比率にも設定できるが、マイクロカプセルの重量比率が増すことにより保温性が向上し、吸水性顔料の比率が増すことによりマイクロ波により迅速な加熱が可能となるため目的に応じて自由に設定される。マイクロカプセルと吸水性顔料の混合工程は、マイクロカプセル分散液中に直接吸水性顔料を混合しても良いし、予め吸水性顔料のみを水性分散液とした後、分散液同士を混合しても良い。吸水性顔料を分散液とする際には、適する分散剤を用いて所望の粒子系まで機械的に分散される。
【0014】
脱水または乾燥させて粉体化する装置としては、遠心分離法、フィルタープレス法、スクリュープレス法、等があり、乾燥手法としては、ドラムドライヤー、スプレードライヤー、フリーズドライヤーなどの乾燥装置が用いられるが、スプレードライヤーがマイクロカプセルの破壊もなく粒子径のコントロールも容易であるため好ましい手法である。これらの脱水、乾燥装置で得られる粉体の平均粒子系は、5〜300μm、好ましくは10〜100μmの範囲に設定される。
【0015】
これらの粉体は、更に造粒工程を経て平均粒径を大きくすることにより包材に充填しやすくなり、更に保温効果の持続性も向上する。造粒方法としては、試料が粉体の場合と湿潤品の場合で異なるが、天板造粒法、湿式押し出し造粒法、半乾式押し出し造粒法、ロール圧縮造粒法、打錠造粒法等の各種造粒方法が用いられるがマイクロカプセルの損傷のない装置、条件を選ぶ必要がある。粉体の形状は、球状、楕円形、立方体、直方体、円柱状、円錐状、桿状、正多面体、星形、筒型等如何なる形状でも良い。大きさは最大径で0.1〜50mmの粒状に成型される。
【0016】
本発明で使用可能な潜熱蓄熱材は相変化を伴う化合物であれば無機系、有機系いずれのものでも使用可能であるが人体に接した場合に心地よい温熱を感じ得る温度域に融点を有する化合物が好ましい。好ましい融点としては30℃以上であり、具体的には、塩化マグネシウム・6水塩、酢酸ナトリウム・3水塩、硝酸マグネシウム・2水塩等の多量の結晶水を含む無機化合物。脂肪族炭化水素、芳香族炭化水素、ステアリン酸、ミリスチン酸、ラウリン酸等の高級脂肪酸、セチルアルコール、ステアリルアルコール等の高級アルコール、安息香酸フェニル、フタル酸ジシクロヘキシル等の有機化合物が挙げられ、これらは単独または2種以上を混合して用いられるが、これらに限定されるものではない。
【0017】
潜熱蓄熱材のマイクロカプセル化方法は用いられる潜熱蓄熱材の性状により異なるが、代表的な手法、膜材としてはコアセルベーション法によるゼラチン皮膜、インサイチュー法によるメラミン樹脂、尿素ホルマリン樹脂皮膜、界面重合法によるポリウレタン、ナイロンあるいはポリ尿素樹脂皮膜、液中乾燥法による樹脂皮膜等の公知の手法及び膜材が挙げられる。一般にマイクロ波照射により局部的にかなりの高温になることもあるので蓄熱材を内包するマイクロカプセルの皮膜も耐熱性が要求されるため、マイクロカプセルの手法としては耐熱性の高い皮膜が得られるインサイチュー法によるメラミン−ホルマリン樹脂マイクロカプセル、尿素−ホルマリン樹脂マイクロカプセルが特に好ましい。これらのマイクロカプセルの内側または外側には過冷却防止材、比重調節材、劣化防止剤、難燃材、着色剤、香料、光触媒機能材料、接着剤、分散補助材等が添加できる。
【0018】
本発明の粉体は、目的に即した包材に充填することにより固定化される。包材の具体例としては、木綿、羊毛、絹等の天然繊維の他に、ポリエチレン、ポリプロピレン、ポリエステル、ポリウレタン、ポリ尿素、ナイロン、天然ゴム等の合成又は天然の素材が使用できる。包材の形状や大きさは特に限定されず、使用目的に適した形態に加工される。マイクロ波の照射により次第に包材の表面が高温になるため熱をある程度遮断、保温できるような素材、例えば適当な厚みを有する布製の袋等でこの包材の外側を覆うことにより人体に接触した場合の使用感も良くなるし発熱持続時間の調節も可能となる
【0019】
マイクロ波は通常高周波とも呼ばれ、極性を有する液体に照射するとその分子運動が盛んになることにより加熱が可能となる。マイクロ波の最も一般的な照射装置は電子レンジでありマグネトロンから発射される高周波が一般に利用されている。本発明による粉体の加熱方法はマイクロ波照射に限定される訳ではなく、潜熱蓄熱材の融点以上の温度の熱湯中で蓄熱材が融解するまで加熱することによっても同様に蓄熱可能であるが、粉体を迅速に高温に加熱できる点でマイクロ波による加熱方法が好ましい。
【0020】
【実施例】
参考例1
pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点50℃のパラフィンワックス80gを激しく撹拌しながら添加し、平均粒子径が5.0μmになるまで乳化を行なった。次にメラミン5gと37%ホルムアルデヒド水溶液7.5g及び水15gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。得られたマイクロカプセルの堆積平均粒子径は5.2μmであった。
【0021】
水で固形分濃度を40%(w/w)に調整した上記マイクロカプセル分散液100部と、固形分濃度30%(w/w)に分散した吸水率10%のゼオライト粉末の分散液50部との混合分散液をスプレードライヤーを用いて乾燥することにより平均粒径20μmの蓄熱性能を有する粉体が得られた。この粉体100gを厚さ0.5mmのポリエステル繊維から成る通気性のある不織布袋の中に充填して温熱治療用保温材を得た。この保温材を高周波出力500Wの家庭用電子レンジで2分間加熱した後、人体腰部にあて続けたところ、心地よい温熱が長時間持続した。
【0022】
実施例
尿素5gとレゾルシン0.5gを溶解し、pHを3.0に調整した5%のエチレン−無水マレイン酸共重合体のナトリウム塩水溶液100g中に融点40℃のミリスチン酸ミリスチル80gを激しく撹拌しながら添加し平均粒子径が10μmになるまで乳化を行なった。次にこの乳化液に37%ホルムアルデヒド水溶液14gと水20gを添加し60℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。得られたマイクロカプセルの体積平均粒子径は10.2μmであった。
【0023】
水で固形分濃度を40%(w/w)に調整した上記マイクロカプセル分散液100部と、固形分濃度30%に分散した吸水率50%のセピオライト(珪酸マグネシウム)粉末の分散液40部の混合分散液をスプレードライヤーで乾燥することにより平均粒径50μmの蓄熱性能を有する粉体が得られた。更にこの粉体を顆粒造粒機を用いて直径5mmの蓄熱性能を有する粉体を得た。この蓄熱性能を有する粉体300gを布製の袋に充填し、電子レンジを用いて3分間加熱を行ったところ長時間暖かさが持続するあんかが得られた。
【0024】
比較例1
実施例1においてゼオライト粉末を使用せず、マイクロカプセルを単独で乾燥させて得た粉体を同様に包材に充填して電子レンジで加熱操作を施したところ、保温材内の温度は28℃までしか上昇しなかった。このマイクロカプセル粉末の吸水率を測定したところ1.6%であった。
【0025】
比較例2
実施例1においてゼオライト粉末を使用せず、替わりに吸水率0.8%の炭酸カルシウム粉末を用いて同様に電子レンジで加熱操作を施したところ、保温材内の温度は23℃までしか上昇しなかった。
【0026】
【発明の効果】
本発明による蓄熱性能を有する粉体は、固形状の蓄熱材として使用することが可能で通常の粉体と異なり一旦加熱された後は長時間暖かさを持続させることが可能である。しかも従来の湯たんぽの様に熱湯を充填したり抜いたり必要もなく、マイクロ波を照射するだけで何回でも安全に使用可能である。さらに感触も常に柔らかさを維持するものである。本発明の粉体の充填物またはシート状に加工されたものは、肩や腰の痛みを解きほごす医療用温熱パッド、手袋、靴下、靴の中敷き及び乾燥剤、マフラー、衣服などの防寒具、家庭用、工業用及び農業用保温材、建築材料等に応用することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating method of the powder with the thermal energy storage capability to heat or warmth an object without using the energy due to electrical or fuel such as continuously, powders having a heat storage performance of the present invention A body filled with a packaging material can be used as a heating device in a cold place for the same use as conventionally known warmers, hot water bottles, fires and the like. The powder having the heat storage performance of the present invention has a heat retention effect that lasts for a long time by heating once.
[0002]
[Prior art]
As a heat insulating material that is used without using energy of electricity or fuel, particularly as a heat insulating material for warming up in the cold, there are a warmer, a fire, a hot water bottle and the like. Recently, disposable chemical warmers using the oxidation reaction of iron powder have been accepted into the large market because of their simplicity and low cost, but there is a problem that they cannot be reused or finely regulated.
[0003]
A hot water bottle is generally used as a heat storage type heating tool. A hot water bottle is a heat storage type heat insulation material that uses the sensible heat of water (hot water). However, it is not easy to boil or fill hot water, there is a risk of burns, and the heat retention is inferior to the weight. Has drawbacks. Generally, as a means for extending the duration of the heat storage type heat insulating material, it is only necessary to increase the heat capacity of the heat insulating material. 1. Increase the amount of heat storage material (hot water in the case of hot water bottles). There are methods such as using a compound having a phase change instead of water, that is, a latent heat storage material.
[0004]
However, In this method, the weight of the heat insulating material is increased, and it takes time and a great deal of energy to boil hot water as a heat storage material as well as difficulty in carrying. On the other hand, 2. In order to realize this method, a compound having a melting point of at least 30 ° C., for example, a latent heat storage material such as an inorganic eutectic salt or paraffin wax is put into a hot water bottle instead of hot water. Taking out at a temperature of 1 is complicated, and there is a lack of practicality such as a risk of ignition when heating.
[0005]
In order to solve the above-mentioned problem, the present inventor disclosed in Japanese Patent Application Laid-Open No. 8-19564 has a long suitable temperature by heating a heat insulating material filled with an aqueous dispersion of microcapsules containing a heat storage material. A heat insulating material that lasts for a long time was proposed. Furthermore, this heat insulating material is characterized in that it can be easily heated by irradiation with microwaves emitted from a microwave oven or the like. However, as a problem in use, if microwaves are continuously irradiated excessively, the moisture of the contents gradually evaporates, and there is a risk that the packaging material may be damaged due to expansion. In addition, since the water occupies almost half, the content of the latent heat storage material does not increase, or it is difficult to be portable.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to make it possible to repeatedly store and dissipate heat with a simple operation without the need for pouring hot water as was done with conventional hot water bottles, and to have a heat storage performance that extends the heat retention time for a long time. It is to obtain a body, and at the same time, to provide a safe heat insulating material that does not expand or deform even when irradiated with microwaves for a long time.
[0007]
[Means for Solving the Problems]
The above object is obtained by mixing the solid and highly absorbent pigment microcapsules encapsulating a latent heat storage material is achieved by obtaining the powder having both both within a single particle. It is possible to easily and heat storage and heating in a short time by microwave irradiation was filled with this powder to an appropriate person as packaging material. That is, the present invention is achieved by obtaining a powder in which a solid matter of a microcapsule enclosing a latent heat storage material and a water-absorbing pigment are mixed, and using the powder by irradiating and heating the microwave. . At this time, even if the microcapsule powder and the water-absorbing powder are mixed separately, the effect of the present invention can be achieved, but the heat storage is completed in a short time with the powder having both in the same particle. Moreover, since the heat storage holding time is long, this is a preferable mode.
[0008]
A microcapsule is a minute container having a diameter of about 0.1 μm to several mm, and is always liquid regardless of the phase change state of the heat storage material as long as it is dispersed in the liquid. In the present invention, a powder having the heat storage performance of the present invention is obtained through a drying step after adding a water-absorbing pigment to a microcapsule dispersion containing a heat storage material. In general, the smaller the particle size of the microcapsule, the stronger the strength, and the weaker the larger the particle size, the weaker it becomes during the drying process or subsequent handling, and it is necessary to set an appropriate particle system. The range of 0.5 to 50 μm, more preferably 1 to 20 μm is preferable. The average particle system of the microcapsule indicates a volume average particle system measured using a particle size measuring device Multisizer II type manufactured by Coulter USA.
[0009]
The water-absorbing pigment mixed with the microcapsule solids in the present invention absorbs moisture in the air relatively easily and in large quantities, and even after absorption, solid particles that can maintain a granular form without showing deliquescence And a pigment having a water absorption of 3% to 76%, preferably 5% to 40%. The water absorption rate described in the present invention is derived from the following calculation formula.
[0010]
[Expression 1]
Figure 0004237909
Here, a: the weight (g) of the pigment after heat treatment at 300 ° C. for 3 hours, b: the weight (g) of the pigment after standing for 24 hours in an atmosphere of 1 atm, 50% relative humidity and 23 ° C. Show.
[0011]
Pigments with a water absorption of 5% or less are not preferred because the water required for heat generation is low, and even when irradiated with microwaves, the temperature does not rise to a sufficient temperature. Since it becomes easy, it is not preferable.
[0012]
Examples of the water-absorbing pigment used in the present invention include inorganic salts that can form polyhydrates such as calcium chloride, magnesium chloride, and aluminum sulfate, bentonite, kaolin, fuller's earth, acid clay, activated clay, montmorillonite, attapulgite, sepiolite, Clay favorite pigments such as halloysite, pyrophyllite, sericite, vermiculite, chlorite, allophane, etc. are used, but highly water-absorbing pigments such as silica gel, activated alumina, magnesium silicate and zeolite are preferred, One or a combination of two or more are used. It may also be used as the decor water in ranges of the water absorption in the highly hygroscopic macromolecular resin particle child organic. These water-absorbing pigments serve as a heat generating material when irradiated with microwaves, and the heat is transferred to the microcapsules that are in direct or indirect contact therewith.
[0013]
The mixing ratio of the solid weight of these water-absorbing pigments and microcapsules can be set to any ratio depending on the purpose, but the heat retention is improved by increasing the weight ratio of the microcapsules, and the ratio of the water-absorbing pigment is increased. Since rapid heating is possible by the microwave, it can be freely set according to the purpose. The mixing step of the microcapsule and the water-absorbing pigment may be performed by mixing the water-absorbing pigment directly into the microcapsule dispersion, or by mixing only the water-absorbing pigment in advance and then mixing the dispersions. good. When a water-absorbing pigment is used as a dispersion, it is mechanically dispersed to a desired particle system using a suitable dispersant.
[0014]
There are a centrifugal separation method, a filter press method, a screw press method, and the like as an apparatus for dehydrating or drying into powder, and a drying apparatus such as a drum dryer, a spray dryer, or a freeze dryer is used as a drying method. A spray dryer is a preferred method because it is easy to control the particle size without destroying the microcapsules. The average particle size of the powder obtained by these dehydration and drying apparatuses is set in the range of 5 to 300 μm, preferably 10 to 100 μm.
[0015]
These powders can be easily filled into the packaging material by increasing the average particle size through a granulation step, and the durability of the heat retaining effect is further improved. The granulation method differs depending on whether the sample is a powder or a wet product, but the top plate granulation method, wet extrusion granulation method, semi-dry extrusion granulation method, roll compression granulation method, tableting granulation Various granulation methods such as the method are used, but it is necessary to select an apparatus and conditions that do not damage the microcapsules. The shape of the powder may be any shape such as a sphere, an ellipse, a cube, a rectangular parallelepiped, a cylinder, a cone, a bowl, a regular polyhedron, a star, and a cylinder. The size is molded into a granular form having a maximum diameter of 0.1 to 50 mm.
[0016]
The latent heat storage material that can be used in the present invention is a compound having a melting point in a temperature range in which a comfortable heat can be felt when in contact with the human body, although any inorganic or organic material can be used as long as it is a compound with phase change. Is preferred. The melting point is preferably 30 ° C. or higher. Specifically, inorganic compounds containing a large amount of water of crystallization, such as magnesium chloride hexahydrate, sodium acetate trihydrate, magnesium nitrate dihydrate, and the like. Examples include aliphatic hydrocarbons, aromatic hydrocarbons, higher fatty acids such as stearic acid, myristic acid and lauric acid, higher alcohols such as cetyl alcohol and stearyl alcohol, and organic compounds such as phenyl benzoate and dicyclohexyl phthalate. Although it is used individually or in mixture of 2 or more types, it is not limited to these.
[0017]
The method of microencapsulation of the latent heat storage material varies depending on the properties of the latent heat storage material used, but typical methods and film materials include gelatin coating by coacervation, melamine resin by in situ method, urea formalin coating, interface Known methods and film materials such as polyurethane, nylon or polyurea resin film by polymerization method, resin film by in-liquid drying method and the like can be mentioned. In general, since the coating temperature of the microcapsule that encloses the heat storage material is required to be heat-resistant because the temperature may locally become considerably high due to microwave irradiation, an in-situ method that provides a highly heat-resistant coating can be obtained. Melamine-formalin resin microcapsules and urea-formalin resin microcapsules by the chew method are particularly preferred. In the inside or outside of these microcapsules, a supercooling prevention material, a specific gravity adjusting material, a deterioration preventing agent, a flame retardant, a colorant, a fragrance, a photocatalytic functional material, an adhesive, a dispersion aid, and the like can be added.
[0018]
Powder of the present invention is immobilized by Rukoto to be Hama charging the packaging material in line with the purpose. Specific examples of the packaging material include synthetic or natural materials such as polyethylene, polypropylene, polyester, polyurethane, polyurea, nylon, and natural rubber, in addition to natural fibers such as cotton, wool, and silk. The shape and size of the packaging material are not particularly limited, and are processed into a form suitable for the intended use. The surface of the packaging material gradually becomes hot due to the microwave irradiation, so that it touches the human body by covering the outside of the packaging material with a material that can cut off the heat to some extent and keep it warm, for example, a cloth bag with an appropriate thickness. In some cases, the feeling of use is improved and the duration of heat generation can be adjusted .
[0019]
Microwaves are usually called high-frequency waves, and when a liquid having polarity is irradiated, the molecular motion becomes active and heating is possible. The most common microwave irradiation device is a microwave oven, and a high frequency emitted from a magnetron is generally used. The method for heating the powder according to the present invention is not limited to microwave irradiation, but heat can be stored in the same manner by heating until the heat storage material melts in hot water having a temperature equal to or higher than the melting point of the latent heat storage material. A microwave heating method is preferable in that the powder can be rapidly heated to a high temperature.
[0020]
【Example】
Reference example 1
80 g of paraffin wax having a melting point of 50 ° C. as a latent heat storage material was added to 100 g of an aqueous sodium salt solution of 5% styrene-maleic anhydride copolymer adjusted to pH 4.5 with vigorous stirring. The emulsion was emulsified until it reached 5.0 μm. Next, 5 g of melamine, 7.5 g of 37% formaldehyde aqueous solution and 15 g of water were mixed, adjusted to pH 8, and a melamine-formalin initial condensate aqueous solution was prepared at about 80 ° C. The whole amount was added to the above emulsion and the mixture was heated and stirred at 70 ° C. for 2 hours to carry out an encapsulation reaction. Then, the pH of this dispersion was adjusted to 9 to complete the encapsulation. The average particle diameter of the obtained microcapsules was 5.2 μm.
[0021]
100 parts of the above microcapsule dispersion adjusted to a solid content concentration of 40% (w / w) with water, and 50 parts of a zeolite powder dispersion having a water absorption of 10% and a solid content concentration of 30% (w / w). The mixed dispersion liquid was dried using a spray dryer to obtain a powder having a heat storage performance with an average particle size of 20 μm. 100 g of this powder was filled into a breathable nonwoven fabric bag made of polyester fiber having a thickness of 0.5 mm to obtain a heat treatment thermal treatment material. After heating this heat insulating material for 2 minutes in a microwave oven for home use with a high frequency output of 500 W, when it was continuously applied to the waist of the human body, a pleasant heat was sustained for a long time.
[0022]
Example 1
While vigorously stirring 80 g of myristyl myristate having a melting point of 40 ° C. in 100 g of an aqueous sodium salt solution of 5% ethylene-maleic anhydride copolymer in which 5 g of urea and 0.5 g of resorcin were dissolved and the pH was adjusted to 3.0. The emulsion was added until the average particle size was 10 μm. Next, 14 g of 37% formaldehyde aqueous solution and 20 g of water were added to this emulsion, and the mixture was heated and stirred at 60 ° C. for 2 hours to carry out an encapsulation reaction. Then, the pH of this dispersion was adjusted to 9 to complete the encapsulation. did. The volume average particle diameter of the obtained microcapsules was 10.2 μm.
[0023]
100 parts of the above microcapsule dispersion adjusted to a solid content concentration of 40% (w / w) with water, and 40 parts of a dispersion of sepiolite (magnesium silicate) powder having a water absorption of 50% dispersed in a solid content concentration of 30%. The mixed dispersion was dried with a spray dryer to obtain a powder having a heat storage performance with an average particle size of 50 μm. Further, this powder was used to obtain a powder having a heat storage performance of 5 mm in diameter using a granulator. When 300 g of the powder having this heat storage performance was filled in a cloth bag and heated for 3 minutes using a microwave oven, the result was that the warmth lasted for a long time.
[0024]
Comparative Example 1
In Example 1, the zeolite powder was not used, and the powder obtained by drying the microcapsules alone was filled in the packaging material and heated in the microwave oven. The temperature in the heat insulating material was 28 ° C. It rose only up to. The water absorption of the microcapsule powder was measured and found to be 1.6%.
[0025]
Comparative Example 2
In Example 1, the zeolite powder was not used, but instead a calcium carbonate powder having a water absorption rate of 0.8% was similarly heated in a microwave oven. As a result, the temperature in the heat insulating material increased only to 23 ° C. There wasn't.
[0026]
【The invention's effect】
The powder having heat storage performance according to the present invention can be used as a solid heat storage material, and unlike normal powder, once heated, it can maintain warmth for a long time. Moreover, there is no need to fill or unplug hot water like a conventional hot water bottle, and it can be used safely any number of times by simply irradiating it with microwaves. Furthermore, the touch always maintains softness. The powder filling or sheet processed according to the present invention is used for medical thermal pads, gloves, socks, insoles and desiccants, mufflers, clothes, etc. It can be applied to tools, household, industrial and agricultural heat insulating materials, building materials, and the like.

Claims (6)

相対湿度50%の雰囲気下での吸水率が3%〜60%の吸水性顔料と、潜熱蓄熱材を内包するマイクロカプセルとを同一の粒子内に併せ持つ固形物からなる粉体が最大径が0.1〜50mmに造粒され、包材に充填されてなる蓄熱性能を有する粉体をマイクロ波照射により加熱及び蓄熱する方法。 The maximum diameter of a powder composed of a solid material having a water absorption ratio of 3% to 60% in an atmosphere of 50% relative humidity and a microcapsule containing a latent heat storage material in the same particle is 0. A method of heating and storing heat by microwave irradiation of powder having heat storage performance that is granulated to 1 to 50 mm and filled in a packaging material. 吸水性顔料と、潜熱蓄熱材を内包するマイクロカプセルの分散液の混合物を乾燥して得られる請求項1記載の蓄熱性能を有する粉体を加熱及び蓄熱する方法2. The method for heating and storing heat storage- powdered powder according to claim 1 obtained by drying a mixture of a water-absorbing pigment and a dispersion of microcapsules containing a latent heat storage material. 吸水性顔料がシリカゲル、珪酸マグネシウム、活性アルミナ、ゼオライトの少なくとも1種を含む請求項1記載の蓄熱性能を有する粉体を加熱及び蓄熱する方法The method for heating and storing heat storage powder according to claim 1, wherein the water-absorbing pigment contains at least one of silica gel, magnesium silicate, activated alumina, and zeolite. 蓄熱材をマイクロカプセル化する手段がインサイチュー法であり、マイクロカプセルの平均粒径が0.5〜50μmである請求項1記載の蓄熱性能を有する粉体を加熱及び蓄熱する方法The method for heating and storing heat-resistant powder according to claim 1, wherein the means for encapsulating the heat storage material is an in situ method, and the average particle size of the microcapsules is 0.5 to 50 µm. 粉体化せしめる方法がスプレードライング法である請求項1記載の蓄熱性能を有する粉体を加熱及び蓄熱する方法2. A method for heating and storing a powder having heat storage performance according to claim 1, wherein the powdering method is a spray drying method . 包材が、不織布製または布製である請求項1記載の蓄熱性能を有する粉体を加熱及び蓄熱する方法 The method for heating and storing a powder having heat storage performance according to claim 1, wherein the packaging material is made of non-woven fabric or cloth .
JP2000054743A 2000-02-02 2000-02-29 Method for heating and storing powder having heat storage performance Expired - Fee Related JP4237909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054743A JP4237909B2 (en) 2000-02-02 2000-02-29 Method for heating and storing powder having heat storage performance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-25068 2000-02-02
JP2000025068 2000-02-02
JP2000054743A JP4237909B2 (en) 2000-02-02 2000-02-29 Method for heating and storing powder having heat storage performance

Publications (2)

Publication Number Publication Date
JP2001288458A JP2001288458A (en) 2001-10-16
JP4237909B2 true JP4237909B2 (en) 2009-03-11

Family

ID=26584705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054743A Expired - Fee Related JP4237909B2 (en) 2000-02-02 2000-02-29 Method for heating and storing powder having heat storage performance

Country Status (1)

Country Link
JP (1) JP4237909B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167675B2 (en) 2006-06-26 2012-05-01 Sumitomo Metal Mining Co., Ltd Dispersion-type electroluminescent element and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167675B2 (en) 2006-06-26 2012-05-01 Sumitomo Metal Mining Co., Ltd Dispersion-type electroluminescent element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2001288458A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
US20060154006A1 (en) Exothermic composition and exothermic element
US8261734B2 (en) Heat generating body, heat insulating method using the same and packaging material for die molding heat generation
US20090000610A1 (en) Microheater and Process For Producing the Same
US20080251062A1 (en) Heat Cloth and Process for Producing the Same
US20080206549A1 (en) Heat Generating Body
US20070267595A1 (en) Heat Generating Composition, Heat Generating Body, and Process for Producing Heat Generating Body
WO2001078797A1 (en) Multi-functional therapeutic compress and methods of using the same
CN1321074A (en) Gelling cold pack
CA2573285A1 (en) Heating element
EP1782771A1 (en) Active iron powder and exothermal article
CA2573276A1 (en) Heat generating body and process for producing heat generating body
PT1751249T (en) Self-steaming compositions, articles comprising such compositions and methods of preparing such compositions
CA2573279A1 (en) Heat generating body and process for producing the same
US20080283036A1 (en) Process for Producing Heat Generating Mixture, Heat Generating Mixture, Heat Generating Composition, and Heat Generating Body
AU737888B2 (en) A thermal pack having a plurality of individual heat cells
JP4237909B2 (en) Method for heating and storing powder having heat storage performance
US20080283037A1 (en) Active Iron Powder, Heat Generating Composition, and Heat Generating Body
JP4173620B2 (en) Granulated product and heating method thereof
JP2002045385A (en) Moisture retention material and its use
JP2005179458A (en) Heat insulating material and its use method
JP2006097000A (en) Heat storage material-microencapsulated solid material
JP2007137991A (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid material
JP2005058496A (en) Heat insulator
KR20040041255A (en) The preparation method of foam matrix contains phase change material, fragrance, deodorant and antibacterial microcapsules
JP2004256578A (en) Gel-like thermal storage medium and filling material thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees