JP2005179458A - Heat insulating material and its use method - Google Patents

Heat insulating material and its use method Download PDF

Info

Publication number
JP2005179458A
JP2005179458A JP2003420550A JP2003420550A JP2005179458A JP 2005179458 A JP2005179458 A JP 2005179458A JP 2003420550 A JP2003420550 A JP 2003420550A JP 2003420550 A JP2003420550 A JP 2003420550A JP 2005179458 A JP2005179458 A JP 2005179458A
Authority
JP
Japan
Prior art keywords
heat
microcapsule
insulating material
heat insulating
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003420550A
Other languages
Japanese (ja)
Inventor
Yuichiro Konishi
雄一朗 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2003420550A priority Critical patent/JP2005179458A/en
Publication of JP2005179458A publication Critical patent/JP2005179458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a heat insulating material that has thermal storage performance in heat insulation time for many hours, is simultaneously safe even in excessive heating, is less liable to separate a solid matter of microcapsule from pigment to be heated by microwave irradiation. <P>SOLUTION: The heat insulating material comprises the solid matter of microcapsule enclosing a heat storage material and a pigment particle to generate heat by microwave irradiation at a ratio of particle diameter of the solid matter to the pigment particle of 0.2-5. The heat insulating material is safe by excessive heating and is less liable to separate water-absorbing pigment from the solid matter of microcapsule. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気又は燃料等によるエネルギーを連続的に用いることなく対象物を加熱及び保温することが可能な保温材に関するものである。本発明の保温材は電子レンジを用いてマイクロ波を照射して一旦加熱すると長時間保温効果が持続する保温材とその製造方法に関するものである。   The present invention relates to a heat insulating material that can heat and heat an object without continuously using energy from electricity or fuel. The heat-retaining material of the present invention relates to a heat-retaining material that retains a heat-retaining effect for a long time once it is heated by being irradiated with microwaves using a microwave oven and a method for producing the same.

電気や燃料のエネルギーを使用しないで用いられる保温材、特に寒冷時に暖を取るための保温材として、カイロ、行火、湯たんぽ等が挙げられる。カイロは最近では鉄粉の酸化反応を利用した使い捨て化学カイロがその簡便さと安価さが受け入れられ大きな市場へと成長を遂げているが再利用や細かな温度調節が出来ないという問題がある。   As a heat insulating material that is used without using energy of electricity or fuel, particularly as a heat insulating material for warming up in the cold, there are a warmer, a fire, a hot water bottle and the like. Recently, disposable chemical warmers using the oxidation reaction of iron powder have been accepted into the large market because of their simplicity and low cost, but there is a problem that they cannot be reused or finely regulated.

また蓄熱型の暖房用具として湯たんぽが一般に用いられている。湯たんぽは水(熱湯)の顕熱を利用した蓄熱タイプの保温材であるが、お湯を沸かしたり充填したりする煩雑さや火傷の危険性、そして重さの割には温度保持性が劣る等の欠点を有する。一般に、蓄熱型の保温材の持続時間を長くする手段としては保温材の熱容量を高めてやればよく、そのためには、1.蓄熱材(湯たんぽの場合は熱湯)の量を増す、2.水の代わりに相変化を有する化合物すなわち潜熱蓄熱材を用いる等の方法がある。   A hot water bottle is generally used as a heat storage type heating tool. A hot water bottle is a heat storage type heat insulation material that uses the sensible heat of water (hot water). However, it is not easy to boil or fill hot water, there is a risk of burns, and the heat retention is inferior to the weight. Has drawbacks. Generally, as a means for extending the duration of the heat storage type heat insulating material, it is only necessary to increase the heat capacity of the heat insulating material. 1. Increase the amount of heat storage material (hot water in the case of hot water bottles). There are methods such as using a compound having a phase change instead of water, that is, a latent heat storage material.

しかしながら1.の方法では保温材の重量が増し、持運びに苦労するばかりでなく蓄熱材である熱湯を沸かすにも時間と多大なエネルギーを必要とする。一方、2.の方法を実現しようとすると少なくとも40℃以上の融点を有する化合物、例えば、無機共晶塩やパラフィンワックスの如き潜熱蓄熱材をお湯の代わりに湯たんぽの中に投入することになり、その結果凝固点以下の温度での取出しが煩雑であったり、加熱する際にも引火の危険性を伴う等実用性に欠けるものであった。   However, In this method, the weight of the heat insulating material is increased, and it takes time and a great deal of energy to boil hot water as a heat storage material as well as difficulty in carrying. On the other hand, 2. In order to realize this method, a compound having a melting point of at least 40 ° C., for example, a latent heat storage material such as an inorganic eutectic salt or paraffin wax, is put into a hot water bottle instead of hot water. Taking out at a temperature of 1 is complicated, and there is a lack of practicality such as a risk of ignition when heating.

前記課題を解決するために、蓄熱材を内包するマイクロカプセルの水性分散液を包材中に充填した保温材を加熱することにより適温が長時間持続する保温材が提案されている(例えば、特許文献1参照)。更にこの保温材は電子レンジ等より発せられるマイクロ波を照射することにより容易に加熱できることが特徴である。しかしながら使用上の問題点として過度にマイクロ波を照射し続けると内容物の水分が次第に蒸発し、膨張して包材が破損する危険性を孕んでいた。   In order to solve the above-described problem, a heat insulating material has been proposed in which an appropriate temperature is maintained for a long time by heating a heat insulating material filled with an aqueous dispersion of microcapsules encapsulating a heat storage material (for example, a patent) Reference 1). Furthermore, this heat insulating material is characterized in that it can be easily heated by irradiation with microwaves emitted from a microwave oven or the like. However, as a problem in use, if microwaves are continuously irradiated excessively, the moisture of the contents gradually evaporates, and there is a risk that the packaging material may be damaged due to expansion.

前記課題を解決するために潜熱蓄熱材を内包するマイクロカプセルの固形物とマイクロ波の照射により発熱しうる顔料を包材内に充填することが提案されている(例えば、特許文献2参照)。これにマイクロ波を照射することにより簡単かつ短時間に蓄熱が可能となる。すなわち、1.潜熱蓄熱材を内包するマイクロカプセル固形物と顔料を、好ましくは通気性のある包材中に充填して得られる保温材を用いることと、2.その保温材にマイクロ波を照射し加熱して使用することにより課題は達成される。   In order to solve the above-described problem, it has been proposed to fill a packaging material with a solid matter of a microcapsule that encloses a latent heat storage material and a pigment that can generate heat when irradiated with microwaves (for example, see Patent Document 2). By irradiating it with microwaves, heat can be stored easily and in a short time. That is: 1. Use of a heat insulating material obtained by filling a microcapsule solid and a pigment encapsulating a latent heat storage material, preferably in a breathable packaging material; The object is achieved by irradiating the heat insulating material with microwaves and heating it.

前記発明は、潜熱蓄熱材を内包するマイクロカプセル固形物とマイクロ波の照射により発熱しうる顔料を混合することにより達成され、単一の粒子内に両者を併せ持つ粉体を得ることにより達成される。この粉体を単独または適当な包材に充填してマイクロ波を照射することにより簡単かつ短時間に加熱と蓄熱が可能となる。この時マイクロカプセル固形物と吸水性の顔料を別々に混合しても前記発明の効果は達成される。   The invention is achieved by mixing a microcapsule solid substance containing a latent heat storage material and a pigment capable of generating heat by microwave irradiation, and obtaining a powder having both in a single particle. . By heating this powder alone or in a suitable packaging material and irradiating with microwaves, heating and heat storage can be performed easily and in a short time. At this time, the effects of the invention can be achieved even if the microcapsule solid and the water-absorbing pigment are mixed separately.

しかし、単一粒子内に両者を併せ持つと過度の過熱によりマイクロカプセルにダメージが与えられ、場合によっては発火する危険性がある。一方、マイクロ波の照射により発熱しうる顔料とマイクロカプセル固形物を別の造粒物として分離した場合には比重の差が大きいために使用過程で分離が起こり、十分な効果が得られない。
特開平8−19564号公報 特開平2001−288458号公報
However, if both are contained in a single particle, the microcapsule is damaged by excessive overheating, and there is a risk of ignition in some cases. On the other hand, when the pigment that can generate heat by the microwave irradiation and the microcapsule solid are separated as separate granulated materials, the difference in specific gravity is large, so that separation occurs in the course of use, and a sufficient effect cannot be obtained.
JP-A-8-19564 Japanese Patent Laid-Open No. 2001-288458

本発明では保温時間が長時間に及ぶ蓄熱性能を有する保温材を得ることにあり、同時に過度の加熱を与えても安全で、かつマイクロカプセル固形物とマイクロ波の照射により発熱しうる顔料との分離が起こりにくい保温材を提供することを目的とする。   In the present invention, there is provided a heat insulating material having a heat storage performance for a long time, and at the same time, it is safe even when excessive heating is applied, and a microcapsule solid and a pigment that can generate heat by microwave irradiation. An object is to provide a heat insulating material that hardly causes separation.

上記課題を解決すべく検討を行った結果、蓄熱材を内包したマイクロカプセル造粒物とマイクロ波の照射により発熱しうる顔料粒子との粒径の比が0.2から5であることにより過度の加熱を与えても安全で、かつ吸水性顔料とマイクロカプセル固形物との分離が起こりにくい保温材を得た。   As a result of investigations to solve the above problems, the ratio of the particle size of the microcapsule granulated material encapsulating the heat storage material to the pigment particles that can generate heat by microwave irradiation is 0.2 to 5 and is excessive. Thus, a heat insulating material that is safe even if the above heating is applied and that hardly separates the water-absorbing pigment and the microcapsule solid matter was obtained.

本発明による保温材は、固形状の蓄熱材として使用することが可能で通常の保温材と異なり一旦加熱された後は長時間暖かさを持続させることが可能である。しかも過度の加熱を与えても安全で、かつマイクロカプセル固形物とマイクロ波の照射により発熱しうる顔料との分離が起こりにくい。   The heat insulating material according to the present invention can be used as a solid heat storage material and, unlike a normal heat insulating material, can be kept warm for a long time after being heated once. Moreover, it is safe even if excessive heating is applied, and separation of the microcapsule solid and the pigment that can generate heat by microwave irradiation is difficult to occur.

本発明のマイクロカプセルの製法として物理的方法と化学的方法が知られているが、特に潜熱蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(特開昭62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(特開昭62−149334公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(特開昭62−225241公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052公報)等に記載されている方法が用いられる。   As a method for producing the microcapsules of the present invention, a physical method and a chemical method are known. In particular, as a method for microencapsulating a latent heat storage material, an encapsulation method by a composite emulsion method (Japanese Patent Laid-Open No. Sho 62-1452). Gazette), a method of spraying a thermoplastic resin on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62-45680), and a method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62-149334). Publication), a method of polymerizing and coating a monomer on the surface of heat storage material particles (Japanese Patent Laid-Open No. 62-225241), a method of producing a polyamide-coated microcapsule by interfacial polycondensation reaction (Japanese Patent Laid-Open No. 2-258052), and the like Method is used.

マイクロカプセルの膜材としては、界面重合法、インサイチュー(in-situ)法等の手法で得られるポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またはゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、物理的、化学的に安定なインサイチュー法によるメラミンホルマリン樹脂皮膜、尿素ホルマリン樹脂皮膜を用いたマイクロカプセルを使用することが特に好ましい。   As the membrane material of the microcapsule, polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethyl cellulose, polyurethane, aminoplast resin, or gelatin and carboxymethyl cellulose obtained by a technique such as an interfacial polymerization method, an in-situ method, or the like Synthetic or natural resin using coacervation method with gum arabic is used, but microcapsules using melamine formalin resin film and urea formalin resin film by physically and chemically stable in situ method are used. It is particularly preferred.

マイクロカプセルに内包される蓄熱材の融点は、約20〜80℃の範囲に設定されることが好ましく、具体的な蓄熱材としては、C16〜C40の範囲のワックス類や、無機系共晶物および無機系水和物、パルミチン酸やステアリン等の脂肪酸類、ベヘン酸ベヘニル、ステアリン酸ステアリル等のエステル化合物が挙げられ、好ましくは融解熱量が約80kJ/kg以上の化合物で、化学的、物理的に安定でしかも安価なものが用いられる。これらは混合して用いても良いし、必要に応じ過冷却防止剤、比重調節剤、劣化防止剤等を添加することが出来る。   The melting point of the heat storage material included in the microcapsule is preferably set in the range of about 20 to 80 ° C., and specific heat storage materials include waxes in the range of C16 to C40 and inorganic eutectics. And inorganic hydrates, fatty acids such as palmitic acid and stearin, and ester compounds such as behenyl behenate and stearyl stearate, preferably a compound having a heat of fusion of about 80 kJ / kg or more, chemically and physically Are stable and inexpensive. These may be used as a mixture, and a supercooling inhibitor, a specific gravity adjuster, a deterioration inhibitor and the like may be added as necessary.

一般にマイクロカプセルの粒径は小さいほど強度的に強く、逆に大きいほど弱く乾燥工程またはそれ以降の取り扱い時に壊れやすくなるために適度の粒子径に設定される必要があり、最適な粒子径としては0.5〜50μm、更に好ましくは1〜20μmの範囲が好ましい。尚、マイクロカプセルの平均粒子系とは、米国コールター社製粒度測定装置マルチサイザーII型を用いて測定した体積平均粒子系を示す。   In general, the smaller the particle size of the microcapsule, the stronger the strength, and the weaker the larger the particle size, the weaker it is during the drying process or subsequent handling, and it is necessary to set an appropriate particle size. The range of 0.5 to 50 μm, more preferably 1 to 20 μm is preferable. The average particle system of the microcapsule indicates a volume average particle system measured using a particle size measuring device Multisizer II type manufactured by Coulter USA.

本発明のマイクロカプセルは通常水分散液として得られるため、固形物とするために脱水、乾燥、造粒操作が必要である。脱水または乾燥させて粉体化する装置としては、遠心分離法、フィルタープレス法、スクリュープレス法、等があり、乾燥手法としては、ドラムドライヤー、スプレードライヤー、フリーズドライヤーなどの乾燥装置が用いられるが、スプレードライヤーがマイクロカプセルの破壊もなく粒子径のコントロールも容易であるため好ましい手法である。これらの脱水、乾燥装置で得られる粉体の平均粒子径は、5〜300μm、好ましくは10〜100μmの範囲に設定される。   Since the microcapsules of the present invention are usually obtained as an aqueous dispersion, dehydration, drying and granulation operations are required to obtain a solid. There are a centrifugal separation method, a filter press method, a screw press method, and the like as an apparatus for dehydrating or drying into powder, and a drying apparatus such as a drum dryer, a spray dryer, or a freeze dryer is used as a drying method. A spray dryer is a preferred method because it is easy to control the particle size without destroying the microcapsules. The average particle diameter of the powder obtained by these dehydration and drying apparatuses is set in the range of 5 to 300 μm, preferably 10 to 100 μm.

これらの粉体は、更に造粒工程を経て平均粒径を大きくすることにより包材に充填しやすくなり、更に保温効果の持続性も向上する。造粒方法としては、試料が粉体の場合と湿潤品の場合で異なるが、天板造粒法、湿式押し出し造粒法、半乾式押し出し造粒法、ロール圧縮造粒法、打錠造粒法等の各種造粒方法が用いられるがマイクロカプセルの損傷のない装置、条件を選ぶ必要がある。造粒する際に、結着剤、離型剤、酸化防止剤、VOC吸着剤、活性炭、光触媒、各種有機無機顔料、不燃材、難燃剤を練り込みまたは共存させることができる。   These powders can be easily filled into the packaging material by increasing the average particle size through a granulation step, and the durability of the heat retaining effect is further improved. The granulation method differs depending on whether the sample is a powder or a wet product, but the top plate granulation method, wet extrusion granulation method, semi-dry extrusion granulation method, roll compression granulation method, tableting granulation Various granulation methods such as the method are used, but it is necessary to select an apparatus and conditions that do not damage the microcapsules. When granulating, a binder, a release agent, an antioxidant, a VOC adsorbent, activated carbon, a photocatalyst, various organic inorganic pigments, a non-combustible material, and a flame retardant can be kneaded or coexisted.

本発明で用いられる顔料粒子はマイクロ波を照射することにより発熱しうる材料が用いられ、分子構造が極性を有するものであれば使用可能で無機系、有機系何れの材料でも使用可能である。有機系材料としては、ポリアミド樹脂、エポキシ樹脂、メラミン樹脂、ポリエステル樹脂、アクリル樹脂、及びこれらの素材に吸水させたものが使用可能であり、比較的熱軟化点が高いものをビーズ状またはペレット状に加工した形態のものが使用される。無機系の材料としては可燃性や爆発性を有さない天然物由来の鉱物系材料が使用可能であるが、水分子が配位した吸水性顔料が好ましい材料として挙げられる。吸水性顔料とは空気中の水分を比較的容易かつ多量に吸収し、吸収した後でも潮解性を示さずに粒状の形態を維持し得る固形粒子である。吸水率が低く、尚かつ分子構造に極性が乏しいものであればマイクロ波を照射しても充分な温度まで上昇しないため好ましくなく、また高すぎる材料になるとべたつきが生じ混合物が固まりやすくなるため好ましくない。   The pigment particles used in the present invention are made of a material that can generate heat when irradiated with microwaves, and can be used as long as the molecular structure has polarity, and any inorganic or organic material can be used. As organic materials, polyamide resin, epoxy resin, melamine resin, polyester resin, acrylic resin, and those obtained by absorbing water in these materials can be used, and those having a relatively high heat softening point are in the form of beads or pellets. The processed form is used. As the inorganic material, mineral materials derived from natural products that are not flammable or explosive can be used, and water-absorbing pigments coordinated with water molecules are preferred materials. The water-absorbing pigment is a solid particle that absorbs moisture in the air relatively easily and in a large amount and can maintain a granular form without exhibiting deliquescence even after absorption. If the water absorption is low and the molecular structure is poor in polarity, it is not preferable because it does not rise to a sufficient temperature even if it is irradiated with microwaves, and if it is too high, it becomes sticky and the mixture tends to harden. Absent.

本発明で用いられる顔料としては、無機塩類や粘土鉱物顔料、天然鉱物などが用いられるが、好ましくはシリカゲル、活性アルミナ、珪酸マグネシウム、ゼオライト等の高吸水性の顔料が好ましく、これらは単一または2種以上を組み合わせて用いられる。   As the pigment used in the present invention, inorganic salts, clay mineral pigments, natural minerals and the like are used. Preferably, highly water-absorbing pigments such as silica gel, activated alumina, magnesium silicate and zeolite are used, and these are single or Two or more types are used in combination.

本発明で述べる顔料粒子およびマイクロカプセル固形物の粒径とは、工業用ノギスにより測定される粒子の最大径と最小径の算術平均である。   The particle diameters of the pigment particles and the microcapsule solids described in the present invention are arithmetic averages of the maximum diameter and the minimum diameter of the particles measured by an industrial caliper.

マイクロカプセル固形物と顔料粒子の粒径の比は0.2から5が好ましく、より好ましくは0.5から2である。これより大きくても小さくても長期間使用するとマイクロカプセル固形物と顔料粒子との分離が起こり、顔料粒子によって発生した熱がマイクロカプセル固形物に蓄熱されず効果が得られなくなる。   The particle size ratio between the microcapsule solid and the pigment particles is preferably from 0.2 to 5, more preferably from 0.5 to 2. When used for a long period of time, whether larger or smaller than this, the microcapsule solids and the pigment particles are separated from each other, and the heat generated by the pigment particles is not stored in the microcapsule solids and the effect cannot be obtained.

前記顔料粒子及びマイクロカプセル固形物の形状は、球状、楕円形、立方体、直方体、円柱状、円錐状、桿状、正多面体、星形、筒型等如何なる形状でも良いが流動性を出すために球状に近い形が望ましい。大きさは粒径が0.1〜20mmの粒状に成型されることが好ましい。0.1mmよりも小さいと粉舞いするために扱いが困難になり、20mmよりも大きいと触れた際の感触が悪くなる。   The shape of the pigment particles and the solid microcapsules may be any shape such as a sphere, an ellipse, a cube, a rectangular parallelepiped, a cylinder, a cone, a bowl, a regular polyhedron, a star, a cylinder, etc. A shape close to is desirable. The size is preferably molded into a granular form having a particle size of 0.1 to 20 mm. If it is smaller than 0.1 mm, it becomes difficult to handle because it powders, and if it is larger than 20 mm, the touch when touched becomes worse.

マイクロ波の照射により加熱可能な顔料粒子と蓄熱材を内包したマイクロカプセル固形物を充填する包材の種類や大きさ、形状は特に限定はされないが、マイクロ波をよく通過させ得るもので且つ繰り返し照射にも耐え得るような丈夫なものでなければならない。また感触を良くするためにある程度の柔軟性をも兼ね備える必要がある。包材の具体例としては、木綿、羊毛、絹等の天然繊維の他に、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン、天然ゴム等の合成又は天然の素材が使用できる。包材の形状や大きさは特に限定されず、使用目的に適した形態に加工される。マイクロ波の照射により次第に包材の表面が高温になるため、熱をある程度断熱、保温できるような素材、例えば布製の袋等でこの包材の外側を覆うことにより使用感も良くなるし発熱持続時間の調節も可能となる。マイクロカプセル固形物と吸水性顔料の重量比率は如何なる割合でも本発明の効果は充分発揮されるので特に限定はされない。   There are no particular limitations on the type, size, and shape of the packing material that fills the solid microcapsules containing the pigment particles that can be heated by microwave irradiation and the heat storage material, but it can pass through the microwave well and repeatedly. It must be strong enough to withstand irradiation. In order to improve the feel, it is necessary to have some flexibility. Specific examples of the packaging material include synthetic or natural materials such as polyethylene, polypropylene, polyester, nylon, and natural rubber, in addition to natural fibers such as cotton, wool, and silk. The shape and size of the packaging material are not particularly limited, and are processed into a form suitable for the intended use. Since the surface of the packaging material gradually becomes hot due to microwave irradiation, covering the outside of the packaging material with a material that can insulate and retain heat to some extent, such as a cloth bag, improves the feeling of use and sustains heat generation. Time adjustment is also possible. The weight ratio between the microcapsule solid and the water-absorbing pigment is not particularly limited because the effect of the present invention is sufficiently exerted at any ratio.

マイクロ波は通常高周波とも呼ばれ、極性を有する液体に照射するとその分子運動が盛んになることにより加熱が可能となる。最も一般的な照射装置は電子レンジでありマグネトロンから発射される高周波が一般に利用されている。本発明による保温材の加熱方法はマイクロ波照射に限定される訳ではなく、潜熱蓄熱材の融点以上の温度の熱湯中で蓄熱材が融解するまで加熱することによっても同様に蓄熱可能であるが、保温材を迅速に高温に加熱できる点でマイクロ波による加熱方法が好ましい。   Microwaves are usually called high-frequency waves, and when a liquid having polarity is irradiated, the molecular motion becomes active and heating is possible. The most common irradiation device is a microwave oven, and a high frequency emitted from a magnetron is generally used. The heating method of the heat-retaining material according to the present invention is not limited to microwave irradiation, but heat can be similarly stored by heating until the heat-storing material is melted in hot water having a temperature equal to or higher than the melting point of the latent heat-storing material. A heating method using a microwave is preferable because the heat insulating material can be rapidly heated to a high temperature.

以下、本発明の実施手順を実施例として具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、マイクロカプセルの粒径についてはコールターカウンター(英国コールターエレクトロニクス社、コールターマルチサイザー)で測定し、顔料粒子およびマイクロカプセル固形物の粒子径は工業用ノギスにより測定した。   Hereinafter, although the implementation procedure of this invention is concretely demonstrated as an Example, this invention is not limited to a following example. The particle size of the microcapsules was measured with a Coulter Counter (Coulter Electronics Co., UK, Coulter Multisizer), and the particle size of the pigment particles and the microcapsule solids was measured with an industrial caliper.

pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点50℃のパラフィンワックス80gを激しく撹拌しながら添加し、平均粒子径が3.5μmになるまで乳化を行なった。次にメラミン5部と37%ホルムアルデヒド水溶液7.5部及び水15部を混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。得られたマイクロカプセルの体積平均粒子径は3.6μmであった。   80 g of paraffin wax having a melting point of 50 ° C. as a latent heat storage material was added to 100 g of an aqueous sodium salt solution of 5% styrene-maleic anhydride copolymer adjusted to pH 4.5 with vigorous stirring. The emulsion was emulsified until 3.5 μm. Next, 5 parts of melamine, 7.5 parts of 37% formaldehyde aqueous solution and 15 parts of water were mixed, adjusted to pH 8, and a melamine-formalin initial condensate aqueous solution was prepared at about 80 ° C. The whole amount was added to the above emulsion and the mixture was heated and stirred at 70 ° C. for 2 hours to carry out an encapsulation reaction. Then, the pH of this dispersion was adjusted to 9 to complete the encapsulation. The volume average particle diameter of the obtained microcapsules was 3.6 μm.

このマイクロカプセル分散液をスプレードライヤーで水分含有率3%以下まで乾燥しマイクロカプセル粉体を得た。得られたマイクロカプセル粉体100重量部に30%ポリビニルアルコール水溶液を30重量部加え、押出式造粒装置により押出成型を行い、100℃で乾燥させて粒径が2mmのマイクロカプセル固形物を得た。   This microcapsule dispersion was dried with a spray dryer to a moisture content of 3% or less to obtain a microcapsule powder. 30 parts by weight of 30% polyvinyl alcohol aqueous solution was added to 100 parts by weight of the obtained microcapsule powder, extruded by an extrusion granulator, and dried at 100 ° C. to obtain a microcapsule solid having a particle size of 2 mm. It was.

粒径が2mmのシリカゲル粒子80重量部と粒径が2mmマイクロカプセル固形物20重量部とを混合し、布製の袋に500gを充填した。電子レンジを用いて2分間加熱を行ったところ長時間暖かさが持続するあんかが得られ、長期間利用してもシリカゲル粒子とマイクロカプセル固形物は包材内で分離することなくその性能を維持した。   80 parts by weight of silica gel particles having a particle diameter of 2 mm and 20 parts by weight of a solid capsule having a particle diameter of 2 mm were mixed, and 500 g was filled in a cloth bag. When heated for 2 minutes using a microwave oven, it was found that the warmth lasted for a long time, and even when used for a long time, the silica gel particles and the microcapsule solids did not separate in the packaging material. Maintained.

(比較例1)
実施例1と同様にして得たマイクロカプセル粉体に30%ポリビニルアルコール水溶液30重量部を加え、押出式造粒装置により押出成型を行い、100℃で乾燥させて粒径が30mmのマイクロカプセル固形物を得た。
(Comparative Example 1)
30 parts by weight of 30% aqueous polyvinyl alcohol solution was added to the microcapsule powder obtained in the same manner as in Example 1, extruded by an extrusion granulator, dried at 100 ° C., and a microcapsule solid having a particle size of 30 mm. I got a thing.

粒径が30mmマイクロカプセル固形物20重量部と粒径が5mmのシリカゲル粒子80重量部を混合し、布製の袋に500gを充填した。電子レンジを用いて2分間加熱を行ったところ長時間暖かさが持続するあんかが得られたが、長期間利用するとシリカゲル粒子とマイクロカプセル固形物が包材内で分離し、保温時間が短くなった。   20 parts by weight of a solid capsule having a particle size of 30 mm and 80 parts by weight of silica gel particles having a particle size of 5 mm were mixed, and 500 g was filled in a cloth bag. When heated for 2 minutes using a microwave oven, it was found that the warmth persisted for a long time, but when used for a long time, the silica gel particles and the microcapsule solids were separated in the packaging material, and the heat retention time was short. became.

(比較例2)
実施例1と同様にして得たマイクロカプセル粉体20重量部とシリカゲル粒子80重量部および30%ポリビニルアルコール水溶液30重量部を混合し、押出し造粒機を用いて押出成型を行い、100℃で乾燥させて粒径2mmの蓄熱性能を有する固形物を得た。
(Comparative Example 2)
20 parts by weight of microcapsule powder obtained in the same manner as in Example 1, 80 parts by weight of silica gel particles, and 30 parts by weight of 30% polyvinyl alcohol aqueous solution were mixed, and extrusion molding was performed using an extrusion granulator at 100 ° C. It was dried to obtain a solid material having a heat storage performance of 2 mm in particle size.

上記蓄熱性能を有する固形物を布製の袋に500gを充填し、電子レンジを用いて3分間加熱を行ったところ固形物が焦げ、異臭が発生した。   When 500 g of the solid material having the above heat storage performance was filled in a cloth bag and heated for 3 minutes using a microwave oven, the solid material was burnt and a strange odor was generated.

本発明による保温材は湯たんぽの如き蓄熱タイプの保温材として使用することが可能で温熱の保持時間を長時間持続させることが可能である。しかも従来の様に使用するごとに熱湯を充填したり抜いたり必要もなく、マイクロ波を照射するだけで何回でも安全に使用可能である。さらに感触も常に柔らかさを維持するものである。本発明の保温材は、肩や腰の痛みを解きほごす医療用温熱パッド、手袋、靴下、靴の中敷き及び乾燥剤、マフラー、衣服などの防寒具、家庭用、工業用及び農業用保温材、建築材料等に応用することが可能である。   The heat insulating material according to the present invention can be used as a heat storage type heat insulating material such as a hot water bottle, and the heat retention time can be maintained for a long time. Moreover, it is not necessary to fill or unplug hot water each time it is used, and it can be used safely any number of times by simply irradiating it with microwaves. Furthermore, the touch always maintains softness. The thermal insulation material of the present invention is a thermal pad for medical use to relieve shoulder and lower back pain, gloves, socks, insoles of shoes and desiccant, muffler, clothes and other cold protection equipment, household, industrial and agricultural heat insulation. It can be applied to materials and building materials.

Claims (3)

蓄熱材を内包したマイクロカプセル固形物とマイクロ波の照射により発熱しうる顔料粒子が包材に充填され、該マイクロカプセル固形物と該顔料粒子との粒径の比が0.2から5であることを特徴とする保温材。 The microcapsule solid material encapsulating the heat storage material and the pigment particles capable of generating heat by microwave irradiation are filled in the packaging material, and the particle size ratio of the microcapsule solid material and the pigment particle is 0.2 to 5 A heat insulating material characterized by that. マイクロカプセル固形物の粒径が0.1から20mmであることを特徴とする請求項1に記載の保温材。 The heat insulating material according to claim 1, wherein the particle size of the microcapsule solid is 0.1 to 20 mm. 請求項1に記載の保温材をマイクロ波照射により加熱して使用する方法。 A method of heating and using the heat insulating material according to claim 1 by microwave irradiation.
JP2003420550A 2003-12-18 2003-12-18 Heat insulating material and its use method Pending JP2005179458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420550A JP2005179458A (en) 2003-12-18 2003-12-18 Heat insulating material and its use method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420550A JP2005179458A (en) 2003-12-18 2003-12-18 Heat insulating material and its use method

Publications (1)

Publication Number Publication Date
JP2005179458A true JP2005179458A (en) 2005-07-07

Family

ID=34782043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420550A Pending JP2005179458A (en) 2003-12-18 2003-12-18 Heat insulating material and its use method

Country Status (1)

Country Link
JP (1) JP2005179458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146343A (en) * 2000-08-22 2002-05-22 Mitsui Chemicals Inc Sealant resin composition, sealant film and its use
JP2011256280A (en) * 2010-06-09 2011-12-22 Shozo Endo Gelatine crosslinked gel-based cooling and heating medium, and cold and heat-retaining material
JP2012001659A (en) * 2010-06-18 2012-01-05 Shozo Endo Gelatin crosslinked gel-polyurethane based cooling/heating medium and cold/heat insulation material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146343A (en) * 2000-08-22 2002-05-22 Mitsui Chemicals Inc Sealant resin composition, sealant film and its use
JP2011256280A (en) * 2010-06-09 2011-12-22 Shozo Endo Gelatine crosslinked gel-based cooling and heating medium, and cold and heat-retaining material
JP2012001659A (en) * 2010-06-18 2012-01-05 Shozo Endo Gelatin crosslinked gel-polyurethane based cooling/heating medium and cold/heat insulation material

Similar Documents

Publication Publication Date Title
Khadiran et al. Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review
JP2006192428A (en) Solid matter of microcapsule and method for utilizing the same
CN1321074A (en) Gelling cold pack
ES2433246T3 (en) Microcapsules with polyvinyl monomers as crosslinker
CA2511483A1 (en) Heat generating composition and heat generating body
EP1463792A1 (en) Scented candles
WO2003106833A1 (en) Adsorbent of latent-heat storage type for canister and process for producing the same
JP2016176013A (en) Accumulation material microcapsule granule
JP2007119656A (en) Heat accumulation board
JP2005179458A (en) Heat insulating material and its use method
JPH07133479A (en) Heat-storing material
JP4845576B2 (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid
JP2005054064A (en) Solid heat storage material
JP2006263681A (en) Microcapsule granule and its usage
JP2005058496A (en) Heat insulator
JP2006097000A (en) Heat storage material-microencapsulated solid material
JP2006063328A (en) Microencapsulated heat-accumulating solid material
JP2007137991A (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid material
JP4173620B2 (en) Granulated product and heating method thereof
JP4237909B2 (en) Method for heating and storing powder having heat storage performance
JP2003042386A (en) Heat-insulating material, solidifying method therefor and apparatus using it
JP2006176761A (en) Microcapsule solid material including thermal storage material
JP2005068294A (en) Core/shell warm-keeping material and method for producing the same
JP2002045385A (en) Moisture retention material and its use
JP2003042387A (en) Heat-insulating material, solidifying method therefor and apparatus using it