JPH09178322A - Capacity control device of refrigerator - Google Patents

Capacity control device of refrigerator

Info

Publication number
JPH09178322A
JPH09178322A JP7334572A JP33457295A JPH09178322A JP H09178322 A JPH09178322 A JP H09178322A JP 7334572 A JP7334572 A JP 7334572A JP 33457295 A JP33457295 A JP 33457295A JP H09178322 A JPH09178322 A JP H09178322A
Authority
JP
Japan
Prior art keywords
temperature
cooler
rotation speed
flow path
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7334572A
Other languages
Japanese (ja)
Inventor
Toshio Kamitsuji
利夫 上辻
Toshinori Noda
俊典 野田
Katsumi Endo
勝己 遠藤
Masataka Oda
雅隆 小田
Kenichi Morishita
賢一 森下
Yasuki Hamano
泰樹 浜野
Shinichi Kaneoka
伸一 金岡
Yoshitaka Kubota
吉孝 窪田
Kazunori Kurimoto
和典 栗本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP7334572A priority Critical patent/JPH09178322A/en
Publication of JPH09178322A publication Critical patent/JPH09178322A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PROBLEM TO BE SOLVED: To save the energy of a refrigerator by realizing appropriate number of revolution of a compressor and appropriate flow rate of an electric-driven expansion valve to cope with the change in the temperature of a cooler associated with opening/closing of an air passage control damper of the refrigerator on which an inverter is mounted to improve the operational efficiency and the cooling system efficiency of the refrigerator. SOLUTION: The number of revolutions of a compressor and the flow rate of an electric-driven expansion valve are determined by the number of revolutions and a flow rate operating means 25 using the output of an in-freezer differential temperature operating means 24, the number of revolutions and the flow passage resistance value are corrected by a number of revolutions and a flow rate correcting means 41 using the output from a cooler temperature detecting means 42, the number of revolutions of the compressor is controlled by an inverter circuit 26 by the command from the number of revolutions and the flow rate correcting means 41, and the flow rate is controlled by an electrically driven expansion valve control circuit 45.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫における室
内の冷却を効率よく行い、省エネルギーを図る冷蔵庫の
制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator control device for efficiently cooling a room in a refrigerator to save energy.

【0002】[0002]

【従来の技術】冷蔵庫の制御装置は、冷蔵庫の冷凍室、
冷蔵室、野菜室の各室を設定された温度で温調するよう
に、ダンパ、ファン、コンプレッサを制御するものであ
る(例えば、特開昭60−71874号公報)。
2. Description of the Related Art A control device for a refrigerator is a refrigerator freezer.
A damper, a fan, and a compressor are controlled so that the temperature of each of the refrigerator compartment and the vegetable compartment is controlled at a set temperature (for example, Japanese Patent Laid-Open No. 60-71874).

【0003】以下、従来の冷蔵庫の制御装置について図
面を参照しながら、温調制御について説明する。
The temperature control will be described below with reference to the drawings of a conventional refrigerator control device.

【0004】図4は、従来の冷蔵庫の制御装置のブロッ
ク図を示すものである。図4において、1は冷蔵庫本体
で、外箱2と内箱3と両者の空隙に形成されたウレタン
発泡断熱材4により構成され、前面開口部に3つのドア
5、6、7が配設されている。ドア5、6、7はそれぞ
れ冷蔵庫本体1の冷凍室(請求の範囲における室に相
当)8、冷蔵室9、野菜室10の開口部に対応して配設
されている。 冷凍室8の底板11aと冷蔵室9の天板
11bに囲まれた区画壁内には減圧装置として1本のキ
ャピラリーチューブ12とこれに連結する冷却器13と
その背後にファン14を有している。また、冷凍室8、
冷蔵室9の背部には、冷却器13からの冷却空気を各室
に導入するための通風路15、16が形成されている。
17はコンプレッサであり、18は電動ダンパである。
FIG. 4 shows a block diagram of a conventional refrigerator control device. In FIG. 4, reference numeral 1 denotes a refrigerator main body, which is composed of an outer box 2 and an inner box 3 and a urethane foam heat insulating material 4 formed in a space between the outer box 2 and the inner box 3, and three doors 5, 6 and 7 are provided in a front opening. ing. The doors 5, 6, and 7 are arranged in correspondence with the openings of the freezing room (corresponding to the room in the claims) 8, the refrigerating room 9, and the vegetable room 10 of the refrigerator body 1, respectively. In the partition wall surrounded by the bottom plate 11a of the freezer compartment 8 and the top plate 11b of the refrigerating compartment 9, there is provided a capillary tube 12 as a decompressor, a cooler 13 connected to the capillary tube 12, and a fan 14 behind it. There is. In addition, the freezer compartment 8,
Ventilation paths 15 and 16 for introducing the cooling air from the cooler 13 into the respective compartments are formed at the back of the refrigerating compartment 9.
Reference numeral 17 is a compressor, and 18 is an electric damper.

【0005】また、19は冷凍室内温度センサである。
20は冷凍室制御手段で、冷凍室内温度検出手段21、
冷凍室内温度設定手段23、は冷凍室内温度差演算手段
24、回転数演算手段25で構成されている。
Reference numeral 19 denotes a freezing room temperature sensor.
Reference numeral 20 denotes a freezer compartment control means, which is a freezer compartment temperature detection means 21,
The freezing room temperature setting means 23 is composed of a freezing room temperature difference calculating means 24 and a rotation speed calculating means 25.

【0006】冷凍室内温度検出手段21は、冷凍室内温
度センサ19により冷凍室8の室内温度を検出し、冷凍
室内温度設定手段23は、冷凍室8の室内温度を設定す
るための冷凍室内温度設定スイッチ22を操作すれば室
内設定温度を検出し、冷凍室8の室内設定温度を例えば
−16℃、−18℃や−20℃に設定する。
The freezing room temperature detecting means 21 detects the indoor temperature of the freezing room 8 by the freezing room temperature sensor 19, and the freezing room temperature setting means 23 sets the freezing room temperature for setting the indoor temperature of the freezing room 8. When the switch 22 is operated, the indoor preset temperature is detected, and the indoor preset temperature of the freezer compartment 8 is set to, for example, -16 ° C, -18 ° C or -20 ° C.

【0007】冷凍室内温度差演算手段24は、冷凍室内
温度検出手段21で検出した冷凍室8の室内温度と冷凍
室内温度設定手段23が検出した冷凍室8の室内設定温
度との温度差を演算し、その温度差により回転数演算手
段25でコンプレッサ17の回転数を決定し、インバー
タ回路25に決定した回転数指令を送出し、インバータ
回路26は決められた回転数でコンプレッサ17を運転
する。
The freezing room temperature difference calculating means 24 calculates the temperature difference between the indoor temperature of the freezing room 8 detected by the freezing room temperature detecting means 21 and the indoor setting temperature of the freezing room 8 detected by the freezing room temperature setting means 23. Then, the rotational speed calculation means 25 determines the rotational speed of the compressor 17 based on the temperature difference, and sends the determined rotational speed command to the inverter circuit 25, and the inverter circuit 26 operates the compressor 17 at the determined rotational speed.

【0008】回転数演算手段25で決定するコンプレッ
サ17の回転数を図5に示す。図5で冷凍室内温度が設
定温度より1K(Kは温度差を示す)〜2K高いときコ
ンプレッサ17を動作させ1800回転で運転し、2K
〜3K高いときは2400回転、3K〜4K高いときは
3000回転、4K以上高いときは3600回転で運転
し、1K低くなればコンプレッサ17を停止(0回転)
するように回転数演算手段25は回転数を決定する。こ
こで温度差が−1Kと1Kの間の回転数は2通りあり、
一度1800回転で運転しだすと温度差が−1Kになる
まで運転を続け、一度停止すると温度差が1Kになるま
で運転を開始しない。 26は冷却ファン駆動回路で回
転数演算手段25で決定した回転数が停止以外の時動作
し、ファン14を運転し、コンプレッサ17の運転によ
り冷却された冷却器13の冷気を室内に送り室内を冷却
する。
FIG. 5 shows the rotation speed of the compressor 17 determined by the rotation speed calculation means 25. In FIG. 5, when the temperature of the freezing chamber is higher than the set temperature by 1 K (K indicates a temperature difference) to 2 K, the compressor 17 is operated to operate at 1800 rpm and 2 K.
~ 3K higher, 2400 rpm, 3K ~ 4K higher, 3000 rpm, 4K or higher, 3600 rpm, and 1K lower, compressor 17 stops (0 rpm)
As described above, the rotation speed calculation means 25 determines the rotation speed. Here, there are two rotation speeds between the temperature difference of -1K and 1K,
Once started at 1800 rpm, the operation is continued until the temperature difference becomes -1K, and once stopped, the operation is not started until the temperature difference becomes 1K. Reference numeral 26 denotes a cooling fan drive circuit which operates when the rotation speed determined by the rotation speed calculation means 25 is other than stop, operates the fan 14, and sends the cool air of the cooler 13 cooled by the operation of the compressor 17 into the room. Cooling.

【0009】また、28は冷蔵室内温度センサである。
30は冷蔵室制御手段で、冷蔵室内温度検出手段31、
冷蔵室内温度設定手段33冷蔵室内温度差演算手段34
で構成されている。
Reference numeral 28 is a refrigerating room temperature sensor.
Reference numeral 30 denotes a refrigerating compartment control means, which is a refrigerating compartment temperature detecting means 31,
Refrigerating room temperature setting means 33 Refrigerating room temperature difference calculating means 34
It is composed of

【0010】冷蔵室内温度検出手段31は、冷蔵室内温
度センサ28により冷蔵室内の温度を検出し、冷蔵室内
温度設定手段33は、冷蔵室9の室内温度を設定するた
めの冷蔵室内温度設定スイッチ32を操作すれば設定温
度を検出する。
The refrigerating compartment temperature detecting means 31 detects the temperature inside the refrigerating compartment by means of the refrigerating compartment temperature sensor 28, and the refrigerating compartment temperature setting means 33 sets the refrigerating compartment temperature setting switch 32 for setting the compartment temperature of the refrigerating compartment 9. Operate to detect the set temperature.

【0011】冷蔵室内温度差演算手段34は、冷蔵室内
温度検出手段31で検出した冷蔵室内温度と冷蔵室内温
度設定手段33が検出した冷蔵室内の設定温度の温度差
を演算し、その温度差により電動ダンパ18の開閉を決
定し、電動ダンパ駆動回路35に開閉指令を送出し、電
動ダンパ駆動回路35は開閉指令に基づき電動ダンパ1
8を開閉する。
The refrigerating compartment temperature difference calculating means 34 calculates the temperature difference between the refrigerating compartment temperature detected by the refrigerating compartment temperature detecting means 31 and the set temperature in the refrigerating compartment detected by the refrigerating compartment temperature setting means 33. The opening / closing of the electric damper 18 is determined, and the opening / closing command is sent to the electric damper drive circuit 35, and the electric damper drive circuit 35 causes the electric damper 1 to operate based on the opening / closing command.
Open and close 8.

【0012】以上のように構成された冷蔵庫の運転制御
装置について、以下図4、図6を用いてその動作を説明
する。
The operation of the operation control device for a refrigerator constructed as described above will be described below with reference to FIGS. 4 and 6.

【0013】図6(a)は、従来の冷蔵庫の冷凍室8の
室内温調制御を説明するためのフローチャートである。
まず、S1で冷凍室内温度検出手段21は冷凍室内温度
センサ19により冷凍室内の室内温度を検出し、S2で
冷凍室内温度設定手段23は冷凍室内温度設定スイッチ
22により冷凍室内の設定温度を検出する。そしてS3
で、冷凍室内温度差演算手段24は、冷凍室8の室内温
度と冷凍室8の室内設定温度の差を演算し、S4で回転
数演算手段25は図4に示すごとくコンプレッサ17の
運転回転数を決定し、S5で決定した回転数指令をイン
バータ回路26に送出する。この時ファン駆動回路27
は回転数指令が停止(0回転)かどうかを判断し、0回
転時はファン14を停止し、それ以外はファン14を運
転し冷却器14に風を送り、冷却された冷却器13と熱
交換を行い、冷風を室内に送ることにより室内の冷却を
行う。
FIG. 6 (a) is a flow chart for explaining the indoor temperature control of the freezer compartment 8 of the conventional refrigerator.
First, in S1, the freezing room temperature detecting means 21 detects the indoor temperature in the freezing room by the freezing room temperature sensor 19, and in S2 the freezing room temperature setting means 23 detects the set temperature in the freezing room by the freezing room temperature setting switch 22. . And S3
Then, the freezing room temperature difference calculating means 24 calculates the difference between the indoor temperature of the freezing room 8 and the indoor set temperature of the freezing room 8, and the rotation speed calculating means 25 at S4 operates the rotation speed of the compressor 17 as shown in FIG. Is determined and the rotation speed command determined in S5 is sent to the inverter circuit 26. At this time, the fan drive circuit 27
Determines whether the rotation speed command is stopped (0 rotation), stops the fan 14 when it is 0 rotation, and otherwise operates the fan 14 to blow air to the cooler 14 and cool the cooler 13 and heat. The room is cooled by exchanging it and sending cold air into the room.

【0014】図6(b)は、従来の冷蔵庫の冷蔵室9の
室内温調制御を説明するためのフローチャートである。
まず、S6で冷蔵室内温度検出手段31は冷蔵室内温度
センサ28により冷蔵室9の室内温度を検出し、S7で
冷蔵室内温度設定手段33は冷蔵室内温度設定スイッチ
32により冷凍室8の室内設定温度を検出する。
FIG. 6B is a flow chart for explaining the indoor temperature control of the refrigerating compartment 9 of the conventional refrigerator.
First, in S6, the refrigerating room temperature detecting means 31 detects the room temperature of the refrigerating room 9 by the refrigerating room temperature sensor 28, and in S7, the refrigerating room temperature setting means 33 uses the refrigerating room temperature setting switch 32 to set the room temperature of the freezing room 8. To detect.

【0015】そしてS8で、冷蔵室内温度差演算手段3
4は、冷蔵室9の室内温度と冷蔵室9の室内設定温度の
差を演算し、電動ダンパ18の開閉を決定し、S9で決
定した開閉指令を電動ダンパ駆動35に送出する。この
時電動ダンパ駆動回路35は開閉指令に基づき電動ダン
パ18を開閉する。
Then, in S8, the temperature difference calculating means 3 for the refrigerating room
Reference numeral 4 calculates the difference between the indoor temperature of the refrigerating compartment 9 and the indoor set temperature of the refrigerating compartment 9, determines whether to open or close the electric damper 18, and sends the opening / closing command determined in S9 to the electric damper drive 35. At this time, the electric damper drive circuit 35 opens / closes the electric damper 18 based on the opening / closing command.

【0016】以上により電動ダンパ18が開いていると
きには冷凍室8の温調制御によりコンプレッサ17が動
作しているときに送られてくる冷風が冷蔵室9内に導入
され、冷蔵室9にの温調を行なう。
As described above, when the electric damper 18 is open, the temperature control of the freezer compartment 8 controls the cold air sent during the operation of the compressor 17 into the refrigerating compartment 9 so that the temperature of the refrigerating compartment 9 is increased. Perform a key.

【0017】[0017]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、電動ダンパの開閉等により、冷却器の温
度が変化し、電動ダンパの閉時には冷却器を通過する空
気の流れは冷凍室内のみとなるため、電動ダンパの開時
に比べて冷却器を通過する空気温度が低下するので熱交
換量が少なくなり冷却器の温度が低下する。冷却器の温
度は高いほど低圧圧力が高くなりシステムの効率が上昇
するが、電動ダンパの開閉にかかわりなく冷凍室の室内
温度と室内設定温度によりコンプレッサの回転数を決定
しているため冷却器の温度が低下しても同一の回転数で
コンプレッサを運転しているので効率的な運転ができな
いという問題点を有していた。
However, in the above structure, the temperature of the cooler changes due to the opening and closing of the electric damper, and when the electric damper is closed, the air flow passing through the cooler is limited to the freezing chamber. Therefore, the temperature of the air passing through the cooler is lower than that when the electric damper is opened, so that the amount of heat exchange is reduced and the temperature of the cooler is lowered. The higher the temperature of the cooler, the lower the low pressure and the higher the efficiency of the system.However, regardless of the opening and closing of the electric damper, the rotation speed of the compressor is determined by the indoor temperature of the freezer and the indoor set temperature, so Even if the temperature is lowered, the compressor is operated at the same rotation speed, so that there is a problem that efficient operation cannot be performed.

【0018】さらに、コンプレッサの回転数が変化する
と冷媒の循環量が変化するため、適正な蒸発量を得るた
めには減圧装置の流路抵抗値も変化させなければならな
いが、減圧装置として1本のキャピラリーチューブを用
いているため、コンプレッサーの回転数変化に対応して
流路抵抗値変化させることができないため効率的な運転
ができないという問題点も有していた。
Further, since the circulation amount of the refrigerant changes when the rotation speed of the compressor changes, the flow path resistance value of the pressure reducing device must be changed to obtain an appropriate evaporation amount. Since the above capillary tube is used, it is impossible to change the flow path resistance value in response to the change in the rotation speed of the compressor, so that there is a problem that an efficient operation cannot be performed.

【0019】本発明は上記の問題点を解決するもので、
冷却器の温度を検出し、必要な冷却能力で運転し、効率
が良くなる温度に冷却器温度を維持するようコンプレッ
サの回転数を決定し、さらに、コンプレッサの回転数変
化に対して減圧装置の適正な流路抵抗値を設定する冷蔵
庫の能力制御装置を提供することを目的とする。
The present invention solves the above problems.
Detects the temperature of the cooler, operates with the required cooling capacity, determines the compressor speed to maintain the cooler temperature at a temperature at which the efficiency is improved, and further determines the decompression device against changes in the compressor speed. An object of the present invention is to provide a refrigerator capacity control device that sets an appropriate flow path resistance value.

【0020】[0020]

【課題を解決するための手段】上記目的を達成するため
に本発明の冷蔵庫の能力制御装置は、室内に設けられた
室内温度センサと、この室内温度センサにより前記室内
の温度を検出する室内温度検出手段と、前記室内の温度
を設定する室内温度設定手段と、この室内温度検出手段
により検出された室内温度と前記室内温度設定手段によ
り設定された室内設定温度との差を演算する室内温度差
演算手段と、この室内温度差演算手段の出力によりコン
プレッサの回転数及び、減圧装置の流路抵抗値を決定す
る回転数、流路抵抗値演算手段と、前記コンプレッサに
より圧縮された冷媒を蒸発させ、室内を冷却する冷却器
と、この冷却器にとりつけられた冷却器温度センサと、
この冷却器温度センサにより前記冷却器の温度を検出す
る冷却器温度検出手段と、この冷却器温度検出手段から
の出力により前記回転数、流路抵抗値演算手段にて決定
された回転数及び、流路抵抗値を補正する回転数、流路
抵抗値補正手段と、この回転数、流路抵抗値補正手段か
らの指令により前記コンプレッサを回転数制御するイン
バータ回路と、前記減圧装置の流路抵抗を制御する回路
とを備えた構成となっている。
In order to achieve the above object, a capacity control device for a refrigerator according to the present invention comprises an indoor temperature sensor provided in a room and an indoor temperature for detecting the indoor temperature by the indoor temperature sensor. Detection means, room temperature setting means for setting the temperature inside the room, and room temperature difference for calculating a difference between the room temperature detected by the room temperature detection means and the room temperature set by the room temperature setting means The calculation means and the rotation speed of the compressor and the rotation speed for determining the flow path resistance value of the pressure reducing device based on the output of the indoor temperature difference calculation means, the flow path resistance value calculation means, and the refrigerant compressed by the compressor are evaporated. , A cooler for cooling the room, and a cooler temperature sensor attached to the cooler,
Cooler temperature detection means for detecting the temperature of the cooler by the cooler temperature sensor, the rotation speed by the output from the cooler temperature detection means, the rotation speed determined by the flow path resistance value calculating means, and Rotation speed and flow path resistance value correcting means for correcting the flow path resistance value, an inverter circuit for controlling the rotation speed of the compressor in accordance with a command from the rotation speed and flow path resistance value correcting means, and flow path resistance of the pressure reducing device. And a circuit for controlling the.

【0021】また、室内に設けられた室内温度センサ
と、この室内温度センサにより前記室内の温度を検出す
る室内温度検出手段と、前記室内の温度を設定する室内
温度設定手段と、この室内温度検出手段により検出され
た室内温度と前記室内温度設定手段により設定された室
内設定温度との差を演算する室内温度差演算手段と、こ
の室内温度差演算手段の出力によりコンプレッサの回転
数及び、減圧装置の流路抵抗値を決定する回転数、流路
抵抗値演算手段と、前記コンプレッサにより圧縮された
冷媒を蒸発させ、室内を冷却する冷却器と、この冷却器
にとりつけられた冷却器温度センサと、この冷却器温度
センサにより前記冷却器の温度を検出する冷却器温度検
出手段と、この冷却器温度検出手段と前記冷凍室温度設
定手段からの出力により前記回転数、流路抵抗値演算手
段にて決定された回転数及び、流路抵抗値を補正する回
転数、流路抵抗値補正手段と、この回転数、流路抵抗値
補正手段からの指令により前記コンプレッサを回転数制
御するインバータ回路と、前記減圧装置の流路抵抗を制
御する回路とを備えた構成となっている。
Further, an indoor temperature sensor provided in the room, an indoor temperature detecting means for detecting the indoor temperature by the indoor temperature sensor, an indoor temperature setting means for setting the indoor temperature, and the indoor temperature detecting means. Indoor temperature difference calculating means for calculating the difference between the indoor temperature detected by the indoor temperature setting means and the indoor set temperature set by the indoor temperature setting means, and the rotation speed of the compressor and the pressure reducing device based on the output of the indoor temperature difference calculating means. The number of rotations for determining the flow path resistance value, flow path resistance value calculation means, a cooler for evaporating the refrigerant compressed by the compressor to cool the room, and a cooler temperature sensor attached to the cooler. , Cooler temperature detecting means for detecting the temperature of the cooler by the cooler temperature sensor, and output from the cooler temperature detecting means and the freezer compartment temperature setting means The rotation speed, the rotation speed determined by the flow path resistance value calculating means, the rotation speed for correcting the flow path resistance value, the flow path resistance value correcting means, and the rotation speed and the flow path resistance value correcting means. It is configured to include an inverter circuit that controls the rotation speed of the compressor according to a command, and a circuit that controls the flow path resistance of the pressure reducing device.

【0022】[0022]

【発明の実施形態】本発明は上記構成により、室内温度
を室内温度検出手段で検出し、室内の設定温度を室内温
度設定手段で検出し、室内温度差演算手段により室内温
度と室内設定温度の温度差を演算し、回転数、流路低抗
値演算手段でコンプレッサの回転数及び、減圧装置の流
路低抗値を決定し、冷却器温度検出手段で冷却器温度を
検出し冷却器温度が一定温度以下になればコンプレッサ
の回転数及び、減圧装置の流路低抗値を回転数、流路低
抗値補正手段で補正するため、適正な冷却能力でコンプ
レッサを運転でき、電動ダンパ等の動作時の冷却器温度
の冷えすぎによる運転効率の低下の防止と、コンプレッ
サの回転数変化に対応した流路低抗値の適正化設定によ
る冷却システム効率の向上とによる省エネルギー化を図
ることができる。
According to the present invention, the indoor temperature is detected by the indoor temperature detecting means, the indoor temperature setting means is detected by the indoor temperature setting means, and the indoor temperature difference calculating means detects the indoor temperature and the indoor setting temperature. The temperature difference is calculated, the rotation speed and the flow passage resistance value calculation means determine the rotation speed of the compressor and the flow passage resistance value of the decompression device, and the cooler temperature detection means detects the cooler temperature to determine the cooler temperature. If the temperature falls below a certain temperature, the rotational speed of the compressor and the flow path resistance value of the pressure reducing device are corrected by the rotation speed and flow path resistance value correcting means, so the compressor can be operated with an appropriate cooling capacity, and an electric damper, etc. It is possible to save energy by preventing a decrease in operating efficiency due to excessive cooling of the cooler temperature during operation of the cooling system and improving cooling system efficiency by optimizing the flow path resistance value corresponding to the change in the rotational speed of the compressor. it can.

【0023】また、冷凍室の設定温度毎にコンプレッサ
の回転数を補正できるため、どのような設定温度に設定
されたとしても設定温度毎に電動ダンパ等の動作時の冷
却器温度の冷えすぎによる運転効率の低下の防止と、コ
ンプレッサの回転数変化に対応した流路低抗値の適正化
設定による冷却システム効率の向上とによる省エネルギ
ー化を図ることができる。
Further, since the number of rotations of the compressor can be corrected for each set temperature of the freezer compartment, no matter what the set temperature is set, the cooler temperature during operation of the electric damper or the like becomes too cold for each set temperature. Energy saving can be achieved by preventing a decrease in operating efficiency and improving cooling system efficiency by appropriately setting a flow path resistance value corresponding to a change in the number of revolutions of the compressor.

【0024】[0024]

【実施の形態1】以下本発明の一実施例について、図面
を参照しながら説明する。また、図において、従来例と
共通のものは同一の番号を付し、説明を省略する。
First Embodiment An embodiment of the present invention will be described below with reference to the drawings. Further, in the figure, the same parts as those in the conventional example are designated by the same reference numerals, and the description thereof will be omitted.

【0025】図1は本発明の第1の実施例における冷蔵
庫の能力制御装置の構成を示すブロック図、図2は本発
明の第1の実施例における動作を説明するためのフロー
チャートである。
FIG. 1 is a block diagram showing the construction of a capacity control device for a refrigerator according to the first embodiment of the present invention, and FIG. 2 is a flow chart for explaining the operation in the first embodiment of the present invention.

【0026】図1において、44は減圧装置として設け
られた電動膨脹弁であり、45は電動膨脹弁制御回路で
ある。40は第1の冷凍室8の運転制御装置であり、冷
凍室内温度検出手段21、冷凍室内温度設定手段23、
冷凍室内温度温度差演算手段24、さらに、コンプレッ
サ17の回転数及び、電動膨脹弁44の流量(一般に電
動膨脹弁では流路低抗値の設定に相当するものとして流
量を設定するため、本実施例では流路低抗値を流量で置
き換えて説明する)を決定する回転数、流量演算手段3
9、回転数、流量補正手段41、冷却器温サ度検出手段
42よりなる。
In FIG. 1, reference numeral 44 is an electric expansion valve provided as a pressure reducing device, and 45 is an electric expansion valve control circuit. Reference numeral 40 denotes an operation control device for the first freezing compartment 8, which has a freezing compartment temperature detecting means 21, a freezing compartment temperature setting means 23,
The freezing room temperature temperature difference calculating means 24, the rotation speed of the compressor 17, and the flow rate of the electric expansion valve 44 (generally, since the flow rate is set to correspond to the setting of the flow path resistance value in the electric expansion valve, the present embodiment is performed). In the example, description will be made by replacing the flow path resistance value with the flow rate).
9, rotation speed, flow rate correction means 41, and cooler temperature degree detection means 42.

【0027】冷凍室内温度検出手段21は、冷凍室内温
度センサ19により冷凍室内の温度を検出し冷凍室内温
度設定手段23は、冷凍室8の室内温度を設定するため
の冷凍室内温度設定スイッチ21を操作すれば設定温度
を検出し、冷凍室8の室内設定温度を例えば−16℃、
−18℃や−20℃に設定する。
The freezing room temperature detecting means 21 detects the temperature inside the freezing room by the freezing room temperature sensor 19, and the freezing room temperature setting means 23 includes a freezing room temperature setting switch 21 for setting the indoor temperature of the freezing room 8. If it is operated, the set temperature is detected, and the indoor set temperature of the freezer compartment 8 is, for example, -16 ° C,
Set to -18 ° C or -20 ° C.

【0028】冷凍室内温度差演算手段24は、冷凍室内
温度検出手段21で検出した冷凍室内温度と冷凍室内温
度設定手段23が検出した冷凍室8の室内設定温度との
温度差を演算し、その温度差により回転数、流量演算手
段25でコンプレッサ17の回転数と電動膨脹弁44の
流量を決定する。
The freezing room temperature difference calculating means 24 calculates the temperature difference between the freezing room temperature detected by the freezing room temperature detecting means 21 and the indoor setting temperature of the freezing room 8 detected by the freezing room temperature setting means 23, and The rotation speed and the flow rate calculating means 25 determine the rotation speed of the compressor 17 and the flow rate of the electric expansion valve 44 based on the temperature difference.

【0029】冷却器温度検出手段42は冷却器温度セン
サ43の出力により冷却器の温度を検出し、回転数、流
量補正手段41に冷却器温度を送出する。
The cooler temperature detecting means 42 detects the temperature of the cooler based on the output of the cooler temperature sensor 43, and sends the cooler temperature to the rotation speed / flow rate correcting means 41.

【0030】回転数、流量補正手段41は冷凍室内設定
温度に対応して、まず一定に保つ冷却器温度(以降、回
転数補正温度と呼ぶ)を決定する。回転数補正温度は冷
凍室内設定温度以下で、かつ冷凍室8の室内を冷却で
き、効率よく運転できる温度である。例えば、冷凍室内
設定温度を−16℃、−18℃や−20℃に設定すれ
ば、回転数補正温度をそれぞれ−19℃、−21℃や−
23℃に設定する。
The rotation speed / flow rate correction means 41 first determines the cooler temperature to be kept constant (hereinafter referred to as the rotation speed correction temperature) in accordance with the set temperature in the freezing chamber. The rotation speed correction temperature is equal to or lower than the preset temperature of the freezing compartment, and the interior of the freezing compartment 8 can be cooled, so that the temperature can be efficiently operated. For example, if the freezer compartment set temperatures are set to -16 ° C, -18 ° C, and -20 ° C, the rotation speed correction temperatures are set to -19 ° C, -21 ° C, and-, respectively.
Set to 23 ° C.

【0031】さらに、冷却器温度が、決定した回転数補
正温度以下であれば、回転数演算手段で決定した回転数
及び流量を、冷却器が回転数補正温度となるように、回
転数及び、流量を補正し、インバータ回路に補正した回
転数指令を送出し、電動膨脹弁制御回路に補正した流量
指令を送出する。インバータ回路26は決められた回転
数でコンプレッサ17を運転し、電動膨脹弁制御回路4
5は決められた流量に電動膨脹弁44を設定し、ファン
駆動回路27は回転数指令が0以外の時ファン14を運
転する。
Further, if the cooler temperature is equal to or lower than the determined rotation speed correction temperature, the rotation speed and the flow rate determined by the rotation speed calculation means are set so that the cooler becomes the rotation speed correction temperature, The flow rate is corrected, the corrected rotation speed command is sent to the inverter circuit, and the corrected flow rate command is sent to the electric expansion valve control circuit. The inverter circuit 26 operates the compressor 17 at a predetermined rotation speed, and the electric expansion valve control circuit 4
5 sets the electric expansion valve 44 to the determined flow rate, and the fan drive circuit 27 operates the fan 14 when the rotation speed command is other than 0.

【0032】回転数、流量演算手段25で決定するコン
プレッサ17の回転数と電動膨脹弁44の流量は図3に
示す。電動膨脹弁44の流量はコンプレッサ17の回転
数ごとに適正な蒸発量が得られるように設定してある。
FIG. 3 shows the rotation speed of the compressor 17 and the flow rate of the electric expansion valve 44, which are determined by the rotation speed and the flow rate calculating means 25. The flow rate of the electric expansion valve 44 is set so that an appropriate evaporation amount can be obtained for each rotation speed of the compressor 17.

【0033】回転数、流量補正手段41は冷却器温度が
回転数補正温度以下になれば決定された回転数が0回転
あるいは最低の回転数(本実施例では1800回転)以
外の時に図3に示す回転数と流量を1つ下の回転数と流
量に補正するものである。
When the cooler temperature becomes equal to or lower than the rotation speed correction temperature, the rotation speed / flow rate correction means 41 is shown in FIG. 3 when the determined rotation speed is other than 0 rotation or the minimum rotation speed (1800 rotations in this embodiment). The indicated rotation speed and flow rate are corrected to the next lower rotation speed and flow rate.

【0034】以上のように構成された冷蔵庫の能力制御
装置について、以下、図1、図2、図3を用いてその動
作を説明する。
The operation of the refrigerator capacity control device configured as described above will be described below with reference to FIGS. 1, 2, and 3.

【0035】図2は、温調制御を説明するためのフロー
チャートである。まず、S1で冷凍室内温度検出手段2
1は冷凍室内温度センサ19により冷凍室内温度を検出
し、S2で冷凍室内温度設定手段23は冷凍室内温度設
定スイッチ22により冷凍室8の室内設定温度を検出す
る。
FIG. 2 is a flow chart for explaining the temperature control. First, in S1, the freezing room temperature detecting means 2
1, the freezing room temperature sensor 19 detects the freezing room temperature, and the freezing room temperature setting means 23 detects the indoor set temperature of the freezing room 8 by the freezing room temperature setting switch 22 in S2.

【0036】そしてS3で、冷凍室内温度差演算手段2
4は、冷凍室8の室内温度と冷凍室8の室内設定温度の
差を演算し、S4で回転数、流量演算手段25は図3に
示すごとくコンプレッサ17の運転回転数と、電動膨脹
弁44の流量を決定する。
Then, in S3, the freezing room temperature difference calculating means 2
4 calculates the difference between the indoor temperature of the freezer compartment 8 and the indoor set temperature of the freezer compartment 8, and the rotation speed and flow rate calculating means 25 at S4 are the operation rotation speed of the compressor 17 and the electric expansion valve 44 as shown in FIG. Determine the flow rate of.

【0037】S10で回転数補正手段41は冷凍室温度
設定手段23で検出した冷凍室設定温度により回転数補
正温度を決定し、S11で冷却器温度検出手段42から
の冷却器温度を検出する。
In S10, the rotation speed correction means 41 determines the rotation speed correction temperature based on the freezer compartment set temperature detected by the freezer compartment temperature setting means 23, and in S11 the cooler temperature from the cooler temperature detection means 42 is detected.

【0038】そしてS12で回転数補正温度と冷却器温
度を比較し、S13で冷却器温度が回転数補正温度以下
か回転数補正温度より上かを判断し、以下であればS1
4に進み、S4で決定された回転数及び、流量をコンプ
レッサー17の回転数が0回転あるいは最低回転数でな
ければ1つ下の回転数及び、流量に補正し、S5で補正
した回転数指令をインバータ回路26及び、電動膨脹弁
制御回路45に送出する。
Then, in S12, the rotation speed correction temperature and the cooler temperature are compared, and in S13 it is determined whether the cooler temperature is below the rotation speed correction temperature or above the rotation speed correction temperature.
4, the rotational speed and the flow rate determined in S4 are corrected to the rotational speed and the flow rate that are one lower than the rotational speed and the flow rate of the compressor 17 if the rotational speed of the compressor 17 is not 0 rotation or the minimum rotational speed, and the rotational speed command corrected in S5. Is sent to the inverter circuit 26 and the electric expansion valve control circuit 45.

【0039】またS13において冷却器温度が回転数補
正温度より上であればS5に進む。この時ファン駆動回
路27は回転数指令が停止(0回転)かどうかを判断
し、0回転時はファン14を停止し、それ以外はファン
14を運転し冷却器14に風を送り、冷却された冷却器
13と熱交換を行い、冷風を室内に送ることにより室内
の冷却を行う。
If the cooler temperature is higher than the rotation speed correction temperature in S13, the process proceeds to S5. At this time, the fan drive circuit 27 determines whether or not the rotation speed command is stopped (0 rotation). When the rotation speed is 0 rotation, the fan 14 is stopped, and otherwise the fan 14 is operated to send air to the cooler 14 to cool the fan. The interior of the room is cooled by exchanging heat with the cooler 13 and sending cool air into the room.

【0040】冷蔵室9の運転制御は図6の(b)に示す
ものと同じものである。このような動作を行う冷蔵庫の
能力制御装置において、冷凍室8及び冷蔵室9の温度が
上昇すると、冷蔵室9の室内温度と室内設定温度差が大
きくなり、電動ダンパ駆動手段35は電動ダンパ18を
開く。冷凍室8も室内温度と室内設定温度差が大きくな
り、回転数、流量演算手段25は温度差に応じコンプレ
ッサ17の回転数及び、電動膨脹弁44の流量を決定
し、インバータ回路26は決定された回転数でコンプレ
ッサ17を運転し、電動膨脹弁制御回路45は決定され
た流量に電動膨脹弁を設定し、ファン駆動手段27はフ
ァン14を運転し、冷却器13が冷却され、冷凍室8及
び冷蔵室9を冷却する。
The operation control of the refrigerator compartment 9 is the same as that shown in FIG. 6 (b). In the capacity control device for a refrigerator that performs such an operation, when the temperatures of the freezing compartment 8 and the refrigerating compartment 9 rise, the difference between the room temperature of the refrigerating compartment 9 and the room set temperature increases, and the electric damper drive means 35 causes the electric damper 18 to operate. open. The difference between the indoor temperature and the indoor set temperature also increases in the freezing compartment 8, the rotation speed / flow rate calculation means 25 determines the rotation speed of the compressor 17 and the flow rate of the electric expansion valve 44 according to the temperature difference, and the inverter circuit 26 is determined. The electric expansion valve control circuit 45 sets the electric expansion valve to the determined flow rate, the fan driving means 27 operates the fan 14, the cooler 13 is cooled, and the freezer compartment 8 is operated. And the refrigerating chamber 9 is cooled.

【0041】次に、冷凍室9の室内温度が下がってくる
と、室内温度と室内設定温度との温度差が少なくなり回
転数、流量演算手段25は温度差に応じた回転数と流量
を決定し、インバータ回路26はその回転数でコンプレ
ッサ17を運転し、電動膨脹弁制御回路45は決定され
た流量に電動膨脹弁を設定する。 そして冷蔵室9の室
内温度が室内設定温度以下になると電動ダンパ駆動手段
35は電動ダンパ18を閉め冷蔵室9は冷却されなくな
り、冷却器温度が低下する。このとき冷却器温度が回転
数補正温度以下になり回転数が0回転あるいは最低回転
数以外であれば回転数、流量補正手段41は回転数及
び、流量を1つ下の回転数に補正し、補正指令をインバ
ータ回路26及び電動膨脹弁制御回路45に送出し、イ
ンバータ回路26は補正した回転数でコンプレッサ17
を運転し、電動膨脹弁制御回路は補正した流量に電動膨
脹弁44を設定する。その結果、高圧圧力が下がり冷却
器温度は上昇する。
Next, when the room temperature of the freezing room 9 decreases, the temperature difference between the room temperature and the room set temperature decreases, and the rotation speed and flow rate calculating means 25 determines the rotation speed and the flow rate according to the temperature difference. Then, the inverter circuit 26 operates the compressor 17 at the rotation speed, and the electric expansion valve control circuit 45 sets the electric expansion valve to the determined flow rate. When the indoor temperature of the refrigerating compartment 9 becomes equal to or lower than the indoor set temperature, the electric damper driving means 35 closes the electric damper 18, the refrigerating compartment 9 is no longer cooled, and the cooler temperature is lowered. At this time, if the cooler temperature becomes equal to or lower than the rotation speed correction temperature and the rotation speed is 0 rotation or other than the minimum rotation speed, the rotation speed and the flow rate correction unit 41 corrects the rotation speed and the flow rate to the one lower rotation speed, A correction command is sent to the inverter circuit 26 and the electric expansion valve control circuit 45, and the inverter circuit 26 uses the corrected rotation speed to compress the compressor 17
The electric expansion valve control circuit sets the electric expansion valve 44 to the corrected flow rate. As a result, the high pressure decreases and the cooler temperature rises.

【0042】本実施例では、補正する回転数及び、流量
を段階的に補正しているが、補正する回転数及び、流量
を連続で補正することもできる。
In this embodiment, the rotational speed to be corrected and the flow rate are corrected stepwise, but the rotational speed to be corrected and the flow rate can be continuously corrected.

【0043】従って、本実施例では、冷凍室内温度と冷
凍室内設定温度の温度差によりコンプレッサの回転数及
び電動膨脹弁の流量を決定し、冷凍室内設定温度により
回転数補正温度を決定し、冷却器温度が回転数補正温度
以下になればコンプレッサーの回転数及び、電動膨脹弁
の流量を1つ下の回転数及び流量にするため、適正な冷
却能力でコンプレッサを運転でき、電動ダンパ等の動作
時の冷却器温度の冷えすぎによる運転効率の低下の防止
と、コンプレッサの回転数変化に対応した流路低抗値の
適正化設定による冷却システム効率の向上とによる省エ
ネルギー化を図ることができる。
Therefore, in the present embodiment, the rotational speed of the compressor and the flow rate of the electric expansion valve are determined by the temperature difference between the freezing chamber temperature and the set temperature in the freezing chamber, and the rotational speed correction temperature is determined by the set temperature in the freezing chamber for cooling. If the temperature of the device falls below the rotation speed correction temperature, the rotation speed of the compressor and the flow rate of the electric expansion valve will be set to the rotation speed and flow rate one level lower, so the compressor can be operated with an appropriate cooling capacity and the operation of the electric damper, etc. It is possible to save energy by preventing a decrease in operating efficiency due to excessive cooling of the cooler temperature at the time, and improving cooling system efficiency by appropriately setting the flow path resistance value corresponding to the change in the rotational speed of the compressor.

【0044】また、冷凍室の設定温度毎にコンプレッサ
の回転数を補正できるため、どのような設定温度に設定
されたとしても設定温度毎に電動ダンパ等の動作時の冷
却器温度の冷えすぎによる運転効率の低下の防止と、コ
ンプレッサの回転数変化に対応した流路低抗値の適正化
設定による冷却システム効率の向上とによる省エネルギ
ー化を図ることができる。
Further, since the number of revolutions of the compressor can be corrected for each set temperature of the freezing room, no matter what the set temperature is set, the cooler temperature during operation of the electric damper or the like becomes too cold for each set temperature. Energy saving can be achieved by preventing a decrease in operating efficiency and improving cooling system efficiency by appropriately setting a flow path resistance value corresponding to a change in the number of revolutions of the compressor.

【0045】[0045]

【発明の効果】以上のように、本発明の冷蔵庫の能力制
御装置は、室内に設けられた室内温度センサと、この室
内温度センサにより前記室内の温度を検出する室内温度
検出手段と、前記室内の温度を設定する室内温度設定手
段と、この室内温度検出手段により検出された室内温度
と前記室内温度設定手段により設定された室内設定温度
との差を演算する室内温度差演算手段と、この室内温度
差演算手段の出力によりコンプレッサの回転数及び、減
圧装置の流路抵抗値を決定する回転数、流路抵抗値演算
手段と、前記コンプレッサにより圧縮された冷媒を蒸発
させ、室内を冷却する冷却器と、この冷却器にとりつけ
られた冷却器温度センサと、この冷却器温度センサによ
り前記冷却器の温度を検出する冷却器温度検出手段と、
この冷却器温度検出手段からの出力により前記回転数、
流路抵抗値演算手段にて決定された回転数及び、流路抵
抗値を補正する回転数、流路抵抗値補正手段と、この回
転数、流路抵抗値補正手段からの指令により前記コンプ
レッサを回転数制御するインバータ回路と、前記減圧装
置の流路抵抗を制御する回路とを備えることにより、室
内温度を室内温度検出手段で検出し、室内の設定温度を
室内温度設定手段で検出し、室内温度差演算手段により
室内温度と室内設定温度の温度差を演算し、回転数、流
路低抗値演算手段でコンプレッサの回転数及び、減圧装
置の流路低抗値を決定し、冷却器温度検出手段で冷却器
温度を検出し冷却器温度が一定温度以下になればコンプ
レッサの回転数及び、減圧装置の流路低抗値を回転数、
流路低抗値補正手段で補正するため、適正な冷却能力で
コンプレッサを運転でき、電動ダンパ等の動作時の冷却
器温度の冷えすぎによる運転効率の低下の防止と、コン
プレッサの回転数変化に対応した流路低抗値の適正化設
定による冷却システム効率の向上とによる省エネルギー
化を図ることができる。
As described above, the capacity control device for a refrigerator according to the present invention is provided with an indoor temperature sensor provided in the room, an indoor temperature detecting means for detecting the indoor temperature by the indoor temperature sensor, and the indoor room. Room temperature setting means for setting the temperature of the room, room temperature difference calculating means for calculating the difference between the room temperature detected by the room temperature detecting means and the room temperature set by the room temperature setting means, and the room temperature difference calculating means. Cooling for cooling the room by evaporating the refrigerant compressed by the compressor, the rotation speed of the compressor and the flow path resistance value calculation means for determining the flow path resistance value of the pressure reducing device based on the output of the temperature difference calculation means A cooler, a cooler temperature sensor attached to the cooler, and cooler temperature detecting means for detecting the temperature of the cooler by the cooler temperature sensor,
By the output from this cooler temperature detection means, the number of revolutions,
The rotation speed determined by the flow path resistance value calculating means, the rotation speed for correcting the flow path resistance value, the flow path resistance value correcting means, and the compressor based on the rotation speed and the command from the flow path resistance value correcting means. By providing an inverter circuit for controlling the number of revolutions and a circuit for controlling the flow path resistance of the pressure reducing device, the indoor temperature is detected by the indoor temperature detecting means, and the indoor set temperature is detected by the indoor temperature setting means. The temperature difference calculation means calculates the temperature difference between the room temperature and the room set temperature, and the rotation speed and the flow passage resistance value calculation means determine the rotation speed of the compressor and the flow passage resistance value of the decompression device to determine the cooler temperature. When the cooler temperature is detected by the detecting means and the cooler temperature becomes equal to or lower than a certain temperature, the rotation speed of the compressor and the flow passage resistance value of the pressure reducing device are set to the rotation speed,
Since it is corrected by the flow path resistance value correction means, it is possible to operate the compressor with an appropriate cooling capacity, prevent the operation efficiency from decreasing due to overcooling of the cooler temperature during operation of the electric damper, and prevent changes in the compressor rotation speed. Energy saving can be achieved by improving the efficiency of the cooling system by appropriately setting the flow path resistance value.

【0046】また、室内に設けられた室内温度センサ
と、この室内温度センサにより前記室内の温度を検出す
る室内温度検出手段と、前記室内の温度を設定する室内
温度設定手段と、この室内温度検出手段により検出され
た室内温度と前記室内温度設定手段により設定された室
内設定温度との差を演算する室内温度差演算手段と、こ
の室内温度差演算手段の出力によりコンプレッサの回転
数及び、減圧装置の流路抵抗値を決定する回転数、流路
抵抗値演算手段と、前記コンプレッサにより圧縮された
冷媒を蒸発させ、室内を冷却する冷却器と、この冷却器
にとりつけられた冷却器温度センサと、この冷却器温度
センサにより前記冷却器の温度を検出する冷却器温度検
出手段と、この冷却器温度検出手段と前記冷凍室温度設
定手段からの出力により前記回転数、流路抵抗値演算手
段にて決定された回転数及び、流路抵抗値を補正する回
転数、流路抵抗値補正手段と、この回転数、流路抵抗値
補正手段からの指令により前記コンプレッサを回転数制
御するインバータ回路と、前記減圧装置の流路抵抗を制
御する回路とを備えることにより、室内温度を室内温度
検出手段で検出し、室内の設定温度を室内温度設定手段
で検出し、室内温度差演算手段により室内温度と室内設
定温度の温度差を演算し、回転数、流路低抗値演算手段
でコンプレッサの回転数及び、減圧装置の流路低抗値を
決定し、冷却器温度検出手段で冷却器温度を検出し冷却
器温度が一定温度以下になればコンプレッサの回転数及
び、減圧装置の流路低抗値を回転数、流路低抗値補正手
段で補正するため、適正な冷却能力でコンプレッサを運
転でき、電動ダンパ等の動作時の冷却器温度の冷えすぎ
による運転効率の低下の防止と、コンプレッサの回転数
変化に対応した流路低抗値の適正化設定による冷却シス
テム効率の向上とによる省エネルギー化を図ることがで
きる。さらに、冷凍室の設定温度毎にコンプレッサの回
転数を補正できるため、どのような設定温度に設定され
たとしても設定温度毎に電動ダンパ等の動作時の冷却器
温度の冷えすぎによる運転効率の低下の防止と、コンプ
レッサの回転数変化に対応した流路低抗値の適正化設定
による冷却システム効率の向上とによる省エネルギー化
を図ることができる。
Further, an indoor temperature sensor provided in the room, an indoor temperature detecting means for detecting the indoor temperature by the indoor temperature sensor, an indoor temperature setting means for setting the indoor temperature, and the indoor temperature detecting means. Indoor temperature difference calculating means for calculating the difference between the indoor temperature detected by the indoor temperature setting means and the indoor set temperature set by the indoor temperature setting means, and the rotation speed of the compressor and the pressure reducing device based on the output of the indoor temperature difference calculating means. The number of rotations for determining the flow path resistance value, flow path resistance value calculation means, a cooler for evaporating the refrigerant compressed by the compressor to cool the room, and a cooler temperature sensor attached to the cooler. , Cooler temperature detecting means for detecting the temperature of the cooler by the cooler temperature sensor, and output from the cooler temperature detecting means and the freezer compartment temperature setting means The rotation speed, the rotation speed determined by the flow path resistance value calculating means, the rotation speed for correcting the flow path resistance value, the flow path resistance value correcting means, and the rotation speed and the flow path resistance value correcting means. By including an inverter circuit that controls the rotation speed of the compressor according to a command and a circuit that controls the flow path resistance of the pressure reducing device, the room temperature is detected by the room temperature detecting means, and the set temperature in the room is set to the room temperature setting means. The temperature difference between the room temperature and the room set temperature is calculated by the indoor temperature difference calculation means, and the rotation speed and the flow passage resistance value calculation means determine the rotation speed of the compressor and the flow passage resistance value of the pressure reducing device. If the cooler temperature is detected by the cooler temperature detecting means and the cooler temperature becomes equal to or lower than a certain temperature, the rotation speed of the compressor and the flow passage resistance value of the pressure reducing device are changed by the rotation speed and flow passage resistance value correcting means. With the correct cooling capacity to compensate It is possible to operate the compressor, prevent the operating efficiency from decreasing due to the cooler temperature when the electric damper etc. is operating, and improve the cooling system efficiency by optimizing the flow passage low resistance value corresponding to the change in compressor speed. Energy saving can be achieved by Furthermore, because the compressor speed can be corrected for each set temperature in the freezer compartment, no matter what the set temperature is set, the operating efficiency due to the overcooling of the cooler temperature during operation of the electric damper etc. Energy saving can be achieved by preventing the decrease and improving the efficiency of the cooling system by appropriately setting the flow passage resistance value corresponding to the change in the rotation speed of the compressor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す冷蔵庫の能力制御
装置のブロック図
FIG. 1 is a block diagram of a refrigerator capacity control device according to a first embodiment of the present invention.

【図2】図1における動作を説明するためのフローチャ
ート
FIG. 2 is a flowchart for explaining the operation in FIG.

【図3】本発明における回転数、流量演算手段で決定さ
れるコンプレッサの運転回転数と電動膨脹弁44の流量
を示す特性図
FIG. 3 is a characteristic diagram showing the operating speed of the compressor and the flow rate of the electric expansion valve 44, which are determined by the rotational speed and the flow rate calculating means in the present invention.

【図4】従来の冷蔵庫の能力制御装置のブロック図FIG. 4 is a block diagram of a conventional refrigerator capacity control device.

【図5】従来例における回転数演算手段で決定されるコ
ンプレッサの運転回転数と温度差を示す特性図
FIG. 5 is a characteristic diagram showing a difference in operating speed and a temperature difference of a compressor, which is determined by a speed calculating unit in a conventional example.

【図6】図4における動作を説明するためのフローチャ
ート
6 is a flowchart for explaining the operation in FIG.

【符号の説明】[Explanation of symbols]

13 冷却器 17 コンプレッサ 18 電動ダンパ 19 冷凍室内温度センサ 21 冷凍室内温度検出手段 22 冷凍室内温度設定スイッチ 23 冷凍室内温度設定手段 24 冷凍室内温度差演算手段 25 回転数、流量演算手段 26 インバータ回路 40 冷凍室の運転制御装置 41 回転数、流量補正手段 42 冷却器温度検出手段 43 冷却器温度センサ 44 電動膨脹弁(減圧装置) 45 電動膨脹弁制御回路 13 cooler 17 compressor 18 electric damper 19 freezing room temperature sensor 21 freezing room temperature detecting means 22 freezing room temperature setting switch 23 freezing room temperature setting means 24 freezing room temperature difference calculating means 25 rotational speed and flow rate calculating means 26 inverter circuit 40 refrigeration Chamber operation control device 41 Rotation speed / flow rate correction means 42 Cooler temperature detection means 43 Cooler temperature sensor 44 Electric expansion valve (pressure reducing device) 45 Electric expansion valve control circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小田 雅隆 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 森下 賢一 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 浜野 泰樹 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 金岡 伸一 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 窪田 吉孝 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 栗本 和典 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masataka Oda 4-5 Takaida Hondori, Higashi-Osaka City, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Inventor Kenichi Morishita 4-chome Takaidamoto-dori, Higashi-Osaka City, Osaka Prefecture 2-5 Matsushita Refrigerator Co., Ltd. (72) Inventor Yasuki Hamano 4-2-5 Takaida Hondori, Higashi-Osaka City, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Inventor Shinichi Kanaoka Takaida Hondori, Higashi-Osaka City, Osaka Prefecture 4-2-5 Matsushita Refrigerator Co., Ltd. (72) Inventor Yoshitaka Kubota 4-2-5 Takaidahondori, Higashiosaka-shi, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Inventor Kazunori Kurimoto Takaida, Higashi-Osaka City, Osaka Prefecture 4-5-2 Hondori Matsushita Cold Machinery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 食品を貯蔵する室と、この室内に設けら
れた室内温度センサと、この室内温度センサにより前記
室内の温度を検出する室内温度検出手段と、前記室内の
温度を設定する室内温度設定手段と、この室内温度検出
手段により検出された室内温度と前記室内温度設定手段
により設定された室内設定温度との差を演算する室内温
度差演算手段と、この室内温度差演算手段の出力により
コンプレッサの回転数及び、減圧装置の流路抵抗値を決
定する回転数、流路抵抗値演算手段と、前記コンプレッ
サにより圧縮された冷媒を蒸発させ、室内を冷却する冷
却器と、この冷却器にとりつけられた冷却器温度センサ
と、この冷却器温度センサにより前記冷却器の温度を検
出する冷却器温度検出手段と、この冷却器温度検出手段
からの出力により前記回転数、流路抵抗値演算手段にて
決定された回転数及び、流路抵抗値を補正する回転数、
流路抵抗値補正手段と、この回転数、流路抵抗値補正手
段からの指令により前記コンプレッサを回転数制御する
インバータ回路と、前記減圧装置の流路抵抗を制御する
回路とを備えたことを特徴とする冷蔵庫の能力制御装
置。
1. A room for storing food, an indoor temperature sensor provided in the room, an indoor temperature detecting means for detecting the indoor temperature by the indoor temperature sensor, and an indoor temperature for setting the indoor temperature. The setting means, the room temperature difference calculating means for calculating the difference between the room temperature detected by the room temperature detecting means and the room temperature set by the room temperature setting means, and the output of the room temperature difference calculating means The number of rotations of the compressor, the number of rotations for determining the flow path resistance value of the pressure reducing device, flow path resistance value calculating means, a cooler for evaporating the refrigerant compressed by the compressor to cool the room, and this cooler. The attached cooler temperature sensor, the cooler temperature detecting means for detecting the temperature of the cooler by the cooler temperature sensor, and the output from the cooler temperature detecting means The number of rotations, the number of rotations determined by the flow path resistance value calculating means, and the number of rotations for correcting the flow path resistance value,
A flow path resistance value correcting means, an inverter circuit for controlling the rotation speed of the compressor in accordance with the rotation speed and a command from the flow path resistance value correcting means, and a circuit for controlling the flow path resistance of the pressure reducing device. Characteristic refrigerator capacity control device.
【請求項2】 食品を貯蔵する室と、この室内に設けら
れた室内温度センサと、この室内温度センサにより前記
室内の温度を検出する室内温度検出手段と、前記室内の
温度を設定する室内温度設定手段と、この室内温度検出
手段により検出された室内温度と前記室内温度設定手段
により設定された室内設定温度との差を演算する室内温
度差演算手段と、この室内温度差演算手段の出力により
コンプレッサの回転数及び、減圧装置の流路抵抗値を決
定する回転数、流路抵抗値演算手段と、前記コンプレッ
サにより圧縮された冷媒を蒸発させ、室内を冷却する冷
却器と、この冷却器にとりつけられた冷却器温度センサ
と、この冷却器温度センサにより前記冷却器の温度を検
出する冷却器温度検出手段と、この冷却器温度検出手段
と前記冷凍室温度設定手段からの出力により前記回転
数、流路抵抗値演算手段にて決定された回転数及び、流
路抵抗値を補正する回転数、流路抵抗値補正手段と、こ
の回転数、流路抵抗値補正手段からの指令により前記コ
ンプレッサを回転数制御するインバータ回路と、前記減
圧装置の流路抵抗を制御する回路とを備えたことを特徴
とする冷蔵庫の能力制御装置。
2. A room for storing food, an indoor temperature sensor provided in the room, an indoor temperature detecting means for detecting the indoor temperature by the indoor temperature sensor, and an indoor temperature for setting the indoor temperature. The setting means, the room temperature difference calculating means for calculating the difference between the room temperature detected by the room temperature detecting means and the room temperature set by the room temperature setting means, and the output of the room temperature difference calculating means The number of rotations of the compressor, the number of rotations for determining the flow path resistance value of the pressure reducing device, flow path resistance value calculating means, a cooler for evaporating the refrigerant compressed by the compressor to cool the room, and this cooler. An attached cooler temperature sensor, a cooler temperature detecting means for detecting the temperature of the cooler by the cooler temperature sensor, a cooler temperature detecting means and the freezer compartment temperature setting means. The rotation speed determined by the flow path resistance value calculating means based on the output from the setting means, the rotation speed for correcting the flow path resistance value, the flow path resistance value correcting means, and the rotation speed and the flow path resistance A capacity control device for a refrigerator comprising an inverter circuit for controlling the rotation speed of the compressor according to a command from a value correction means, and a circuit for controlling a flow path resistance of the pressure reducing device.
JP7334572A 1995-12-22 1995-12-22 Capacity control device of refrigerator Pending JPH09178322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7334572A JPH09178322A (en) 1995-12-22 1995-12-22 Capacity control device of refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7334572A JPH09178322A (en) 1995-12-22 1995-12-22 Capacity control device of refrigerator

Publications (1)

Publication Number Publication Date
JPH09178322A true JPH09178322A (en) 1997-07-11

Family

ID=18278909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7334572A Pending JPH09178322A (en) 1995-12-22 1995-12-22 Capacity control device of refrigerator

Country Status (1)

Country Link
JP (1) JPH09178322A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083621A (en) * 2001-09-12 2003-03-19 Mitsubishi Heavy Ind Ltd Marine refrigerating unit
WO2004022920A1 (en) * 2002-09-06 2004-03-18 Drysdale Kenneth William Patte Apparatus, method and software for use with an air conditioning cycle
CN100374687C (en) * 2002-09-06 2008-03-12 可持续能源系统有限公司 Apparatus, method and software for use with an air conditioning cycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083621A (en) * 2001-09-12 2003-03-19 Mitsubishi Heavy Ind Ltd Marine refrigerating unit
WO2004022920A1 (en) * 2002-09-06 2004-03-18 Drysdale Kenneth William Patte Apparatus, method and software for use with an air conditioning cycle
CN100374687C (en) * 2002-09-06 2008-03-12 可持续能源系统有限公司 Apparatus, method and software for use with an air conditioning cycle

Similar Documents

Publication Publication Date Title
KR0182759B1 (en) Control method of high efficiency multi-evaporator cycle
JP3048564B1 (en) Refrigerator with a compressor whose compression capacity is variable depending on the temperature of the outside air and the temperature of the evaporator
EP2416095A2 (en) Refrigerator and control method thereof
US6658879B2 (en) Direct cooling type refrigerator
JP2001082850A (en) Refrigerator
EP1418392A2 (en) Cooling apparatus
KR100189100B1 (en) Refirgerator manufacturing method having high efficient multi evaporator cycle
JPH11148761A (en) Refrigerator
JPH09196535A (en) Refrigerator
JPH09178322A (en) Capacity control device of refrigerator
JPH1019441A (en) Capacity control device of refrigerator
JP3541149B2 (en) refrigerator
US8635880B2 (en) Refrigerator having a plurality of storage containers and control method of the same
JP3497759B2 (en) refrigerator
JP3908801B2 (en) Refrigerator operation control device
JPH09145214A (en) Operation controller for refrigerator
JP2002206840A (en) Refrigerator
KR100208364B1 (en) Refrigerator and its control method
KR100321245B1 (en) Control method for operation of kimch'i store house
JP2000213847A (en) Refrigerator
JPH09138048A (en) Operation control device of refrigerator
JPH1019440A (en) Operation control device of refrigerator
EP1761733B1 (en) Refrigerator, and method for controlling operation of the same
JPH07260313A (en) Refrigerator
JPH0670546B2 (en) refrigerator