JPH04324011A - Catalytic combustion apparatus - Google Patents

Catalytic combustion apparatus

Info

Publication number
JPH04324011A
JPH04324011A JP3091828A JP9182891A JPH04324011A JP H04324011 A JPH04324011 A JP H04324011A JP 3091828 A JP3091828 A JP 3091828A JP 9182891 A JP9182891 A JP 9182891A JP H04324011 A JPH04324011 A JP H04324011A
Authority
JP
Japan
Prior art keywords
combustion
catalyst layers
flow path
combustion catalyst
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3091828A
Other languages
Japanese (ja)
Inventor
Toshio Nishida
利雄 西田
Hiromi Sadamori
貞森 博己
Shinichi Adachi
伸一 足立
Mamoru Aoki
守 青木
Fumikazu Toda
文和 戸田
Toshio Matsuhisa
松久 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo CCI KK
Kobe Steel Ltd
Osaka Gas Co Ltd
Original Assignee
Toyo CCI KK
Kobe Steel Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo CCI KK, Kobe Steel Ltd, Osaka Gas Co Ltd filed Critical Toyo CCI KK
Priority to JP3091828A priority Critical patent/JPH04324011A/en
Publication of JPH04324011A publication Critical patent/JPH04324011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To restrain the stress concentration due to thermal strain, etc., by a method wherein combustion catalyst layers are formed into a shape having partly cut-off segment cross section horizontal to the flow path direction, and the combustion catalyst layers are piled up in such a manner that the adjacent combustion catalyst layers in the flow path direction compensate the cut-off sections each other. CONSTITUTION:A preheating combustion chamber 1, a lean fuel gas mixing chamber 2, a cylindrical catalytic combustion chamber 3 and a combustion gas exhaust part 4 are arranged in sequence along the combustion gas flow path, and combustion catalyst layers 5 consisting of honeycomb catalysts each having a large number of through- holes are arranged along two or more flow paths. The catalyst layers 5 are formed in a shape having partly cut-off segment section horizontal to the flow path direction, and arranged in staggered rows in the flow path direction so that the adjacent catalyst layers compensate the cut-off segmental parts each other and those edges overlap so as to cover the whole section. Those two or more catalyst layers 5 are piled and held from the front and back and clearances are provided between the catalyst layers 5, preventing an increase in draft resistance and generation of local thermal strain.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】燃焼機器から出る排ガス中のNO
xによる環境汚染の進行から、燃焼プロセスにおける大
幅なNOx抑制手段の開発が望まれている。そのNOx
抑制手段の一つとして流路方向に多数の貫通路を有する
ハニカム形状の燃焼触媒を用いる予混合触媒燃焼法は、
1100〜1300゜Cまでの温度で、高負荷燃焼が可
能であり、且つ、NOxの発生を極度に抑制できること
が知られている。この特徴を、ガスタービンの超低NO
x達成手段として、又、燃料電池の排燃料、空気混合気
を再燃焼する手段として利用することが、あるいは、ボ
イラ、工業用バーナ等への応用が検討されている。本発
明は、厚み方向に多数の貫通孔を有する燃焼触媒層の複
数を流路方向に並べて配した触媒燃焼装置に関し、例え
ば、上述のような低NOx用の触媒燃焼装置に関する。
[Industrial application field] NO in exhaust gas from combustion equipment
Due to the progress of environmental pollution caused by x, it is desired to develop means for significantly suppressing NOx in the combustion process. That NOx
The premixed catalytic combustion method uses a honeycomb-shaped combustion catalyst having a large number of through passages in the flow direction as one of the suppressing means.
It is known that high-load combustion is possible at temperatures of 1,100 to 1,300 degrees Celsius, and that the generation of NOx can be extremely suppressed. This feature is due to the ultra-low NO of gas turbines.
Consideration is being given to using the present invention as a means to achieve x, as a means to re-combust the exhaust fuel and air mixture of fuel cells, or to apply it to boilers, industrial burners, etc. The present invention relates to a catalytic combustion device in which a plurality of combustion catalyst layers having a large number of through holes in the thickness direction are arranged side by side in a flow path direction, and for example, relates to a catalytic combustion device for low NOx as described above.

【0002】0002

【従来の技術】予混合触媒燃焼法のための燃焼触媒層と
して、従来、パラジウム、白金等の貴金属をアルミナ等
のコーティング材を介してコーディエライトハニカム基
体に担持した構成で、開発が検討されてきている。しか
しながら、コーディエライトハニカム基体は、熱膨張率
を約1×10−6/゜Cとかなり低くでき、耐熱衝撃性
は良好であるが、1300゜C以上では強度が低下し、
高温使用には問題がある。また、この構成の触媒では、
1000゜Cを越えると、貴金属が蒸発揮散すること、
コーティング材の焼結進行による比表面積の低下を起こ
すこと等により、活性劣化が起こる等の問題があった。
[Prior Art] Development of a combustion catalyst layer for the premixed catalytic combustion method has been considered in the past, with a structure in which precious metals such as palladium and platinum are supported on a cordierite honeycomb substrate via a coating material such as alumina. It's coming. However, although the cordierite honeycomb substrate can have a fairly low coefficient of thermal expansion of approximately 1 x 10-6/°C and has good thermal shock resistance, its strength decreases at temperatures above 1300°C.
There are problems with high temperature use. In addition, in a catalyst with this configuration,
When the temperature exceeds 1000°C, precious metals evaporate and transpire.
There have been problems such as activity deterioration due to a decrease in specific surface area due to progress of sintering of the coating material.

【0003】そこで、本件発明者等は、長期の活性寿命
を発揮できる新しい高温燃焼触媒層として、前段部分に
、コーディエライトハニカム基体にパラジウムを主体と
する燃焼触媒層を、中段及び後段に、それぞれ、120
0゜C、1300゜Cで焼結したマンガン置換型層状ア
ルミネート触媒を直接ハニカム成形して得られる燃焼触
媒層を配置した触媒燃焼装置を提案している。このよう
に、実用的な燃焼触媒装置においては、低温から高温ま
で、それぞれの作動温度に適した触媒を配置することが
行われている。中段から後段に用いられているマンガン
置換型層状アルミネート触媒を直接ハニカム形状に成形
した燃焼触媒層は、一層の厚みを制限し、層間に間隙を
設けて複数層を並べて配されている。一層の厚みを小さ
くするのは、この触媒層の熱膨張率が6〜8×10−6
/°Cとコーディエライトハニカムにくらべてかなり大
きいために、厚さ方向の温度差によって生ずる熱応力に
よる破壊を防ぐようにするためである。燃焼触媒層は、
各層がそれぞれ、流路方向に垂直な断面全体を覆う形状
に一体に形成して、これを流路方向に、前記間隙を設け
て、並べて配されていた。前記間隙は、例えば図7に示
すように、燃焼室3内の隣合う燃焼触媒層5、5間にリ
ング状の金属性スペーサー7を配して、確保していた。 これらの間隙6は、各触媒層間の貫通孔のずれによる通
気抵抗の増加を防ぐ役目もしている。
[0003] Therefore, the inventors of the present invention proposed a new high-temperature combustion catalyst layer capable of exhibiting a long active life by using a combustion catalyst layer mainly composed of palladium on a cordierite honeycomb base in the first stage, and a combustion catalyst layer mainly composed of palladium on a cordierite honeycomb base in the middle and rear stages. 120 each
We are proposing a catalytic combustion device in which a combustion catalyst layer obtained by directly honeycomb-forming a manganese-substituted layered aluminate catalyst sintered at 0°C and 1300°C is arranged. As described above, in practical combustion catalyst devices, catalysts suitable for each operating temperature are arranged from low to high temperatures. The combustion catalyst layer used in the middle to rear stages is a manganese-substituted layered aluminate catalyst directly formed into a honeycomb shape.The thickness of each layer is limited, and multiple layers are arranged side by side with gaps between the layers. The reason for reducing the thickness of this layer is that the coefficient of thermal expansion of this catalyst layer is 6 to 8 x 10-6.
/°C, which is considerably larger than that of cordierite honeycomb, so this is to prevent destruction due to thermal stress caused by temperature differences in the thickness direction. The combustion catalyst layer is
Each layer was integrally formed in a shape that covered the entire cross section perpendicular to the flow path direction, and was arranged side by side in the flow path direction with the gap. The gap was secured, for example, by disposing a ring-shaped metallic spacer 7 between adjacent combustion catalyst layers 5, 5 in the combustion chamber 3, as shown in FIG. These gaps 6 also serve to prevent an increase in ventilation resistance due to misalignment of the through holes between the catalyst layers.

【0004】0004

【発明が解決しようとする課題】上記の高温燃焼触媒層
を、より実用的な燃焼触媒層とするためには、燃焼の大
容量化を図る必要がある。そこで、低NOx化の性能を
損なうことなく、燃焼触媒層のガス処理量を大きくする
には、触媒層の面積を大きくする必要があるが、ハニカ
ムの寸法精度と強度を維持しながら、一体成形できる大
きさには自ずから限界がある。例えば、強度のみならず
高活性が必要とされ、1平方インチ当りセル数200以
上が必要である燃焼触媒層では、直径200mmもしく
は200mm角程度の大きさが限界とされている。
Problems to be Solved by the Invention In order to make the above-mentioned high-temperature combustion catalyst layer a more practical combustion catalyst layer, it is necessary to increase the combustion capacity. Therefore, in order to increase the gas throughput of the combustion catalyst layer without compromising its low NOx performance, it is necessary to increase the area of the catalyst layer, but while maintaining the dimensional accuracy and strength of the honeycomb, There are naturally limits to how big it can be. For example, for a combustion catalyst layer that requires not only strength but also high activity and 200 or more cells per square inch, the size limit is about 200 mm in diameter or 200 mm square.

【0005】そこで、これまでに、例えば、小型の触媒
燃焼装置を製作して、マルチ型に並列に接続する方法、
或は、200mm径相当の大きさ以内の大きさのハニカ
ム触媒のセグメントの複数を接着もしくは接合して断面
積を増大させる等の方法により、大容量化を図る検討が
なされている。
[0005] So far, for example, there have been methods of manufacturing small catalytic combustion devices and connecting them in parallel in a multi-type.
Alternatively, attempts have been made to increase the capacity by bonding or joining a plurality of segments of a honeycomb catalyst having a size within a size equivalent to a diameter of 200 mm to increase the cross-sectional area.

【0006】しかしながら、前者の並列に接続するマル
チ型の触媒燃焼装置は、装置全体が大きく複雑になるた
めコスト高となり、保守管理も容易でないため、実用性
に乏しい。後者の接合法は、接着のために燃焼触媒層と
は異なる材料を用いる方法であるが、燃焼触媒層は10
00゜Cを越える温度で使用されるので、両者の固相反
応により、接合部の劣化を起こしやすい欠点があった。 又、同種の材量を用いた接着方法は、材料間の固層反応
が抑制できること、材料自体の熱膨張率を同一にできる
こと等の利点があるものの、接着部位の厚みはセルの壁
厚と同等にすることが困難であり、接着面の長さが大き
い程、厚みの不均一性に起因して、機械的強度や温度分
布が不均一となり、このため、接着部位付近において、
亀裂が発生しやすい問題があった。この問題は、熱膨張
率が6〜8×10−6/°Cとコーディエライトハニカ
ムの燃焼触媒層よりも大きいマンガン置換層状アルミネ
ートの燃焼触媒層において、熱応力が数倍高くなるので
特に重要である。
However, the former multi-type catalytic combustion device connected in parallel is not practical because the entire device is large and complicated, resulting in high cost and difficult to maintain. The latter bonding method uses a different material from the combustion catalyst layer for adhesion, but the combustion catalyst layer
Since it is used at a temperature exceeding 00°C, it has the disadvantage that the bonded portion is likely to deteriorate due to a solid phase reaction between the two. In addition, bonding methods using the same amount of materials have the advantage of suppressing solid phase reactions between materials and making the coefficient of thermal expansion of the materials the same, but the thickness of the bonded area is different from the cell wall thickness. It is difficult to make them equal, and the longer the length of the bonding surface, the more uneven the mechanical strength and temperature distribution will be due to the non-uniformity of the thickness.
There was a problem that cracks were likely to occur. This problem is particularly problematic because the thermal stress is several times higher in the combustion catalyst layer of manganese-substituted layered aluminate, which has a coefficient of thermal expansion of 6 to 8 x 10-6/°C, which is larger than that of cordierite honeycomb. is important.

【0007】尚、金属スペーサーとハニカム触媒の熱膨
張係数や熱伝導度の違い、或は機械的強度の違いに起因
する応力の集中によっても、ハニカム触媒を損傷する虞
がある。
[0007] Furthermore, there is a risk that the honeycomb catalyst may be damaged due to concentration of stress due to differences in thermal expansion coefficient and thermal conductivity between the metal spacers and the honeycomb catalyst, or due to differences in mechanical strength.

【0008】本発明の目的は、前記熱歪等による応力の
集中を少なくして、例えば上述のハニカム触媒のような
機械的強度の小さい燃焼触媒層であっても、その変形や
亀裂を防止しながら、低N0x化等の触媒性能を損なう
ことなく、触媒燃焼室の径を大きくして、大容量のガス
を処理することのできる触媒燃焼装置を提供することに
ある。
[0008] An object of the present invention is to reduce the concentration of stress caused by the thermal strain, etc., and to prevent deformation and cracking even in a combustion catalyst layer with low mechanical strength, such as the above-mentioned honeycomb catalyst. However, it is an object of the present invention to provide a catalytic combustion device that can process a large amount of gas by increasing the diameter of the catalytic combustion chamber without impairing catalyst performance such as low NOx.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
、本発明による触媒燃焼装置の特徴構成は、燃焼触媒層
を流路方向に垂直な断面の一部を欠落した形に形成する
と共に、前記流路方向に互いに隣接する前記燃焼触媒層
同士は、互いに欠落した断面を補填する形で、それらの
端部を重ね合わせて前記断面全体を覆うようにしてある
ことにある。
[Means for Solving the Problem] In order to achieve this object, the characteristic configuration of the catalytic combustion device according to the present invention is that the combustion catalyst layer is formed in a shape in which a part of the cross section perpendicular to the flow path direction is missing, and The combustion catalyst layers that are adjacent to each other in the flow path direction have their ends overlapped to cover the entire cross section so as to compensate for each other's missing cross sections.

【0010】0010

【作用】前記各燃焼触媒層は、前記触媒燃焼室の流路方
向に垂直な断面の一部を欠落した形であるから、前記流
路の断面全体より小さな断面でありながら、前記流路方
向に互いに隣接する前記燃焼触媒層同士は、それらの端
部で重ね合わせてあるので、流路方向に両側から押圧す
れば、複数の燃焼触媒層を、接着剤等を用いなくても、
前記触媒燃焼室に保持することが容易にできると共に、
流路方向に一つ置きに対面する燃焼触媒層間に前記間隙
が形成され、且つ、隣接する前記燃焼触媒層同士は、互
いに欠落した断面を補填する形で、それらの端部を重ね
合わせて前記断面全体を覆うようにしてあるので、ガス
が一つの前記間隙から次の間隙に移るには必ずこれらの
間にある燃焼触媒層を通過することになる。
[Function] Each of the combustion catalyst layers has a shape in which a part of the cross section perpendicular to the flow path direction of the catalytic combustion chamber is missing. Since the combustion catalyst layers adjacent to each other are overlapped at their ends, by pressing from both sides in the direction of the flow path, the plurality of combustion catalyst layers can be separated without using an adhesive or the like.
The catalyst can be easily held in the combustion chamber, and
The gaps are formed between every other combustion catalyst layer facing each other in the flow path direction, and the adjacent combustion catalyst layers overlap their ends to compensate for the missing cross sections. Since the entire cross section is covered, in order for gas to pass from one gap to the next, it must pass through the combustion catalyst layer between them.

【0011】[0011]

【発明の効果】従来金属性スペーサーを用いて設けてい
た燃焼触媒層間の間隙を、燃焼触媒層自体に前段と次段
の燃焼触媒層間のスペーサーの役目をさせることによっ
て確保するので、この間隙によって、各触媒層間の貫通
孔のずれによる通気抵抗の増加を防ぐことができながら
、複数のセグメントを比較的小さな接着面または接合面
で合わせて、或は接着剤等を使わずに突き合わせるだけ
で各触媒層を形成しても、流路方向に互いに隣接する前
記燃焼触媒層同士を、それらの端部で重ね合わせて流路
方向に両側から押圧するだけで簡単に前記燃焼触媒層を
支持することができる。つまり、大容量の燃焼装置であ
っても、燃焼触媒層を比較的小さなセグメントに分割し
て構成することができるので、一体で大きな燃焼触媒層
に比べて、各セグメントは膨張率が同じでも膨張量が小
さくなり、従って、熱衝撃破壊は起こりにくくなる。 各燃焼触媒層の厚さは、厚さ方向の熱応力緩和のため、
30mm以下とすることが必要であるが、本発明による
場合は、特にスペーサーを必要としないので、製作上の
限界に近い10mm程度の厚さとして使用することも容
易であり、燃焼触媒層の厚さを極めて薄くできるので厚
さ方向の不均一な温度分布による熱応力破壊も起こりに
くい。又、燃焼触媒層に欠落部分を形成してあると、1
層の燃焼触媒層を形成する前記セグメント同士の突合せ
面の長さは短くできるので、接着した場合も、厚みの不
均一性に起因する機械的強度や温度分布の不均一性は起
こりにくく、このため、接着部位付近において、亀裂が
発生しやすい問題は軽減する。従って、金属性スペーサ
ーや接着剤等に起因する熱歪等による燃焼触媒層の破壊
も防ぐことができる。
Effects of the Invention: The gap between the combustion catalyst layers, which was conventionally provided using a metal spacer, is secured by allowing the combustion catalyst layer itself to act as a spacer between the previous and next combustion catalyst layers. , it is possible to prevent an increase in ventilation resistance due to misalignment of the through holes between each catalyst layer, and it is possible to simply connect multiple segments with a relatively small adhesive surface or joint surface, or to butt them together without using adhesive, etc. Even if each catalyst layer is formed, the combustion catalyst layers that are adjacent to each other in the direction of the flow path can be easily supported by simply overlapping their ends and pressing them from both sides in the direction of the flow path. be able to. In other words, even in a large-capacity combustion device, the combustion catalyst layer can be divided into relatively small segments, so compared to a single, large combustion catalyst layer, each segment expands even if the expansion rate is the same. The amount is smaller and therefore thermal shock failure is less likely to occur. The thickness of each combustion catalyst layer is determined by
However, in the case of the present invention, since no spacer is particularly required, it is easy to use a thickness of about 10 mm, which is close to the manufacturing limit, and the thickness of the combustion catalyst layer can be reduced. Since the thickness can be made extremely thin, thermal stress fractures due to uneven temperature distribution in the thickness direction are less likely to occur. Also, if a missing part is formed in the combustion catalyst layer, 1
Since the length of the abutting surfaces of the segments that form the combustion catalyst layer of the layer can be shortened, even if they are bonded together, non-uniformity in mechanical strength and temperature distribution due to non-uniform thickness is unlikely to occur. Therefore, the problem of easy cracking near the bonded area is alleviated. Therefore, destruction of the combustion catalyst layer due to thermal distortion caused by metallic spacers, adhesives, etc. can also be prevented.

【0012】その結果、例えば上述のハニカム触媒のよ
うな機械的強度の小さい燃焼触媒層であっても、熱歪等
による応力の集中を少なくして、その変形や亀裂を防止
しながら、低N0x 化等の性能を損なうことなく、触
媒燃焼室の径を大きくして、大容量のガスを処理するこ
とのできる触媒燃焼装置を提供することができた。
As a result, even if the combustion catalyst layer has low mechanical strength, such as the above-mentioned honeycomb catalyst, stress concentration due to thermal strain etc. can be reduced, deformation and cracking can be prevented, and low N0x can be achieved. It was possible to provide a catalytic combustion device that can process a large amount of gas by increasing the diameter of the catalytic combustion chamber without impairing performance such as combustion.

【0013】[0013]

【実施例】以下、図に基づいて本発明による触媒燃焼装
置の実施例を説明する。図1に触媒燃焼装置の軸方向断
面を示すように、燃焼ガスの流路に沿って、予熱用燃焼
室1と、希薄燃料ガスの混合室2と、円筒状の触媒燃焼
室3と、燃焼ガスの排出部4とを順に設け、厚さ方向に
多数貫通孔を有するハニカム触媒から成る燃焼触媒層5
の複数を前記触媒燃焼室内に流路に沿って並べて配し、
前記燃焼触媒層5を前記触媒燃焼室3の流路方向に垂直
な断面の一部を欠落した形に形成すると共に、前記燃焼
室3の前記流路方向に千鳥状に配置し、前記流路方向に
互いに隣接する前記燃焼触媒層同士を、互いに欠落した
断面を補填する形で、それらの端部を重ね合わせて前記
断面全体を覆うようにして触媒燃焼装置を構成してある
。この構成によって金属性スペーサーを配することなく
、又、接着剤を用いることなく、大口径の前記燃焼室3
内に配置した前記燃焼触媒層5の複数を、前後から、即
ち図では左右から簡単に挟持することができる。又、図
中6で示される間隙を、燃焼触媒層5、5間に形成する
ために金属性スペーサーも、接着剤も用いなくて済むか
ら、これらを用いる場合に生ずる通気抵抗や局部的な熱
歪も防ぐことができる。尚、燃焼室3は、高温耐熱セラ
ミック繊維を圧縮成形した半円筒の硬化断熱材7を介し
て、燃焼触媒層5を外側から金属枠で挟むようにして保
持した触媒カセットとして構成し、燃焼触媒層5は触媒
カセットごと簡単に交換できるようにしてある。図中9
は触媒出口におけるセグメントの、万一の吹き飛びを防
止するための高強度の保持具である。図2の(イ)、(
ロ)、(ハ)、(ニ)に保持具9の種々の例を示すが、
燃焼触媒層5の形状に応じて、これら以外にも色々な形
状の保持具が考えられる。図3の(イ)は、前記燃焼触
媒層5を重ね合わせて前記触媒燃焼室3に装着した状態
を縦にして示したものである。一つ一つの燃焼触媒層5
のセグメントは押出成形が容易にできる大きさで、前記
触媒燃焼室3の流路に垂直な円形断面の4分円に重なり
代を加えた互いに同型の扇形状に形成してある。このセ
グメントを二つ夫々の要部分で突合せて、蝶ネクタイ状
の形状に形成した前記燃焼触媒層5を90゜ずつずらせ
ながら(イ)に示すように重ねてある。(ロ)に、重な
り合う二層の燃焼触媒層5を流路方向に見た様子を示す
。セグメントの突合せ面の長さは、セグメント前後の重
なりによるデッドスペースを抑制する目的で、20mm
以下とすることが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the catalytic combustion apparatus according to the present invention will be described below with reference to the drawings. As shown in the axial cross section of the catalytic combustion device in FIG. A combustion catalyst layer 5 made of a honeycomb catalyst and having a large number of through holes in the thickness direction.
A plurality of are arranged in the catalytic combustion chamber along the flow path,
The combustion catalyst layer 5 is formed in a shape in which a part of the cross section perpendicular to the flow path direction of the catalytic combustion chamber 3 is missing, and is arranged in a staggered manner in the flow path direction of the combustion chamber 3, so that the flow path The catalytic combustion device is configured such that the ends of the combustion catalyst layers adjacent to each other in the direction are overlapped to cover the entire cross section so as to compensate for the missing cross section. With this configuration, the large-diameter combustion chamber 3
A plurality of the combustion catalyst layers 5 arranged inside can be easily held from the front and rear, that is, from the left and right in the figure. In addition, since there is no need to use a metal spacer or adhesive to form the gap shown by 6 in the figure between the combustion catalyst layers 5, the ventilation resistance and local heat generated when using these Distortion can also be prevented. The combustion chamber 3 is configured as a catalyst cassette in which the combustion catalyst layer 5 is held between metal frames from the outside via a semi-cylindrical hardened heat insulating material 7 formed by compression molding of high temperature heat-resistant ceramic fibers. is designed so that the entire catalyst cassette can be easily replaced. 9 in the diagram
is a high-strength holder to prevent the segment from being blown off at the catalyst outlet. Figure 2 (a), (
B), (C), and (D) show various examples of the holder 9,
Depending on the shape of the combustion catalyst layer 5, holders having various shapes other than these can be considered. FIG. 3(a) shows the state in which the combustion catalyst layers 5 are stacked and installed in the catalytic combustion chamber 3 in a vertical position. Each combustion catalyst layer 5
The segments have a size that allows easy extrusion molding, and are formed into fan shapes of the same shape, which are quadrants of a circular cross section perpendicular to the flow path of the catalytic combustion chamber 3, plus an overlap margin. These two segments are abutted at their essential parts, and the combustion catalyst layers 5 formed in a bow tie shape are stacked one on top of the other as shown in (a) with a 90° shift. (B) shows how the two overlapping combustion catalyst layers 5 are viewed in the flow path direction. The length of the abutting surface of the segments is 20 mm in order to suppress dead space caused by overlapping before and after the segments.
The following is desirable.

【0014】〔別実施例〕前記燃焼触媒層5の形状は、
例えば図4の(イ)及び(ロ)に示すように前記触媒燃
焼室3の流路に垂直な円形断面の6分円に重ね代を加え
た形状のセグメントを突き合わせた三つ葉状にしてもよ
いし、或は、図5の(イ)、(ロ)、又は図6に示すよ
うに、前記触媒燃焼室3の流路に垂直な円形断面を複数
の平行線で区画して重ね代を加えた形状のセグメントを
角で突き合わせた市松模様の形状に形成する等、色々な
形状が考えられる。同一平面を形成するこれらのセグメ
ントは角の部分で突き合わせたところで互いの押圧力で
相対位置を固定することができるが、接着剤等で接着し
て置いてもよい。このような接着をしても、これらのセ
グメントの周辺を全部接着して同一平面を埋め尽くす場
合に比べると各セグメントに熱歪による応力を逃がす自
由端があるため、その弊害は少ない。前記触媒燃焼室3
の断面は、多角形等、円形以外の形状であってもよい。 多角形にして、燃焼触媒層5の形状もこれに合わせてお
くと、装着時の周方向の位置決めが容易で、装着後も振
動などによって、周方向にずれることがない。触媒燃焼
室3をカセット化するには、高温耐熱セラミック繊維か
ら成るウェット状のフェルトで燃焼触媒層の積層を包ん
で、加熱硬化により前記積層と密着させ、一体化する等
、前記実施例以外の方法によってもよい。
[Another embodiment] The shape of the combustion catalyst layer 5 is as follows:
For example, as shown in FIGS. 4A and 4B, a trefoil shape may be formed by abutting segments in the shape of a sextant of a circular cross section perpendicular to the flow path of the catalytic combustion chamber 3 plus an overlap margin. Alternatively, as shown in FIGS. 5A and 5B, or FIG. Various shapes can be considered, such as a checkerboard pattern in which segments of different shapes are butted together at the corners. These segments forming the same plane can be fixed in relative position by mutual pressing force when they abut against each other at the corners, but they may also be bonded together with an adhesive or the like. Even with such adhesion, there are fewer harmful effects than when the peripheries of these segments are all bonded to fill the same plane, since each segment has a free end that releases stress due to thermal strain. The catalytic combustion chamber 3
The cross section of may be a shape other than a circle, such as a polygon. By making the combustion catalyst layer 5 polygonal in shape and matching the shape thereof, positioning in the circumferential direction during installation is easy, and even after installation, it will not shift in the circumferential direction due to vibrations or the like. In order to form the catalytic combustion chamber 3 into a cassette, methods other than those described in the above embodiments may be used, such as wrapping the stack of combustion catalyst layers with wet felt made of high-temperature heat-resistant ceramic fibers and making them adhere to and integrate with the stack by heat curing. It may depend on the method.

【0015】〔実験例〕セル数200/in2、厚さ1
0mmのパラジウムーコージエライトから成る燃焼触媒
層5を1層と、セル数300/in2、厚さ10mmの
低温活性型マンガン置換ヘキサアルミネイトから成る燃
焼触媒層5を4層と、セル数300/in2、厚さ10
mmの高温耐熱型マンガン置換ヘキサアルミネイトから
成る燃焼触媒層5を2層、上記の順に並べてウェットフ
ェルトを用いて、加熱硬化し、図1の燃焼室3のように
カセット化した。図3に示すように、各燃焼触媒は扇形
状のセグメントを蝶ネクタイ状に組み合わせて形成し、
実施例と同じように重ねてある。燃焼触媒層の有効直径
は220mmである。セグメントの突合せ部分は接着し
た。このカセットを150kwガスタービン用触媒燃焼
装置に組み込み、触媒燃焼モードに移行し、定格負荷で
4時間運転し、その後停止した。起動時の燃焼触媒層の
温度は1000゜C、触媒燃焼モードにおける燃焼触媒
層の最高温度は1200゜C、起動時間は約20秒であ
った。定格負荷における触媒燃焼効率は99%以上であ
った。この結果、触媒カセットの外観に全く異常がなく
、又、各触媒層5の観察において、亀裂は全く検知され
ず、このような触媒保持のできる触媒燃焼装置が、急激
な昇温、冷却、又、定状燃焼における熱応力に充分耐え
られることが実証された。
[Experiment example] Number of cells 200/in2, thickness 1
One layer of combustion catalyst layer 5 made of palladium-cordierite with a thickness of 0 mm, four layers of combustion catalyst layer 5 made of low-temperature activated manganese-substituted hexaaluminate with a cell count of 300/in2 and a thickness of 10 mm, and a cell count of 300. /in2, thickness 10
Two layers of combustion catalyst layers 5 made of high-temperature heat-resistant manganese-substituted hexaaluminate with a thickness of 2 mm were arranged in the above order and cured by heating using wet felt, thereby forming a cassette as shown in the combustion chamber 3 of FIG. As shown in FIG. 3, each combustion catalyst is formed by combining fan-shaped segments in a bow tie shape,
They are overlapped in the same way as in the example. The effective diameter of the combustion catalyst layer is 220 mm. The butt parts of the segments were glued together. This cassette was installed in a catalytic combustion device for a 150 kW gas turbine, shifted to catalytic combustion mode, operated at rated load for 4 hours, and then stopped. The temperature of the combustion catalyst layer at startup was 1000°C, the maximum temperature of the combustion catalyst layer in catalytic combustion mode was 1200°C, and the startup time was about 20 seconds. The catalytic combustion efficiency at rated load was over 99%. As a result, there was no abnormality in the appearance of the catalyst cassette, and no cracks were detected during observation of each catalyst layer 5, indicating that a catalytic combustion device capable of holding such a catalyst is not subject to rapid temperature rise, cooling, or , it has been demonstrated that it can sufficiently withstand thermal stress in steady-state combustion.

【0016】〔比較実験例〕上記実験例における触媒の
組合せに対し、各段の燃焼触媒層5を、同種材料で4分
割して接着した直径220mm、厚さ20mmの、欠落
部分がなく、且つ、流路断面全体を覆う円形に形成した
。各燃焼触媒層5をスペーサーを介して配し、上記実験
例と同様にカセット化したものを上記実験例と同様の触
媒燃焼装置に装着し、タービン装着試験を実施した。 この結果、上記実験例と同様の燃焼性能が得られたが、
1段目のパラジウムコージェライトから成る燃焼触媒層
5を除いて、2段目以降のマンガン置換ヘキサアルミネ
イトから成る燃焼触媒層5はすべて、接着部位もしくは
その付近において、局部的に亀裂発生が認められた。従
って、この触媒保持方法による触媒燃焼装置では長期の
耐久性確保は困難であることがわかった。尚、特許請求
の範囲の項に図面との対照を便利にするために符号を記
すが、該記入により本発明は添付図面の構成に限定され
るものではない。
[Comparative Experimental Example] For the combination of catalysts in the above experimental example, the combustion catalyst layer 5 of each stage was divided into four parts made of the same material and glued together, each having a diameter of 220 mm and a thickness of 20 mm, with no missing parts, and , was formed into a circular shape that covered the entire cross section of the channel. Each combustion catalyst layer 5 was disposed via a spacer and formed into a cassette in the same manner as in the above experimental example, and the cassette was installed in a catalytic combustion apparatus similar to that in the above experimental example, and a turbine installation test was conducted. As a result, combustion performance similar to the above experimental example was obtained, but
Except for the combustion catalyst layer 5 made of palladium cordierite in the first stage, all of the combustion catalyst layers 5 made of manganese-substituted hexaaluminate in the second and subsequent stages were found to have cracks locally at or near the adhesion site. It was done. Therefore, it has been found that it is difficult to ensure long-term durability in a catalytic combustion device using this catalyst holding method. Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings by the reference numerals.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による触媒燃焼装置の実施例を示す軸方
向断面図
FIG. 1 is an axial sectional view showing an embodiment of a catalytic combustion device according to the present invention.

【図2】実施例の保持具を示す斜視図[Fig. 2] A perspective view showing the holder of the embodiment.

【図3】実施例の燃焼触媒層を重ねた状態を示す斜視図
と平面図
[Fig. 3] A perspective view and a plan view showing a state in which the combustion catalyst layers of the example are stacked.

【図4】別実施例における燃焼触媒層の斜視図と平面図
[Fig. 4] A perspective view and a plan view of a combustion catalyst layer in another example.

【図5】別実施例における燃焼触媒層の斜視図と平面図
[Fig. 5] A perspective view and a plan view of a combustion catalyst layer in another example.

【図6】別実施例における燃焼触媒層の斜視図[Fig. 6] A perspective view of a combustion catalyst layer in another example.

【図7】
従来例における触媒燃焼装置の触媒燃焼室の軸方向断面
[Figure 7]
Axial cross-sectional view of a catalytic combustion chamber of a conventional catalytic combustion device

【符号の説明】[Explanation of symbols]

5  燃焼触媒層 5 Combustion catalyst layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  厚み方向に多数の貫通孔を有する燃焼
触媒層(5)の複数を流路方向に並べて配した触媒燃焼
装置であって、前記燃焼触媒層(5)を流路方向に垂直
な断面の一部を欠落した形に形成すると共に、前記流路
方向に互いに隣接する前記燃焼触媒層(5)同士は、互
いに欠落した断面を補填する形で、それらの端部を重ね
合わせて前記断面全体を覆うようにしてある触媒燃焼装
置。
1. A catalytic combustion device in which a plurality of combustion catalyst layers (5) having a large number of through holes in the thickness direction are arranged side by side in the direction of the flow path, the combustion catalyst layers (5) being arranged perpendicularly to the direction of the flow path. The combustion catalyst layers (5) adjacent to each other in the direction of the flow path are formed so that a part of the cross section is missing, and the end portions of the combustion catalyst layers (5) are overlapped to compensate for the missing cross section. A catalytic combustion device that covers the entire cross section.
【請求項2】  前記燃焼触媒層(5)は、流路方向に
多数の貫通孔を有するハニカム形状である請求項1記載
の触媒燃焼装置。
2. The catalytic combustion device according to claim 1, wherein the combustion catalyst layer (5) has a honeycomb shape having a large number of through holes in the direction of the flow path.
【請求項3】  各層の前記燃焼触媒層(5)は、流路
に直交する方向に複数に分割形成されたものである請求
項1又は2記載の触媒燃焼装置。
3. The catalytic combustion device according to claim 1, wherein the combustion catalyst layer (5) of each layer is divided into a plurality of layers in a direction perpendicular to the flow path.
JP3091828A 1991-04-23 1991-04-23 Catalytic combustion apparatus Pending JPH04324011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3091828A JPH04324011A (en) 1991-04-23 1991-04-23 Catalytic combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3091828A JPH04324011A (en) 1991-04-23 1991-04-23 Catalytic combustion apparatus

Publications (1)

Publication Number Publication Date
JPH04324011A true JPH04324011A (en) 1992-11-13

Family

ID=14037470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3091828A Pending JPH04324011A (en) 1991-04-23 1991-04-23 Catalytic combustion apparatus

Country Status (1)

Country Link
JP (1) JPH04324011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521461A (en) * 2010-03-05 2013-06-10 ダイムラー・アクチェンゲゼルシャフト Equipment for providing hot exhaust gases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521461A (en) * 2010-03-05 2013-06-10 ダイムラー・アクチェンゲゼルシャフト Equipment for providing hot exhaust gases

Similar Documents

Publication Publication Date Title
JP2659504B2 (en) Catalytic combustion device
US4177307A (en) Thermal shock resistant ceramic honeycomb structures
US11174771B2 (en) Exhaust gas heating device, associated exhaust line and vehicle
JP4166832B2 (en) Honeycomb body with heat insulator especially for exhaust gas catalyst
EP0687806B1 (en) A metal carrier for a catalytic converter
RU2549280C2 (en) Connection of two devices for spent gas treatment
EP1788656B1 (en) Solid oxide fuel cell stack with a gas flow regulating member between casing and stack
JP5783037B2 (en) Electric heating catalyst device and method for manufacturing the same
JP2016513006A (en) Incorporating monoliths into reactors for heterogeneous catalytic gas phase reactions
JP2012031738A (en) Honeycomb structural body and filter device
JPH08103662A (en) Ceramic catalytic converter
JPH04324011A (en) Catalytic combustion apparatus
JPH0668885A (en) Manufacture of solid electrolytic fuel cell
US6887440B2 (en) Edge-connected non-thermal plasma exhaust after-treatment device
US20020021989A1 (en) Heater unit
JP5007915B2 (en) Fuel cell
JP3694150B2 (en) Honeycomb heat storage
JP3464557B2 (en) Metal carrier for electrically heated catalyst device and method for producing the same
JP3208027B2 (en) Metal carrier for catalytic device
JPH08986Y2 (en) Metal carrier for exhaust gas purification catalyst
JP3208020B2 (en) Metal carrier for electrically heated catalyst device
JPH07301419A (en) Catalyst combustion device
JP2016196824A (en) Honeycomb structure
JPH09267045A (en) Metal carrier for electrically heating type catalyst device
JPH10364A (en) Metal carrier for catalytic device