JP2000213847A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2000213847A
JP2000213847A JP11018227A JP1822799A JP2000213847A JP 2000213847 A JP2000213847 A JP 2000213847A JP 11018227 A JP11018227 A JP 11018227A JP 1822799 A JP1822799 A JP 1822799A JP 2000213847 A JP2000213847 A JP 2000213847A
Authority
JP
Japan
Prior art keywords
compressor
temperature
time
refrigerator
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11018227A
Other languages
Japanese (ja)
Other versions
JP3732032B2 (en
Inventor
Satoru Hasegawa
覚 長谷川
Zenichi Inoue
善一 井上
Takahiro Fujimitsu
貴宏 藤光
Hiroshi Yoshimura
宏 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP01822799A priority Critical patent/JP3732032B2/en
Publication of JP2000213847A publication Critical patent/JP2000213847A/en
Application granted granted Critical
Publication of JP3732032B2 publication Critical patent/JP3732032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation

Abstract

PROBLEM TO BE SOLVED: To set the operating rate of a compressor constantly at a specified ideal value by controlling the r.p.m. of the compressor such that the time between start and stop of the compressor is specified. SOLUTION: A control means 2 comprising a microcomputer controls the r.p.m. of a compressor 4 within a specified range and an inner temperature detector 3 detects the inner temperature every specified time. The compressor 4 is subjected to start/stop control based on the detected inner temperature thus sustaining the inner temperature at a specified set level. The time between start and stop of the compressor 4 is specified and the compressor 4 is operated only during the specified time thus controlling the r.p.m. of a compressor 4. According to the arrangement, operating rate of the compressor 4, i.e., the value of operating time ÷ (operating time + stopping time) during one start/ stop cycle, can be set constantly at an ideal value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機の回転数制
御手段を備えた冷蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator provided with means for controlling the number of revolutions of a compressor.

【0002】[0002]

【従来の技術】従来のこの種の冷蔵庫は、特開平9−1
26618号公報に開示されているように、回転数可変
駆動型の圧縮機と、冷凍庫内温度を検出する冷凍室温度
検出回路と、回転数可変駆動型の送風機とを備え、前記
冷凍室温度検出回路の出力によって冷凍負荷に応じて前
記圧縮機及び送風機の回転数を段階的に変化させる制御
手段を備えてなる冷蔵庫がある。
2. Description of the Related Art A conventional refrigerator of this kind is disclosed in
As disclosed in Japanese Patent No. 26618, the refrigerator includes a variable-speed drive compressor, a freezer temperature detection circuit for detecting the temperature in the freezer, and a variable-speed drive fan. There is a refrigerator provided with control means for changing the number of revolutions of the compressor and the blower in a stepwise manner in accordance with a refrigeration load by an output of a circuit.

【0003】[0003]

【発明が解決しようとする課題】上記、特開平9−12
6618号公報に開示されている冷蔵庫は、負荷に応じ
て必要最小限の回転数で圧縮機を運転するものであり、
圧縮機を必要最小限の回転数で運転したとき、冷凍庫内
温度を所定の温度に冷却するには運転時間が長くかかり
過ぎ、キャビネット内面に張り付けている冷凍サイクル
のための凝縮パイプからの放熱の一部が、冷蔵庫内に侵
入する時間も圧縮機の運転時間と同じだけ長くなり、そ
のため凝縮パイプからの侵入熱量が増加し、冷却効率の
悪い冷蔵庫となるという課題がある。また、運転時間が
長いため、騒音となる煩わしい圧縮機等の運転音を長時
間聞かされるという課題もある。
SUMMARY OF THE INVENTION The above-mentioned JP-A-9-12
The refrigerator disclosed in Japanese Patent No. 6618 operates a compressor at a minimum necessary number of revolutions according to a load.
When the compressor is operated at the required minimum number of revolutions, it takes too long operation time to cool the freezer temperature to the predetermined temperature, and the heat radiation from the condensing pipe for the refrigeration cycle attached to the inner surface of the cabinet is In some cases, the time to enter the refrigerator is as long as the operation time of the compressor, so that the amount of heat entering from the condensing pipe increases, resulting in a problem that the refrigerator has poor cooling efficiency. In addition, since the operation time is long, there is also a problem that a troublesome operation sound of a compressor or the like that causes noise is heard for a long time.

【0004】[0004]

【課題を解決するための手段】本発明の冷蔵庫は上記の
ような課題を解決したもので、請求項1記載の発明は、
圧縮機の回転数を所定の範囲で制御する回転数制御手段
と、庫内温度を所定の時間毎に検出する庫内温度検出手
段とを備え、上記庫内温度検出手段にて検出された庫内
温度によって、上記圧縮機の運転・停止の制御をするこ
とにより、庫内温度が所定の設定温度に保たれる冷蔵庫
において、圧縮機の起動から停止までの時間が所定の時
間となるように、上記圧縮機の回転数を制御する制御手
段を備えたことを特徴とするものであり、この構成によ
り、圧縮機の起動から停止までの運転時間が設定された
所定時間内に安定して制御されるため、常に圧縮機の運
転率(運転・停止1サイクル中:運転時間÷(運転時間
+停止時間))の値を理想の所定値に設定でき、負荷条
件にかかわらず冷凍サイクルによる凝縮熱の侵入をも考
慮した冷却効率のよい冷蔵庫が得られる。
The refrigerator according to the present invention has solved the above-mentioned problems.
A rotational speed control means for controlling the rotational speed of the compressor within a predetermined range; and an internal temperature detecting means for detecting an internal temperature at predetermined time intervals, wherein the internal temperature detected by the internal temperature detecting means is provided. By controlling the operation / stop of the compressor according to the internal temperature, in a refrigerator in which the internal temperature is maintained at a predetermined set temperature, the time from start to stop of the compressor is set to a predetermined time. And a control means for controlling the number of revolutions of the compressor. With this configuration, the operation time from start to stop of the compressor is controlled stably within a set predetermined time. Therefore, the value of the compressor operation rate (during one operation / stop cycle: operation time / (operation time + stop time)) can always be set to an ideal predetermined value. Of cooling efficiency in consideration of There refrigerator is obtained.

【0005】また、請求項2記載の発明は、圧縮機の回
転数を所定の範囲で制御する回転数制御手段と、庫内温
度を所定の時間毎に検出する庫内温度検出手段とを備
え、上記庫内温度検出手段にて検出された庫内温度によ
って、上記圧縮機の運転・停止の制御をすることによ
り、庫内温度が所定の設定温度に保たれる冷蔵庫におい
て、上記圧縮機を所定の回転数で所定の時間だけ連続に
運転し、上記庫内温度検出手段により検出された値が圧
縮機を停止さす停止設定温度に達していないとき、前記
停止設定温度に達するまで、上記圧縮機の回転数は、所
定の間隔をもつ追加運転時間毎に、上記所定の回転数か
ら段階的に所定の上昇回転数だけ上げた圧縮機の回転数
にする制御手段を備えたことを特徴とするものであり、
この構成により、負荷が増大した場合でも、なるべく少
ない圧縮機の回転数にて、上記所定の時間になるべく近
い時間で、庫内温度が設定温度に到達でき、冷蔵庫の異
なる負荷条件にも変わらない効率よい運転率制御とな
り、負荷条件にかかわらず冷凍サイクルによる凝縮熱の
侵入をも考慮した冷却効率のよい冷蔵庫が得られる。
The invention according to a second aspect of the present invention includes a rotational speed control means for controlling the rotational speed of the compressor within a predetermined range, and an internal temperature detecting means for detecting the internal temperature at predetermined time intervals. By controlling the operation and stop of the compressor according to the internal temperature detected by the internal temperature detecting means, in a refrigerator in which the internal temperature is maintained at a predetermined set temperature, The compressor is operated continuously at a predetermined rotation speed for a predetermined time, and when the value detected by the internal temperature detecting means has not reached the stop set temperature for stopping the compressor, the compression is continued until the stop set temperature is reached. The rotation speed of the compressor is provided with control means for setting the rotation speed of the compressor to be gradually increased by a predetermined increase rotation speed from the predetermined rotation speed for each additional operation time having a predetermined interval. To do
With this configuration, even when the load increases, the internal temperature can reach the set temperature in a time as close as possible to the predetermined time with the rotational speed of the compressor as small as possible, and the load does not change under different load conditions of the refrigerator. Efficient operation rate control is achieved, and a refrigerator with high cooling efficiency that takes into account the intrusion of condensation heat by the refrigeration cycle regardless of load conditions can be obtained.

【0006】そして、請求項3記載の発明は、圧縮機を
運転し、上記所定の時間に対する所定範囲の時間または
上記所定の時間をこえた時間で庫内温度が上記停止設定
温度に達した後圧縮機を停止し、その後、庫内温度が圧
縮機を運転させる温度の運転設定温度以上になったと
き、上記圧縮機を停止した直前の圧縮機の回転数で上記
圧縮機を運転する制御手段を備えたことを特徴とするも
のであり、この構成により、設定した上記所定の時間以
上かかって停止設定温度に到達したときの圧縮機の回転
数で次の運転の初めから開始でき、無駄なく効率よい圧
縮機の運転率制御を考慮した運転の開始となり、冷凍サ
イクルによる凝縮熱の侵入をも考慮した冷却効率のよい
運転ができる冷蔵庫が得られる。
According to a third aspect of the present invention, the compressor is operated, and after the internal temperature reaches the stop set temperature within a predetermined range of time relative to the predetermined time or a time exceeding the predetermined time. Control means for stopping the compressor, and thereafter operating the compressor at the rotation speed of the compressor immediately before stopping the compressor when the temperature in the refrigerator becomes equal to or higher than the operation set temperature for operating the compressor. With this configuration, it is possible to start from the beginning of the next operation at the number of rotations of the compressor when the set temperature is reached after the set time is reached for the predetermined time or more, without waste. The operation starts in consideration of efficient operation rate control of the compressor, and a refrigerator that can operate with high cooling efficiency in consideration of intrusion of condensation heat by the refrigeration cycle is obtained.

【0007】そしてまた、請求項4記載の発明は、圧縮
機を運転し、上記所定の時間に対する所定範囲の時間未
満の時間で庫内温度が上記停止設定温度に達した後圧縮
機を停止し、その後、庫内温度が上記運転設定温度以上
になったとき、上記圧縮機を停止した直前の圧縮機の回
転数より所定の回転数だけ低い低下回転数で上記圧縮機
を運転する制御手段を備えたことを特徴とするものであ
り、この構成により、設定した上記所定の時間未満で停
止設定温度に到達したときの圧縮機の回転数より低い回
転数で次の運転の初めから開始でき、必要以上に圧縮機
能力を使うことなく、上記所定の時間に近い圧縮機の運
転ができ、冷凍サイクルによる凝縮熱の侵入をも考慮し
た冷却効率の向上をはかった冷蔵庫が得られる。
According to a fourth aspect of the present invention, the compressor is operated, and the compressor is stopped after the internal temperature reaches the stop set temperature in a time shorter than a predetermined range of the predetermined time. Then, when the temperature in the refrigerator becomes equal to or higher than the operation set temperature, the control means for operating the compressor at a reduced rotation speed lower by a predetermined rotation speed than the rotation speed of the compressor immediately before stopping the compressor. With this configuration, with the configuration, it is possible to start from the beginning of the next operation at a rotation speed lower than the rotation speed of the compressor when the stop set temperature is reached within the set predetermined time, The compressor can be operated close to the above-mentioned predetermined time without using the compression function more than necessary, and a refrigerator having improved cooling efficiency in consideration of intrusion of condensation heat by the refrigeration cycle can be obtained.

【0008】さらに、請求項5記載の発明は、上記所定
の時間は切り替え手段によって異なる時間に切り替えら
れることを特徴とするものであり、この構成により、上
記所定の時間を冷凍サイクルによる凝縮熱の侵入をも考
慮した冷却効率のよい範囲内で長い時間に切り替えられ
るようにした場合、負荷が大きくなったときの対応能力
の範囲は狭まるが、必要以上に圧縮機能力を使うことな
くより圧縮機の運転効率が向上し、冷凍サイクルによる
凝縮熱の侵入をも考慮したより冷却効率のよい冷蔵庫が
得られる。
Further, the invention according to claim 5 is characterized in that the predetermined time is switched to a different time by a switching means, and with this configuration, the predetermined time is reduced by the heat of condensation by the refrigeration cycle. If switching can be performed for a long time within a range of high cooling efficiency taking into account intrusion, the range of response capacity when the load increases becomes narrower, but the compressor capacity can be increased without using the compression function more than necessary. The operation efficiency of the refrigerator is improved, and a refrigerator with higher cooling efficiency can be obtained in consideration of the intrusion of heat of condensation by the refrigeration cycle.

【0009】さらにまた、請求項6記載の発明は、上記
停止設定温度や上記運転設定温度は切り替え手段によっ
て異なる温度に切り替えられることを特徴とするもので
あり、この構成により、上記運転温度や停止設定温度を
冷凍保存に支障のない程度の高い温度に切り替えられる
ようにした場合、冷却のための使用電力が少なくてす
み、外気との温度差が減少するため外気からの熱の吸収
量が減ることによる熱ロスの低減ができ、さらに効率の
よい省力化の進んだ冷蔵庫が得られる。
Further, the invention set forth in claim 6 is characterized in that the stop set temperature and the operation set temperature are switched to different temperatures by a switching means, and with this configuration, the operation temperature and the stop are set. If the set temperature can be switched to a high temperature that does not hinder freezing and preservation, less power is required for cooling, and the temperature difference from the outside air is reduced, reducing the amount of heat absorbed from the outside air. As a result, heat loss can be reduced, and a more efficient and labor-saving refrigerator can be obtained.

【0010】また、請求項7記載の発明は、上記切り替
え手段によって切り替えられた上記所定の時間や設定温
度などの値は、扉開閉動作をおこなうことを特徴とする
ものであり、この構成により、扉開閉動作によって庫内
の温度が上昇しても、通常運転に戻るため、冷蔵庫内の
貯蔵物は常に貯蔵に適した温度に保たれるようになる。
According to a seventh aspect of the present invention, the value such as the predetermined time or the set temperature switched by the switching means performs a door opening / closing operation. Even if the temperature inside the refrigerator rises due to the door opening / closing operation, the operation returns to the normal operation, so that the stored items in the refrigerator are always kept at a temperature suitable for storage.

【0011】[0011]

【発明の実施の形態】以下本発明の冷蔵庫の実施の形態
を図面とともに説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a refrigerator according to the present invention will be described below with reference to the drawings.

【0012】図1は本発明の冷蔵庫の実施の形態を示す
制御装置のブロック図、図2は本発明の冷蔵庫の実施の
形態を示す側断面図、図3は本発明の冷蔵庫の実施の形
態を示す制御装置のフローチャート図である。
FIG. 1 is a block diagram of a control device showing an embodiment of a refrigerator of the present invention, FIG. 2 is a side sectional view showing an embodiment of a refrigerator of the present invention, and FIG. 3 is an embodiment of a refrigerator of the present invention. It is a flowchart figure of the control apparatus which shows this.

【0013】図1において、1は冷蔵庫の制御装置で、
制御手段2(例えば、マイクロコンピュータ)に、庫内
温度検出装置3が入力されている。そして、上記制御手
段2の出力は圧縮機4を動作させる駆動手段5と、庫内
送風機6を動作させる駆動手段7とに各々接続されてい
る。また、上記制御手段2には使用目的に合わせて切り
替えるためのモード切替装置8や冷凍室や冷蔵室の各々
の扉開閉を感知するF(冷凍)扉開閉感知装置9やR
(冷蔵)扉開閉感知装置10が各々接続されている。
In FIG. 1, reference numeral 1 denotes a refrigerator control device.
The control unit 2 (for example, a microcomputer) receives the internal temperature detection device 3. The output of the control means 2 is connected to a driving means 5 for operating the compressor 4 and a driving means 7 for operating the blower 6 in the refrigerator. The control means 2 includes a mode switching device 8 for switching according to the purpose of use, an F (freezing) door opening / closing sensing device 9 for sensing the opening / closing of each door of a freezing room or a refrigerator, and
(Refrigerated) door open / close sensing devices 10 are connected respectively.

【0014】図2において、11は冷蔵庫本体であり、
仕切12で上部に冷凍室13、下部に冷蔵室14となる
よう仕切られている。15は機械室で内部に上記圧縮機
4が設けられている。16は圧縮機4の吐出パイプであ
る。
In FIG. 2, reference numeral 11 denotes a refrigerator main body,
The partition 12 is divided into a freezer compartment 13 at the upper part and a refrigerator compartment 14 at the lower part. Reference numeral 15 denotes a machine room in which the compressor 4 is provided. Reference numeral 16 denotes a discharge pipe of the compressor 4.

【0015】また、17は凝縮器で、冷蔵庫本体11の
外壁内側に設けられている。18は冷却器で、下方にガ
ラス管ヒータ等による除霜装置19が、上方に庫内送風
機6が設けられている。20は圧縮機4の吸入パイプで
ある。上記圧縮機4、吐出パイプ16、凝縮器17、キ
ャピラリーチューブ(図示せず)、冷却器18、吸入パ
イプ20は一連の冷凍サイクルを構成している。
A condenser 17 is provided inside the outer wall of the refrigerator main body 11. Reference numeral 18 denotes a cooler, and a defrosting device 19 such as a glass tube heater or the like is provided below, and an in-compartment blower 6 is provided above. Reference numeral 20 denotes a suction pipe of the compressor 4. The compressor 4, discharge pipe 16, condenser 17, capillary tube (not shown), cooler 18, and suction pipe 20 constitute a series of refrigeration cycles.

【0016】21はエバカバーで、庫内送風機6にある
ファン6aのオリフィス部21aと冷却器18を覆う断
熱部21bをもっている。22はファンルーバで、ファ
ン6aの前方に吐出穴22aを、また、ファンルーバ2
2の下方に吸入穴22bをもっている。エバカバー21
とファンルーバ22は組み合わされてエバカバー組品2
3となる。また、エバカバー21とファンルーバ22と
からなるエバカバー組品23は圧力室23aと、その一
部から下方に通じるカバーダクト部23b(点線にて表
示)を形成している。
Reference numeral 21 denotes an evaporator cover having an orifice portion 21a of the fan 6a in the internal blower 6 and a heat insulating portion 21b for covering the cooler 18. A fan louver 22 has a discharge hole 22a in front of the fan 6a.
2 has a suction hole 22b below. Eva cover 21
And fan louver 22 are combined to form an EVA cover assembly 2
It becomes 3. The evaporator cover assembly 23 composed of the evaporator cover 21 and the fan louver 22 forms a pressure chamber 23a and a cover duct portion 23b (indicated by a dotted line) communicating downward from a part thereof.

【0017】冷却器18で冷却された冷気は、庫内送風
機6のファン6aにより、圧力室23aに送られ、吐出
穴22aを通り冷凍室13へ吐き出される。その後、冷
凍室13の冷気は内部を冷却し吸入穴22bを通り冷却
器18の下方へもどり冷凍室13の冷気回路となる。ま
た、圧力室23aに送られた冷気の一部は、カバーダク
ト部23bを通り、仕切12の一部に設けられた仕切冷
気ダクト12a(点線にて表示)を通り冷蔵室14へ吐
き出される。その後、冷蔵室14の冷気は内部を冷却し
仕切12のモドリダクト12bを通り冷却器18の下方
へもどり冷蔵室14の冷気回路となる。
The cool air cooled by the cooler 18 is sent to the pressure chamber 23a by the fan 6a of the internal blower 6, and is discharged to the freezing chamber 13 through the discharge hole 22a. Thereafter, the cool air in the freezing room 13 cools the inside, returns to the lower part of the cooler 18 through the suction hole 22b, and forms a cool air circuit of the freezing room 13. A part of the cool air sent to the pressure chamber 23a passes through the cover duct 23b, and is discharged to the refrigerator compartment 14 through a partition cool air duct 12a (indicated by a dotted line) provided in a part of the partition 12. Thereafter, the cool air in the refrigerator compartment 14 cools the inside, returns to the lower part of the cooler 18 through the modular duct 12b of the partition 12, and forms a cool air circuit of the refrigerator compartment 14.

【0018】なお、冷却器18で吸収した冷蔵庫内の熱
は、冷蔵庫本体11の外壁に設けられた凝縮器17によ
り、上記外壁を通し外部へ放出される。また、冷蔵室1
4の温度をより適度に調整するため、仕切冷気ダクト1
2aの冷蔵室14へ冷気が吐き出される部分に、ダンパ
ーを設け、その開閉で冷蔵室14の温度を調節してもよ
い。
The heat in the refrigerator absorbed by the cooler 18 is released to the outside through the outer wall by the condenser 17 provided on the outer wall of the refrigerator main body 11. In addition, refrigerator room 1
In order to more appropriately adjust the temperature of 4,
A damper may be provided at a portion where the cold air is discharged to the refrigerator compartment 2a, and the temperature of the refrigerator compartment 14 may be adjusted by opening and closing the damper.

【0019】そして、冷凍室13の内部に庫内温度検出
装置3が、冷蔵室14の内部にモード切替装置8が、そ
れぞれ取り付けられている。また、冷蔵庫本体11の背
面に本発明の電気回路を構成した制御装置1が取り付け
られている。
The inside temperature detecting device 3 is mounted inside the freezing room 13, and the mode switching device 8 is mounted inside the freezing room 14. Further, a control device 1 constituting an electric circuit of the present invention is attached to a back surface of the refrigerator main body 11.

【0020】また、仕切12の前方部には冷凍室扉24
の開閉を感知するためのF扉開閉感知装置9と冷蔵室扉
25の開閉を感知するためのR扉開閉感知装置10が設
けられている。そのため、冷凍室扉24や冷蔵室扉25
が開けられるとF扉開閉感知装置9やR扉開閉感知装置
10で扉の開閉が感知され、制御手段2内にその情報が
時間とともに記憶される。
A freezer compartment door 24 is provided in front of the partition 12.
There is provided an F door opening / closing sensing device 9 for sensing the opening / closing of an R door and an R door opening / closing sensing device 10 for sensing the opening / closing of the refrigerator compartment door 25. Therefore, the freezer compartment door 24 or the refrigerator compartment door 25
When the door is opened, the opening / closing of the door is sensed by the F door opening / closing sensor 9 and the R door opening / closing sensor 10, and the information is stored in the control means 2 with time.

【0021】つぎに、図3に示すフローチャートを参照
しながら本発明の冷蔵庫の動作について説明する。
Next, the operation of the refrigerator of the present invention will be described with reference to the flowchart shown in FIG.

【0022】まず、電源を投入すると、マイクロコンピ
ュータからなる制御手段2を初期状態に戻してステップ
S1に移る。
First, when the power is turned on, the control means 2 comprising a microcomputer is returned to an initial state, and the process proceeds to step S1.

【0023】その後、ステップS1で、運転モードがモ
ードAに設定されているかどうかを制御手段2内で判断
し、モード切替装置8によって運転モードがモードAに
設定されていないときは、ステップS2で通常運転モー
ドの設定の、運転開始をする庫内温度の設定を運転設定
温度T1=T1(例えばT1=−16℃)、運転開始時
の基本の圧縮機回転数をN1=N1(例えばN1=24
00rpm)、圧縮機の回転数変更の要否を判断する下
限の連続運転時間を下限運転時間M1=M1(例えばM
1=38分)、運転停止をする庫内温度の設定を停止設
定温度T2=T2(例えばT2=−20℃)、圧縮機の
回転数変更の要否を判断する上限の連続運転時間を上限
運転時間M2=M2(例えばM2=40分)、圧縮機上
限回転数をNM=NM(例えばNM=3000rp
m)、圧縮機の回転数を所定回転数だけ上げて運転する
時間の追加運転時間をM3=M3(例えばM3=10
分)にそれぞれ設定する。
Thereafter, in step S1, it is determined in the control means 2 whether or not the operation mode is set to mode A. If the operation mode is not set to mode A by the mode switching device 8, the operation proceeds to step S2. In the setting of the normal operation mode, the setting of the internal temperature at which the operation is started is set to the operation set temperature T1 = T1 (for example, T1 = -16 ° C.), and the basic compressor rotation speed at the start of the operation is set to N1 = N1 (for example, N1 = 24
00 rpm), the lower limit of the continuous operation time for determining whether or not the rotation speed of the compressor needs to be changed is set to the lower limit operation time M1 = M1 (for example, M1
1 = 38 minutes), setting of the internal temperature for stopping the operation is stopped. Set temperature T2 = T2 (for example, T2 = −20 ° C.), and the upper limit of the continuous operation time for judging whether the rotation speed of the compressor needs to be changed is set as the upper limit. The operation time M2 = M2 (for example, M2 = 40 minutes), and the compressor upper limit rotational speed is set to NM = NM (for example, NM = 3000 rpm)
m), the additional operation time of the operation time of increasing the rotation speed of the compressor by a predetermined rotation speed is set to M3 = M3 (for example, M3 = 10
Minutes).

【0024】そして、ステップS3で庫内温度検出装置
3にて検出された冷凍室13内温度と運転設定温度T1
とを比較して上記冷凍室13内温度が運転設定温度T1
(例えばT1=−16℃)以上になっているとステップ
S4へ進み、ステップS4でフラッグFa=1かどうか
が判断される。ステップS4でフラッグFa=1でない
とき(電源につながれて初めて冷蔵庫が運転されると
き)は、ステップS5で駆動手段5にて圧縮機4を基本
の圧縮機回転数N1(例えばN1=2400rpm)で
駆動させる。
Then, in step S3, the internal temperature of the freezer compartment 13 detected by the internal temperature detecting device 3 and the operation set temperature T1
Is compared with the operation set temperature T1.
If it is higher than (for example, T1 = −16 ° C.), the process proceeds to step S4, and it is determined in step S4 whether the flag Fa = 1. When the flag Fa is not 1 in step S4 (when the refrigerator is operated for the first time after being connected to the power supply), the compressor 4 is driven by the driving means 5 at step S5 at the basic compressor rotation speed N1 (for example, N1 = 2400 rpm). Drive.

【0025】その後、ステップS6でフラッグFa=1
にし、ステップS7で運転時間をカウントするカウンタ
Maのカウントを開始する。次にステップS8で、カウ
ンタMaがMa=M1になったかどうかを判断し、Ma
=M1でないときはステップS9で、庫内温度検出装置
3にて検出された冷凍室13内温度と停止設定温度T2
とを比較して上記冷凍室13内温度が停止設定温度T2
(例えばT2=−20℃)より高い場合は、圧縮機はO
N状態のままステップS8へ進む。
Thereafter, at step S6, the flag Fa = 1.
In step S7, the counter Ma for counting the operation time starts counting. Next, in step S8, it is determined whether or not the counter Ma has become Ma = M1.
If not = M1, in step S9, the temperature in the freezing compartment 13 detected by the temperature detecting device 3 in the refrigerator and the stop set temperature T2
And the temperature in the freezer 13 is set to the stop set temperature T2.
(For example, T2 = −20 ° C.), the compressor
The process proceeds to step S8 in the N state.

【0026】その後、冷凍室13内温度が停止設定温度
T2より高い場合は、カウンタMaのカウントがMa=
M1(例えばM1=38分)になるまで上記ステップS
8とステップS9が繰り返され、Ma=M1になるとス
テップS10へ進む。
Thereafter, when the temperature in the freezer compartment 13 is higher than the set stop temperature T2, the counter Ma counts Ma = M
The above step S until M1 (for example, M1 = 38 minutes) is reached.
8 and step S9 are repeated, and when Ma = M1, the process proceeds to step S10.

【0027】そして、ステップS10で冷凍室13内温
度が停止設定温度T2(例えばT2=−20℃)になる
と、ステップS11で圧縮機4の現回転数を記憶回転数
NR(この場合はNR=N1=2400rpm)として
記憶し、ステップ12でカウンタMaのカウントを停止
し、ステップS13で圧縮機4を停止し、ステップS1
へ戻る。
When the temperature in the freezing compartment 13 reaches the stop set temperature T2 (for example, T2 = -20 ° C.) in step S10, the current rotational speed of the compressor 4 is stored in step S11 in a storage rotational speed NR (in this case, NR = NR). N1 = 2400 rpm), the count of the counter Ma is stopped in step 12, the compressor 4 is stopped in step S13, and the process proceeds to step S1.
Return to

【0028】圧縮機4単体の運転効率から見ると、圧縮
機4の必要最小限の回転数で長時間かけて冷却するほう
が良い効率となるが、圧縮機4を運転して冷蔵庫本体1
1の外壁に設けられた凝縮器17により上記外壁を通し
冷蔵庫内部の熱を外部に放熱する場合は、この放熱の一
部の熱は熱伝導により冷蔵庫内部へ侵入するため、冷凍
サイクルによる凝縮熱の侵入をも考慮した冷蔵庫全体の
冷却効率から見ると、適度な時間間隔と回転数で圧縮機
を運転・停止させるほうが、良い冷却効率となる。
From the viewpoint of the operating efficiency of the compressor 4 alone, it is better to cool the compressor 4 for a long time at the required minimum number of revolutions, but the compressor 4 is operated to operate the refrigerator 1
When the heat inside the refrigerator is radiated to the outside through the outer wall by the condenser 17 provided on the outer wall of the first unit, a part of the heat radiated enters the inside of the refrigerator by heat conduction. In view of the cooling efficiency of the entire refrigerator in consideration of the intrusion of the compressor, it is better to start and stop the compressor at appropriate time intervals and rotation speeds.

【0029】すなわち、上記運転で、圧縮機4の停止時
間が16分で、圧縮機4の運転時間がM1=38分であ
った場合、圧縮機4の運転率は38÷(38+16)×
100から算出されほぼ70%となる。この圧縮機4の
運転率=70%という値は、冷凍サイクルによる凝縮熱
の侵入をも考慮した場合、かなり冷却効率のよい値であ
り、負荷の増減を考慮にいれた実使用上の運転率として
は70%付近の値はのぞましいものである。
That is, in the above operation, if the stop time of the compressor 4 is 16 minutes and the operation time of the compressor 4 is M1 = 38 minutes, the operation rate of the compressor 4 is 38 ÷ (38 + 16) ×
It is calculated from 100 and becomes approximately 70%. The value of the operation rate of the compressor 4 = 70% is a value with a considerably high cooling efficiency in consideration of the intrusion of the condensing heat due to the refrigeration cycle, and the operation rate in actual use in consideration of the increase and decrease of the load. A value around 70% is desirable.

【0030】ステップS1へ戻った後、運転モードがモ
ードAでないとき、ステップS2で上記同様に各設定値
を設定し、ステップS3で冷凍室13内温度が運転設定
温度T1(例えばT1=−16℃)以上になるとステッ
プS4へ進む。ステップS4では今回はFa=1である
からステップS14へ進み、ステップS14で前回記憶
の記憶回転数NR(今の場合はNR=2400rpm)
で圧縮機4が運転開始される。
After returning to step S1, when the operation mode is not mode A, the set values are set in the same manner as described above in step S2, and in step S3, the temperature in the freezing compartment 13 is set to the operation set temperature T1 (for example, T1 = -16). ° C) or more, the process proceeds to step S4. In step S4, since Fa = 1 this time, the process proceeds to step S14. In step S14, the previously stored rotation speed NR (in this case, NR = 2400 rpm).
The operation of the compressor 4 is started.

【0031】そのため、庫内温度が停止設定温度(例え
ばT2=−20℃)に到達できた圧縮機の回転数で初め
から運転でき、無駄なく効率よい運転率制御を考慮した
運転の開始となり、冷凍サイクルによる凝縮熱の侵入を
も考慮した冷却効率のよい運転ができる冷蔵庫が得られ
る。
Therefore, the compressor can be operated from the beginning at the rotation speed of the compressor in which the temperature in the refrigerator can reach the stop set temperature (for example, T2 = −20 ° C.), and the operation starts in consideration of efficient and efficient operation rate control. A refrigerator capable of operating with high cooling efficiency in consideration of the intrusion of heat of condensation by the refrigeration cycle can be obtained.

【0032】また、圧縮機4を運転していて、ステップ
S10で冷凍室13内温度が停止設定温度T2(例えば
T2=−20℃)に低下しないとき、ステップS15へ
進みカウンタMaがMa=M2(例えばM2=40分)
になると、ステップS16で検出された冷凍室13内温
度が停止設定温度T2(例えばT2=−20℃)である
とステップS11へ進み、圧縮機4の現回転数を記憶
し、以後は上記同様のステップをふむ。
When the compressor 4 is operating and the temperature in the freezer compartment 13 does not drop to the stop set temperature T2 (for example, T2 = −20 ° C.) in step S10, the process proceeds to step S15, where the counter Ma sets Ma = M2. (For example, M2 = 40 minutes)
Then, if the temperature in the freezer 13 detected in step S16 is the stop set temperature T2 (for example, T2 = -20 ° C.), the process proceeds to step S11, where the current rotational speed of the compressor 4 is stored, and thereafter, the same as above. Steps.

【0033】そのため、上記の場合も庫内温度が停止設
定温度(例えばT2=−20℃)に到達できた圧縮機の
回転数で初めから運転でき、無駄なく効率よい運転率制
御を考慮した運転の開始となり、冷凍サイクルによる凝
縮熱の侵入をも考慮した冷却効率のよい運転ができる冷
蔵庫が得られる。
Therefore, in the above case, the compressor can be operated from the beginning at the number of revolutions of the compressor at which the internal temperature reaches the set stop temperature (for example, T2 = -20 ° C.), and the operation is performed in consideration of efficient and efficient operation rate control. Starts, and a refrigerator that can operate with high cooling efficiency in consideration of the intrusion of condensation heat by the refrigeration cycle is obtained.

【0034】なお、圧縮機4の回転数が基本の圧縮機回
転数N1(例えばN1=2400rpm)と異なる回転
数で運転していて、ステップS10またはS16で冷凍
室13内温度が停止設定温度T2(例えばT2=−20
℃)になると、ステップS11で圧縮機4のそのときの
現回転数を記憶回転数NRとして記憶し、その直後のス
テップS14では上記の記憶回転数NRで圧縮機は運転
され、上記同様の効果が得られる。
The compressor 4 is operated at a rotational speed different from the basic compressor rotational speed N1 (for example, N1 = 2400 rpm), and the temperature in the freezing compartment 13 is reduced to the set stop temperature T2 at step S10 or S16. (For example, T2 = -20
° C), the current rotational speed of the compressor 4 at that time is stored as the stored rotational speed NR in step S11, and immediately after that, in step S14, the compressor is operated at the above-mentioned stored rotational speed NR, and the same effect as described above is obtained. Is obtained.

【0035】また、ステップS16で検出された冷凍室
13内温度が停止設定温度T2(例えばT2=−20
℃)になっていないと、ステップS17へ進みカウンタ
Maのカウントを停止し、ステップS18で圧縮機4の
回転数が圧縮機上限回転数のNM(例えばNM=300
0rpm)になっているかどうかを判断して、圧縮機上
限回転数のNMになっていなければステップS19で現
回転数に所定の上昇回転数(例えば100rpm)だけ
上昇させた回転数に制御しなおし、ステップS20で圧
縮機の回転数を上記所定の上昇回転数(例えば100r
pm)だけ上昇させた後からの圧縮機4の運転時間を、
カウンタMbにてカウント開始する。
Further, the temperature inside the freezer compartment 13 detected in step S16 becomes the stop set temperature T2 (for example, T2 = −20).
° C), the flow proceeds to step S17 to stop counting by the counter Ma, and in step S18, the rotation speed of the compressor 4 is set to the compressor upper limit rotation speed NM (for example, NM = 300).
It is determined whether or not the rotational speed is 0 rpm), and if the rotational speed is not at the compressor upper limit rotational speed NM, the rotational speed is increased again by a predetermined increase rotational speed (for example, 100 rpm) to the current rotational speed in step S19. In step S20, the rotation speed of the compressor is increased to the predetermined rising rotation speed (for example, 100 rpm).
pm), the operating time of the compressor 4 after being increased by
The count is started by the counter Mb.

【0036】その後、ステップS21にてカウンタMb
がMb=M3(例えばM3=10分)の追加運転時間に
なったかどうかを判断し、M3になっていないとステッ
プS22へ進む。ステップS22で冷凍室13内温度が
停止設定温度T2(例えばT2=−20℃)になってい
ないとステップS21へ進み、ステップS21またはS
22でカウンタMbがMb=M3に、または冷凍室13
内温度が停止設定温度T2になるまで上記ステップが繰
り返される。
Thereafter, at step S21, the counter Mb
Is determined to be the additional operation time of Mb = M3 (for example, M3 = 10 minutes), and if not, the process proceeds to step S22. If the temperature in the freezer compartment 13 has not reached the stop set temperature T2 (for example, T2 = −20 ° C.) in step S22, the process proceeds to step S21, and the process proceeds to step S21 or S21.
At 22, the counter Mb is set to Mb = M3 or
The above steps are repeated until the internal temperature reaches the stop set temperature T2.

【0037】ステップS21にてカウンタMbがMb=
M3(例えばM3=10分)になるとステップS23へ
進み、ステップS23で冷凍室13内温度が停止設定温
度T2(例えばT2=−20℃)になっていないと、ス
テップS17へ戻り、カウンタMbのカウントを停止
し、冷凍室13内温度が停止設定温度T2になるまで、
圧縮機4の回転数が圧縮機上限回転数のNM(例えばN
M=3000rpm)以下の範囲で所定の追加運転時間
(例えばM3=10分)毎に所定の上昇回転数(例えば
100rpm)ずつ圧縮機4の回転数を上昇させ上記ス
テップS17〜ステップS23のステップを繰り返され
る。
In step S21, the counter Mb is set to Mb =
When M3 (for example, M3 = 10 minutes) is reached, the process proceeds to step S23. If the temperature in the freezing compartment 13 is not at the stop set temperature T2 (for example, T2 = −20 ° C.) in step S23, the process returns to step S17, and the counter Mb is reset. The counting is stopped, and until the temperature in the freezing compartment 13 reaches the stop set temperature T2.
The rotation speed of the compressor 4 is NM (for example, N
The rotation speed of the compressor 4 is increased by a predetermined increase rotation speed (for example, 100 rpm) every predetermined additional operation time (for example, M3 = 10 minutes) within a range of not more than (M = 3000 rpm) and the steps S17 to S23 are performed. Repeated.

【0038】上記ステップS22またはS23で冷凍室
13内温度が停止設定温度T2(例えばT2=−20
℃)になるとステップS24へ進み、ステップS24
で、上昇させた後の圧縮機4の現回転数を記憶回転数N
Rとして記憶し、ステップS12でカウンタMbのカウ
ントを停止し、ステップS13で圧縮機を停止し、ステ
ップS1へ戻る。
In step S22 or S23, the temperature in the freezing compartment 13 is reduced to the stop set temperature T2 (for example, T2 = −20).
° C), the process proceeds to step S24, and step S24
, The current rotational speed of the compressor 4 after the increase is stored in the stored rotational speed N
R is stored, the count of the counter Mb is stopped in step S12, the compressor is stopped in step S13, and the process returns to step S1.

【0039】そのため、なるべく少ない圧縮機の回転数
にて、上記所定の時間(例えばM2=40分)になるべ
く近い時間で、庫内温度が停止設定温度(例えばT2=
−20℃)に到達でき、冷蔵庫の異なる負荷条件にも変
わらない効率よい運転率制御となり、負荷条件にかかわ
らず冷凍サイクルによる凝縮熱の侵入をも考慮した冷却
効率のよい冷蔵庫が得られる。
For this reason, the internal temperature is set to the stop set temperature (for example, T2 = 40 minutes) at a time as short as possible to the above-mentioned predetermined time (for example, M2 = 40 minutes) at a minimum rotational speed of the compressor.
(−20 ° C.), efficient operation rate control that does not change under different load conditions of the refrigerator, and a refrigerator with high cooling efficiency that takes into consideration the intrusion of condensation heat by the refrigeration cycle regardless of the load condition is obtained.

【0040】なお、その直後のステップS14での圧縮
機4の運転開始の回転数は、上記ステップS24で記憶
した上昇後の記憶回転数NRとなる。そのため、次の圧
縮機4の運転はなるべく少ない圧縮機の回転数にて、上
記所定の時間(例えばM2=40分)になるべく近い時
間で、庫内温度が停止設定温度(例えばT2=−20
℃)に到達できた圧縮機の上記回転数で初めから運転で
き、無駄なく効率よい運転率制御を考慮した運転の開始
となり、冷凍サイクルによる凝縮熱の侵入をも考慮し
た、冷却効率のよい運転ができる冷蔵庫が得られる。
The rotational speed at the start of the operation of the compressor 4 in step S14 immediately after that is the stored rotational speed NR after the increase stored in step S24. Therefore, in the next operation of the compressor 4, the internal temperature is set to the stop set temperature (for example, T2 = −20) with the rotation speed of the compressor as small as possible and in a time as close as possible to the predetermined time (for example, M2 = 40 minutes).
° C), the operation can be started from the beginning with the above-mentioned number of rotations of the compressor, the operation starts in consideration of efficient and efficient operation rate control, and the operation with high cooling efficiency in consideration of the intrusion of condensation heat by the refrigeration cycle. A refrigerator that can be used is obtained.

【0041】また、ステップS8においてカウンタMa
がMa=M1(例えばM1=38分)までの値で、ステ
ップS9で冷凍室13内温度が停止設定温度T2(例え
ばT2=−20℃)になった場合は、ステップS25で
そのときの回転数に対し所定の回転数(例えば100r
pm)だけ低下させた回転数の値を記憶回転数NRとし
て記憶し、ステップS12でカウンタMaのカウントを
停止し、ステップS13で圧縮機を停止し、ステップS
1へ戻る。
In step S8, the counter Ma
Is a value up to Ma = M1 (for example, M1 = 38 minutes), and if the temperature in the freezer 13 reaches the stop set temperature T2 (for example, T2 = −20 ° C.) in step S9, the rotation at that time is made in step S25. A predetermined rotation speed (for example, 100 r
pm) is stored as the storage rotation speed NR, the count of the counter Ma is stopped in step S12, the compressor is stopped in step S13, and the process proceeds to step S13.
Return to 1.

【0042】なお、その直後のステップS14での圧縮
機の運転開始の回転数は、上記ステップS25で記憶し
た低下後の上記記憶回転数NRとなる。そのため、設定
した上記所定の時間(例えばM1=38分)未満で停止
設定温度(例えばT2=−20℃)に到達したときの圧
縮機の回転数より低い回転数で初めから運転でき、必要
以上に圧縮機能力を使うことなく、上記所定の時間に近
づいた圧縮機の運転ができ、冷凍サイクルによる凝縮熱
の侵入をも考慮した冷却効率の向上をはかった運転ので
きる冷蔵庫が得られる。
The rotational speed at the start of operation of the compressor in step S14 immediately after that is the stored rotational speed NR after the decrease stored in step S25. Therefore, the compressor can be operated from the beginning at a rotation speed lower than the rotation speed of the compressor when the stop set temperature (eg, T2 = −20 ° C.) is reached in less than the set predetermined time (eg, M1 = 38 minutes). The compressor can be operated close to the above-mentioned predetermined time without using the compression function power, and a refrigerator which can operate with improved cooling efficiency in consideration of the intrusion of condensation heat by the refrigeration cycle can be obtained.

【0043】また、上記S1〜S25の各ステップに
て、負荷条件が異なっても上記所定の時間(例えば連続
運転時間が、下限運転時間M1=38分、上限運転時間
M2=40分)になるべく近い時間に最終的には収束
し、なるべく少ない圧縮機の回転数にて庫内温度が設定
温度(例えばT=−20℃〜ー16℃)に到達でき、冷
蔵庫の異なる負荷条件にもあまり変わらない効率よい運
転率制御となり、負荷条件にかかわらず冷凍サイクルに
よる凝縮熱の侵入をも考慮した冷却効率のよい冷蔵庫が
得られる。
In each of the steps S1 to S25, even if the load conditions are different, the predetermined time (for example, the continuous operation time is set to the lower limit operation time M1 = 38 minutes and the upper limit operation time M2 = 40 minutes) Eventually, the temperature converges in a short time, and the temperature in the refrigerator can reach the set temperature (for example, T = −20 ° C. to −16 ° C.) with a minimum number of rotations of the compressor. It is possible to obtain a refrigerator with high cooling efficiency that takes into consideration the intrusion of the heat of condensation by the refrigeration cycle regardless of the load condition regardless of the load condition.

【0044】なお、モード切替装置8によって運転モー
ドがモードA(例えばモードA=留守番モード)に切り
替えられているときは、ステップS1で運転モードがモ
ードAに設定されているためステップS26に進み、ス
テップS26でモード切替装置8によって運転モードが
モードAに切り替えられた後に冷凍庫扉24または冷蔵
庫扉25が開かれたかどうかを制御手段2の中で判断
し、扉開閉がなかった場合はステップS27へ進む。
When the operation mode is switched to mode A (for example, mode A = answering machine mode) by the mode switching device 8, the operation mode is set to mode A in step S1 and the process proceeds to step S26. After the operation mode has been switched to mode A by the mode switching device 8 in step S26, it is determined in the control means 2 whether the freezer door 24 or the refrigerator door 25 has been opened, and if the door has not been opened / closed, the flow proceeds to step S27. move on.

【0045】その後、ステップS27でモードAの設定
の、運転設定温度をT1=T4(例えばT4=−14
℃)、基本の圧縮機回転数をN1=N1(例えばN1=
2400rpm)、下限運転時間をM1=M4(例えば
M4=48分)、停止設定温度をT2=T3(例えばT
3=−18℃)、上限運転時間をM2=M5(例えばM
5=50分)、圧縮機上限回転数をNM=NM(例えば
NM=3000rpm)、追加運転時間をM3=M3
(例えばM3=10分)にそれぞれ設定し、ステップS
3へ進む。その後の動きは、判断基準の各値が異なるだ
けで、上記S4〜S25の各ステップと同じである。
Thereafter, in step S27, the operation set temperature of the mode A is set to T1 = T4 (for example, T4 = −14).
° C), and the basic compressor speed is N1 = N1 (for example, N1 =
2400 rpm), the lower limit operation time is M1 = M4 (for example, M4 = 48 minutes), and the stop set temperature is T2 = T3 (for example, T4).
3 = −18 ° C.), and the upper limit operation time is M2 = M5 (for example, M
5 = 50 minutes), the compressor upper limit rotational speed is NM = NM (for example, NM = 3000 rpm), and the additional operation time is M3 = M3.
(For example, M3 = 10 minutes), and step S
Proceed to 3. Subsequent movements are the same as the above-described steps S4 to S25, except that the respective values of the judgment criteria are different.

【0046】なお、上記運転で圧縮機の停止時間が14
分であり、圧縮機の運転時間が上限運転時間のM5=5
0分であったとすると、圧縮機の運転率は50÷(50
+14)×100から算出されほぼ78%となる。この
値は、冷蔵庫の扉開閉等による負荷の増大に対する対応
能力範囲は狭まるが、必要以上に圧縮機能力を使うこと
なくより圧縮機4の運転効率が向上し、冷凍サイクルに
よる凝縮熱の侵入をも考慮した場合、かなり冷却効率の
よい値である。現状の圧縮機による冷媒ガス式の冷凍サ
イクルをもつ冷蔵庫においては、圧縮機の運転率を70
〜80%前後の値に設定するのが、実使用上からみての
ぞましい。
In the above operation, the stop time of the compressor was 14
And the operating time of the compressor is M5 = 5 of the upper limit operating time.
Assuming 0 minutes, the operating rate of the compressor is 50 ° (50 °).
+14) × 100, which is approximately 78%. This value narrows the range of ability to cope with an increase in load due to the opening and closing of the door of the refrigerator, but the operating efficiency of the compressor 4 is improved without using the compression function more than necessary, and the intrusion of condensation heat due to the refrigeration cycle is prevented. Is considered, the cooling efficiency is considerably high. In a refrigerator having a refrigerant gas type refrigeration cycle using a current compressor, the operating rate of the compressor is 70%.
It is desirable to set the value to about 80% in view of practical use.

【0047】また、上記運転設定温度T1や停止設定温
度T2を冷凍保存に支障のない程度の高めの温度(T1
=T4=−14℃、T2=T3=−18℃)に切り替え
られるようにしているため、冷却のための使用電力が少
なくてすみ、外気との温度差が減少し外気からの熱の吸
収量が減ることによる熱ロスが減少し、さらに効率のよ
い省力化の進んだ冷蔵庫が得られる。
Further, the above-mentioned operation set temperature T1 and stop set temperature T2 are set to temperatures (T1
= T4 = -14 ° C, T2 = T3 = -18 ° C), so less power is required for cooling, the temperature difference from outside air is reduced, and the amount of heat absorbed from outside air is reduced. As a result, the heat loss due to the decrease in the temperature is reduced, and a more efficient and labor-saving refrigerator is obtained.

【0048】そして、モードAで動作中に冷凍室扉24
または冷蔵室扉25が開かれた場合は、ステップS26
で扉開閉があったと判断され、ステップS2へ進み、負
荷の増大に備え通常運転モードへ戻るようにしてある。
そのため、扉開閉動作によって庫内の温度が上昇して
も、通常運転に戻るため、冷蔵庫内の貯蔵物は常に貯蔵
に適した温度に保たれることになる。このとき、ステッ
プ2では、今までの扉開閉動作があったことの情報の記
憶が、制御手段2からいったん消去される。
During operation in mode A, the freezer compartment door 24
Alternatively, if the refrigerator compartment door 25 is opened, step S26
It is determined that the door has been opened and closed, and the process proceeds to step S2 to return to the normal operation mode in preparation for an increase in load.
Therefore, even if the temperature inside the refrigerator rises due to the door opening / closing operation, the operation returns to the normal operation, and the storage in the refrigerator is always kept at a temperature suitable for storage. At this time, in step 2, the storage of the information that the door opening / closing operation has been performed so far is temporarily deleted from the control unit 2.

【0049】なお、上記圧縮機4の運転にともなって、
庫内送風機6が駆動手段7にて運転され、圧縮機4の回
転数に応じた適度の各々の設定回転数で庫内送風機6が
運転されるように制御手段2で制御される。
Incidentally, with the operation of the compressor 4,
The in-compartment blower 6 is operated by the driving means 7, and is controlled by the control means 2 so that the in-compartment blower 6 is operated at an appropriate set rotational speed corresponding to the rotational speed of the compressor 4.

【0050】また、庫内温度検出装置3による冷凍室1
3内の温度検出や、停止設定温度T2や運転設定温度T
1と上記検出温度との比較や、それによる圧縮機4の運
転・停止のための駆動手段5の実行の判定は、カウンタ
MaやMbのカウントを含むカウント動作とも関連し、
定期的な時間毎に実行される。
Further, the freezing room 1 using the in-compartment temperature detecting device 3
3, the set stop temperature T2 and the set operation temperature T
The comparison between 1 and the detected temperature and the determination of the execution of the driving means 5 for operating / stopping the compressor 4 based on the comparison are related to the counting operation including the counting of the counters Ma and Mb.
Executed at regular intervals.

【0051】なお、上記冷蔵庫で急速に貯蔵物を冷凍し
たいときは、モードAと異なる運転モードを別に設定
し、圧縮機4の回転数を高速回転数(例えばN1=NR
=NM=4000rpm)にするとよく、また、上記圧
縮機4の回転数の増減にともなって、庫内送風機6のフ
ァン6aの回転数を最適となるように増減させたり、上
記仕切冷気ダクト12aやモドリダクト12bを含む仕
切冷気ダクト12aやモドリダクト12bの冷気吸込口
や吐出口近く等に別に設けた、庫内冷気の循環を助ける
循環送風機の回転数を上記同様に増減させたり、圧縮機
等の冷却のために設けられた送風機を機械室15に別に
設けて、前記送風機の回転数を上記同様に増減させる
と、よりいっそう冷却効率がよくなることは明白であ
る。
When it is desired to rapidly freeze the stored material in the refrigerator, an operation mode different from the mode A is set separately, and the rotation speed of the compressor 4 is changed to a high rotation speed (for example, N1 = NR).
= NM = 4000 rpm), and with the increase / decrease of the rotation speed of the compressor 4, the rotation speed of the fan 6a of the in-compartment blower 6 is increased / decreased so as to be optimal, or the above-mentioned partitioning cold air duct 12a or In the same manner as described above, the number of revolutions of a circulating blower that assists circulation of cold air in the refrigerator, which is provided separately near the cold air intake port and the discharge port of the partitioning cold air duct 12a including the modular duct 12b and the modular duct 12b, and cooling the compressor, etc. Obviously, if a blower provided for this purpose is separately provided in the machine room 15 and the rotation speed of the blower is increased or decreased in the same manner as described above, the cooling efficiency will be further improved.

【0052】さらに、上記それぞれの回転数を冷蔵庫本
体11にあるパイプや板金等の共振回転数にならないよ
うに、あらかじめ実験等で見つけ出しておき、その回転
数を除いて回転数設定ができるようにすると、共振によ
る騒音の発生や破損の防止ができ、また、それぞれの回
転数でうなり音が生じるような回転数にはならないよう
に、圧縮機や送風機の回転数を設定すると、うなり音に
よる騒音が防止できる。
Further, the above-mentioned respective rotational speeds are found in advance by experiments or the like so as not to be the resonance rotational speeds of pipes, sheet metals, etc. in the refrigerator main body 11, and the rotational speeds can be set except for the rotational speeds. Then, the generation and breakage of noise due to resonance can be prevented, and the number of rotations of the compressor and the blower is set so that the number of rotations does not produce a beat sound at each rotation speed. Can be prevented.

【0053】また、冷蔵庫本体11周辺の外気温の変化
に応じ、上記圧縮機上限回転数NMやそれにともなう上
記各々の送風機回転数を所定の値に設定させることによ
り、外気温が低い場合は各々の回転数を低くし、外気温
が高い場合は各々の回転数を高くして、冷却器18の目
詰まりを最小限におさえ、冷却速度の対応にそなえるこ
とも可能となる。
The compressor upper limit rotational speed NM and the respective blower rotational speeds associated therewith are set to predetermined values in accordance with changes in the external air temperature around the refrigerator body 11, so that when the external air temperature is low, It is possible to minimize the clogging of the cooler 18 and to cope with the cooling speed by reducing the rotation speed of the cooling device 18 and increasing the rotation speed when the outside air temperature is high.

【0054】[0054]

【発明の効果】本発明の冷蔵庫は上記のような構成であ
るから、請求項1記載の発明によれば、圧縮機の起動か
ら停止までの運転時間が設定された所定時間内に安定し
て制御されるため、常に圧縮機の運転率の値を理想の所
定値に設定でき、負荷条件にかかわらず冷凍サイクルに
よる凝縮熱の侵入をも考慮した冷却効率のよい冷蔵庫が
得られる。
According to the first aspect of the present invention, since the refrigerator of the present invention is configured as described above, the operation time from the start to the stop of the compressor can be stably maintained within the set predetermined time. Because of the control, the value of the operation rate of the compressor can always be set to an ideal predetermined value, and a refrigerator having a high cooling efficiency can be obtained in consideration of the intrusion of condensation heat by the refrigeration cycle regardless of the load condition.

【0055】また、請求項2記載の発明によれば、負荷
が増大した場合でも、なるべく少ない圧縮機の回転数に
て、所定の時間になるべく近い時間で、庫内温度が設定
温度に到達でき、冷蔵庫の異なる負荷条件にも変わらな
い効率よい運転率制御となり、負荷条件にかかわらず冷
凍サイクルによる凝縮熱の侵入をも考慮した冷却効率の
よい冷蔵庫が得られる。
According to the second aspect of the present invention, even if the load increases, the internal temperature of the refrigerator can reach the set temperature in a time as short as possible to a predetermined time with the rotational speed of the compressor as small as possible. In addition, efficient operation rate control that does not change even under different load conditions of the refrigerator can be achieved, and a refrigerator with high cooling efficiency that takes into consideration the intrusion of condensation heat by the refrigeration cycle regardless of the load condition can be obtained.

【0056】そして、請求項3記載の発明によれば、設
定した所定の時間以上かかって停止設定温度に到達した
ときの圧縮機の回転数で次の運転の初めから開始でき、
無駄なく効率よい圧縮機の運転率制御を考慮した運転の
開始となり、冷凍サイクルによる凝縮熱の侵入をも考慮
した冷却効率のよい運転ができる冷蔵庫が得られる。
According to the third aspect of the present invention, it is possible to start from the beginning of the next operation at the number of revolutions of the compressor when the temperature reaches the stop set temperature over a predetermined time or more.
The operation is started in consideration of the efficient operation rate control of the compressor without waste, and a refrigerator capable of operating with high cooling efficiency in consideration of the intrusion of heat of condensation by the refrigeration cycle is obtained.

【0057】そしてまた、請求項4記載の発明によれ
ば、設定した所定の時間未満で停止設定温度に到達した
ときの圧縮機の回転数より低い回転数で次の運転の初め
から開始でき、必要以上に圧縮機能力を使うことなく、
所定の時間に近い圧縮機の運転ができ、冷凍サイクルに
よる凝縮熱の侵入をも考慮した冷却効率の向上をはかっ
た冷蔵庫が得られる。
Further, according to the invention of claim 4, it is possible to start from the beginning of the next operation at a rotation speed lower than the rotation speed of the compressor when the stop set temperature is reached in less than the set predetermined time, Without using compression force more than necessary,
It is possible to operate the compressor for a predetermined period of time, and to obtain a refrigerator with improved cooling efficiency in consideration of the intrusion of heat of condensation by the refrigeration cycle.

【0058】さらに、請求項5記載の発明によれば、所
定の時間を冷凍サイクルによる凝縮熱の侵入をも考慮し
た冷却効率のよい範囲内で長い時間に切り替えられるよ
うにした場合、負荷が大きくなったときの対応能力の範
囲は狭まるが、必要以上に圧縮機能力を使うことなくよ
り圧縮機の運転効率が向上し、冷凍サイクルによる凝縮
熱の侵入をも考慮したより冷却効率のよい冷蔵庫が得ら
れる。
Further, according to the fifth aspect of the present invention, when the predetermined time can be switched to a long time within a range of good cooling efficiency in consideration of the penetration of the heat of condensation by the refrigeration cycle, the load becomes large. Although the range of response capacity becomes narrower, the operation efficiency of the compressor is improved without using the compression function more than necessary, and a refrigerator with better cooling efficiency considering the intrusion of condensation heat due to the refrigeration cycle is considered. can get.

【0059】さらにまた、請求項6記載の発明によれ
ば、運転温度や停止設定温度を冷凍保存に支障のない程
度の高い温度に切り替えられるようにした場合、冷却の
ための使用電力が少なくてすみ、外気との温度差が減少
するため外気からの熱の吸収量が減ることによる熱ロス
の低減ができ、さらに効率のよい省力化の進んだ冷蔵庫
が得られる。
Furthermore, according to the present invention, when the operating temperature or the set stop temperature can be switched to a high temperature that does not hinder freezing and storage, the power consumption for cooling is small. In addition, since the temperature difference from the outside air is reduced, the amount of heat absorbed from the outside air is reduced, so that heat loss can be reduced, and a more efficient and labor-saving refrigerator can be obtained.

【0060】また、請求項7記載の発明によれば、扉開
閉動作によって庫内の温度が上昇しても、通常運転に戻
るため、冷蔵庫内の貯蔵物は常に貯蔵に適した温度に保
たれるようになる。
According to the seventh aspect of the present invention, even if the temperature inside the refrigerator rises due to the opening and closing operation of the door, the operation returns to the normal operation, so that the storage in the refrigerator is always kept at a temperature suitable for storage. Will be able to

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷蔵庫の実施の形態を示す制御装置の
ブロック図である。
FIG. 1 is a block diagram of a control device showing an embodiment of a refrigerator of the present invention.

【図2】本発明の冷蔵庫の実施の形態を示す側断面図で
ある。
FIG. 2 is a side sectional view showing an embodiment of the refrigerator of the present invention.

【図3】本発明の冷蔵庫の実施の形態を示す制御装置の
フローチャート図である。
FIG. 3 is a flowchart of a control device showing the embodiment of the refrigerator of the present invention.

【符号の説明】[Explanation of symbols]

1 制御装置 2 制御手段 3 庫内温度検出装置 4 圧縮機 8 モード切替装置 DESCRIPTION OF SYMBOLS 1 Control device 2 Control means 3 Internal temperature detection device 4 Compressor 8 Mode switching device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤光 貴宏 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 吉村 宏 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 3L045 AA02 BA01 CA02 DA02 EA01 GA07 HA01 LA05 LA06 LA10 MA02 NA15 NA16 PA03 PA04 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takahiro Fujimitsu 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside (72) Inventor Hiroshi Yoshimura 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka F term in reference (reference) 3L045 AA02 BA01 CA02 DA02 EA01 GA07 HA01 LA05 LA06 LA10 MA02 NA15 NA16 PA03 PA04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機の回転数を所定の範囲で制御する
回転数制御手段と、庫内温度を所定の時間毎に検出する
庫内温度検出手段とを備え、上記庫内温度検出手段にて
検出された庫内温度によって、上記圧縮機の運転・停止
の制御をすることにより、庫内温度が所定の設定温度に
保たれる冷蔵庫において、 上記圧縮機の起動から停止までの時間が所定の時間とな
るように、上記圧縮機の回転数を制御する制御手段を備
えたことを特徴とする冷蔵庫。
1. An internal combustion engine comprising: a rotational speed control means for controlling a rotational speed of a compressor within a predetermined range; and an internal temperature detecting means for detecting an internal temperature at predetermined time intervals. By controlling the operation and stop of the compressor based on the detected internal temperature, in the refrigerator in which the internal temperature is maintained at a predetermined set temperature, the time from the start to the stop of the compressor is predetermined. A control means for controlling the number of revolutions of the compressor so that the time is equal to.
【請求項2】 圧縮機の回転数を所定の範囲で制御する
回転数制御手段と、庫内温度を所定の時間毎に検出する
庫内温度検出手段とを備え、上記庫内温度検出手段にて
検出された庫内温度によって、上記圧縮機の運転・停止
の制御をすることにより、庫内温度が所定の設定温度に
保たれる冷蔵庫において、 上記圧縮機を所定の回転数で所定の時間だけ連続に運転
し、上記庫内温度検出手段により検出された値が圧縮機
を停止させる停止設定温度に達していないとき、前記停
止設定温度に達するまで、上記圧縮機の回転数は、所定
の間隔をもつ追加運転時間毎に、上記所定の回転数から
段階的に所定の上昇回転数だけ上げた圧縮機の回転数に
する制御手段を備えたことを特徴とする冷蔵庫。
2. The apparatus according to claim 1, further comprising: rotation speed control means for controlling the rotation speed of the compressor within a predetermined range; and temperature detection means for detecting the temperature in the storage at predetermined time intervals. By controlling the operation and stop of the compressor based on the detected internal temperature, in the refrigerator in which the internal temperature is maintained at a predetermined set temperature, the compressor is operated at a predetermined rotation speed for a predetermined time. Only continuously, and when the value detected by the internal temperature detection means has not reached the stop set temperature for stopping the compressor, the rotation speed of the compressor is a predetermined number until the stop set temperature is reached. A refrigerator characterized by comprising control means for increasing the number of rotations of the compressor stepwise from a predetermined number of rotations by a predetermined number of rotations for each additional operation time having an interval.
【請求項3】 上記圧縮機を運転し、上記所定の時間に
対する所定範囲の時間または上記所定の時間をこえた時
間で庫内温度が上記停止設定温度に達した後圧縮機を停
止し、その後、庫内温度が圧縮機を運転させる温度の運
転設定温度以上になったとき、上記圧縮機を停止した直
前の圧縮機の回転数で上記圧縮機を運転する制御手段を
備えたことを特徴とする請求項1若しくは請求項2記載
の冷蔵庫。
3. The compressor is operated, and after the internal temperature reaches the stop set temperature within a predetermined range of time relative to the predetermined time or a time exceeding the predetermined time, the compressor is stopped. A control means for operating the compressor at the rotation speed of the compressor immediately before stopping the compressor when the internal temperature is equal to or higher than the operation set temperature of the temperature at which the compressor is operated. The refrigerator according to claim 1 or 2, wherein
【請求項4】 上記圧縮機を運転し、上記所定の時間に
対する所定範囲の時間未満の時間で庫内温度が上記停止
設定温度に達した後圧縮機を停止し、その後、庫内温度
が上記運転設定温度以上になったとき、上記圧縮機を停
止した直前の圧縮機の回転数より所定の回転数だけ低い
低下回転数で上記圧縮機を運転する制御手段を備えたこ
とを特徴とする請求項1若しくは請求項2または請求項
3記載の冷蔵庫。
4. The compressor is operated to stop the compressor after the internal temperature reaches the stop set temperature in a time shorter than a predetermined range with respect to the predetermined time. A control means for operating the compressor at a reduced rotation speed lower by a predetermined rotation speed than a rotation speed of the compressor immediately before stopping the compressor when the temperature becomes equal to or higher than an operation set temperature. 4. The refrigerator according to claim 1, 2 or 3.
【請求項5】 上記所定の時間は切り替え手段によって
異なる時間に切り替えられることを特徴とする請求項1
乃至請求項4記載の何れか一つの冷蔵庫。
5. The switching device according to claim 1, wherein the predetermined time is switched to a different time by a switching unit.
The refrigerator according to claim 1.
【請求項6】 上記停止設定温度や上記運転設定温度は
切り替え手段によって異なる温度に切り替えられること
を特徴とする請求項1乃至請求項5記載の何れか一つの
冷蔵庫。
6. The refrigerator according to claim 1, wherein the set stop temperature and the set operation temperature are switched to different temperatures by switching means.
【請求項7】 上記切り替え手段によって切り替えられ
た上記所定の時間や設定温度などの値は、扉開閉動作を
おこなうことによって通常運転の値に戻ることを特徴と
する請求項5若しくは請求項6記載の冷蔵庫。
7. The value of the predetermined time or the set temperature switched by the switching means returns to the value of the normal operation by performing a door opening / closing operation. Refrigerator.
JP01822799A 1999-01-27 1999-01-27 refrigerator Expired - Fee Related JP3732032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01822799A JP3732032B2 (en) 1999-01-27 1999-01-27 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01822799A JP3732032B2 (en) 1999-01-27 1999-01-27 refrigerator

Publications (2)

Publication Number Publication Date
JP2000213847A true JP2000213847A (en) 2000-08-02
JP3732032B2 JP3732032B2 (en) 2006-01-05

Family

ID=11965786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01822799A Expired - Fee Related JP3732032B2 (en) 1999-01-27 1999-01-27 refrigerator

Country Status (1)

Country Link
JP (1) JP3732032B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072838A1 (en) * 2005-01-03 2006-07-13 Arcelik Anonim Sirketi A cooling device and a control method
JP2009250599A (en) * 2008-04-11 2009-10-29 Panasonic Corp Refrigerator
JP2012072939A (en) * 2010-09-28 2012-04-12 Sanyo Electric Co Ltd Cooling device
EP1655557A3 (en) * 2003-10-21 2013-03-27 Whirlpool Corporation Horizontal freezer
US20180299179A1 (en) * 2015-09-30 2018-10-18 Electrolux Home Products, Inc. Temperature control of refrigeration cavities in low ambient temperature conditions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812938A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Method of controlling air conditioner
JPS60134177A (en) * 1983-12-22 1985-07-17 三洋電機株式会社 Cooling storehouse
JPS61195246A (en) * 1985-02-25 1986-08-29 三菱電機株式会社 Refrigerator
JPS62132384U (en) * 1986-02-14 1987-08-20
JPH09126618A (en) * 1995-11-02 1997-05-16 Matsushita Refrig Co Ltd Refrigerator
JPH09217974A (en) * 1995-12-07 1997-08-19 Fuji Electric Co Ltd Cooler for showcase
JPH09236367A (en) * 1995-12-29 1997-09-09 Lg Electronics Inc Refrigerator controller equipped with linear compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812938A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Method of controlling air conditioner
JPS60134177A (en) * 1983-12-22 1985-07-17 三洋電機株式会社 Cooling storehouse
JPS61195246A (en) * 1985-02-25 1986-08-29 三菱電機株式会社 Refrigerator
JPS62132384U (en) * 1986-02-14 1987-08-20
JPH09126618A (en) * 1995-11-02 1997-05-16 Matsushita Refrig Co Ltd Refrigerator
JPH09217974A (en) * 1995-12-07 1997-08-19 Fuji Electric Co Ltd Cooler for showcase
JPH09236367A (en) * 1995-12-29 1997-09-09 Lg Electronics Inc Refrigerator controller equipped with linear compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1655557A3 (en) * 2003-10-21 2013-03-27 Whirlpool Corporation Horizontal freezer
WO2006072838A1 (en) * 2005-01-03 2006-07-13 Arcelik Anonim Sirketi A cooling device and a control method
JP2009250599A (en) * 2008-04-11 2009-10-29 Panasonic Corp Refrigerator
JP2012072939A (en) * 2010-09-28 2012-04-12 Sanyo Electric Co Ltd Cooling device
US20180299179A1 (en) * 2015-09-30 2018-10-18 Electrolux Home Products, Inc. Temperature control of refrigeration cavities in low ambient temperature conditions
US11280536B2 (en) * 2015-09-30 2022-03-22 Electrolux Home Products, Inc. Temperature control of refrigeration cavities in low ambient temperature conditions

Also Published As

Publication number Publication date
JP3732032B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US7942014B2 (en) Reduced energy refrigerator defrost method and apparatus
US8726680B2 (en) Electronic refrigeration control system including a variable speed compressor
JP4934302B2 (en) Cooling storage
JPH10318646A (en) Driving control device of refrigerator and method
JP3455058B2 (en) refrigerator
KR101721771B1 (en) Colntrol method for refrigerator
JP2001194046A (en) Freezing system performing independent indoor temperature control
JP3476361B2 (en) Refrigerator cooling operation control device
JP3732032B2 (en) refrigerator
JP2772173B2 (en) refrigerator
JP2002206840A (en) Refrigerator
JP4011314B2 (en) refrigerator
JP2011153788A (en) Refrigerator
JPH09264649A (en) Control method for refrigerator
JP2000258022A (en) Refrigerator
JP2001255050A (en) Refrigerator
JPH05264157A (en) Open show case
JP3533327B2 (en) Refrigerator control method
JP2732732B2 (en) Freezer refrigerator
JP4141762B2 (en) Refrigerator and control method thereof
JP3332801B2 (en) refrigerator
JP2003287344A (en) Refrigerator
KR100234096B1 (en) Refrigerator and controlling method of thermal thereof
JPH094959A (en) Controller for refrigerator
JP3192729B2 (en) refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees