JPH09177138A - Hydraulic circuit of hydraulic shovel - Google Patents

Hydraulic circuit of hydraulic shovel

Info

Publication number
JPH09177138A
JPH09177138A JP7341473A JP34147395A JPH09177138A JP H09177138 A JPH09177138 A JP H09177138A JP 7341473 A JP7341473 A JP 7341473A JP 34147395 A JP34147395 A JP 34147395A JP H09177138 A JPH09177138 A JP H09177138A
Authority
JP
Japan
Prior art keywords
switching valve
oil
discharge pressure
oil supply
boom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7341473A
Other languages
Japanese (ja)
Other versions
JP3142764B2 (en
Inventor
Hiroji Ishikawa
広二 石川
Toichi Hirata
東一 平田
Genroku Sugiyama
玄六 杉山
Youichi Furuwatari
陽一 古渡
Tsukasa Toyooka
司 豊岡
Shigehiro Yoshinaga
滋博 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP07341473A priority Critical patent/JP3142764B2/en
Publication of JPH09177138A publication Critical patent/JPH09177138A/en
Application granted granted Critical
Publication of JP3142764B2 publication Critical patent/JP3142764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to hold oil pressure necessary for up-motion of a boom when horizontal levelling work is executed with simultaneous operation of both arm and boom and, at the same time, to prevent a motor from lowering its motion efficiency. SOLUTION: Based on discharge pressure Pp of a first hydraulic pump 15 detected by a discharge pressure sensor 34, a controller 33 outputs a branch flow control signal having value obtained by performing an operation based on a transformation function prescribing relation between the discharge pressure Pp of the first hydraulic pump 15 read out from a storage section and target opening area ST of an auxiliary selector valve 23 and a plurality of transformation functions into a proportional electromagnetic valve 32. The opening area SS of the auxiliary selector valve 23 is controlled by pilot oil flowing out from the proportional electromagnetic valve 32, and when the discharge pressure Pp is in excess of lower limited discharge pressure P0 , branch flow of driving pressure oil flowing out to oil suppy side of a combined flow selector valve 17 passing through an alternative bypass oil passage is increased with the transformation function.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は複数の油圧源を有
し、アクチュエーター駆動系回路がタンデム回路で構成
された油圧ショベルの油圧回路の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a hydraulic circuit of a hydraulic excavator having a plurality of hydraulic sources and an actuator drive system circuit composed of a tandem circuit.

【0002】[0002]

【従来の技術】典型的な建設機械である油圧ショベルの
一つの標準的な作業として水平均し作業がある。この水
平均し作業というのはアームをほぼ最大到達位置まで延
ばした後、若干ブームを持ち上げながらアームを引き込
むことにより、バケット先端または底面を水平面に沿っ
て引き寄せて、地面を水平に均す作業を言う。アームが
手前に引き寄せられるに連れてブームの上昇速度を低下
させ、アームの引き寄せ動作による円弧軌道を修正して
水平軌道となるようにし、アームが下死点に到達した時
にはブームの上昇速度を0にする。このようなアームと
ブームの同時操作による水平均し作業を速やか且つ効率
よく行えるようにするために、ブーム用切替弁およびア
ーム用切替弁を含むアクチュエーター駆動系の油圧回路
は複数の油圧源を有するタンデム回路で構成されること
が多い。
2. Description of the Related Art Water averaging work is one of the standard works of a hydraulic excavator which is a typical construction machine. This water leveling work involves extending the arm to almost the maximum reaching position, then pulling the arm while slightly lifting the boom, pulling the bucket tip or bottom along the horizontal plane and leveling the ground horizontally. To tell. As the arm is pulled toward you, the boom's rising speed is reduced, and the arc trajectory caused by the arm's pulling motion is corrected to a horizontal trajectory. When the arm reaches the bottom dead center, the boom's rising speed is reduced to 0. To In order to perform the water averaging work by such simultaneous operation of the arm and the boom quickly and efficiently, the hydraulic circuit of the actuator drive system including the boom switching valve and the arm switching valve has a plurality of hydraulic sources. Often composed of tandem circuits.

【0003】かかる先行技術の一例としては実公平7−
30776号公報に記載された考案がある。この考案は
水平均し作業における運転者の操作違和感を緩和するた
めに、上流側に接続されたブーム用切替弁の供給油路か
ら、タンデム接続されたアームシリンダーへの合流用切
替弁の供給油路に到る迂回バイパス油路の間に補助切替
弁を配し、この補助切替弁をブーム用切替弁の切替え動
作と連動させ、スプールの移動に連れて閉、開、閉の順
で動作させることによりアームシリンダーへの圧油の合
流流量を補い、ブーム用切替弁の切替え動作の早い時点
で中央バイパス油路への流出口が閉じられてしまうこと
による操作上の違和感を緩和するようにしたものであ
る。
As an example of such a prior art, an actual fair 7-
There is a device described in Japanese Patent No. 30776. In order to mitigate the driver's uncomfortable feeling in water leveling work, this device supplies the oil for the merging switching valve to the tandem-connected arm cylinder from the oil path for the boom switching valve connected on the upstream side. An auxiliary switching valve is placed between the bypass bypass oil passages that reach the road, and this auxiliary switching valve is linked with the switching operation of the boom switching valve to operate in the order of closing, opening, and closing as the spool moves. As a result, the combined flow rate of pressure oil to the arm cylinder is compensated for, and the operational discomfort caused by closing the outlet to the central bypass oil passage at the early switching operation of the boom switching valve is alleviated. It is a thing.

【0004】[0004]

【発明が解決しようとする課題】上述の従来技術は前述
のように、水平均し作業における運転者の操作違和感を
緩和することを目的として、ブーム用切替弁の切替え動
作によってブーム用切替弁から中央バイパス油路側に流
出する圧油の流量が急激に絞られるのを補助切替弁の切
替え動作によって迂回バイパス油路を介して多少補うよ
うにしたものであるため、例えば、水平均し作業開始時
にアームの負荷が軽い場合にはブーム上げ動作を行うの
に充分な駆動圧を得ることができないという不具合が生
じる虞があるので、アームレバーを操作した時の補助切
替弁の開口量をあまり大きくすることができない。従っ
て、水平均し作業時のアームシリンダーに要求される多
量の圧油の供給には不十分であり、しかも、ブーム用切
替弁の上流側の供給油路に供給された吐出油は図示しな
い絞り弁を介して油タンクに排出されてしまうので、原
動機の動作効率が悪いという問題点があった。本発明は
従来技術におけるかかる問題点を解消すべく為されたも
のであり、アームとブームの同時操作による水平均し作
業を行う際に、ブームの上げ動作に必要な油圧を保持し
得ると共に原動機の動作効率の低下を招かない油圧ショ
ベルの油圧回路を提供することを目的とする。
As described above, the above-mentioned prior art is intended to reduce the operator's uncomfortable feeling in water averaging work by changing the boom switching valve from the boom switching valve. The sudden decrease in the flow rate of pressure oil flowing out to the side of the central bypass oil passage is compensated to some extent by the switching operation of the auxiliary switching valve through the bypass oil passage. If the load on the arm is light, there may occur a problem that sufficient drive pressure cannot be obtained for performing the boom raising operation. Therefore, the opening amount of the auxiliary switching valve when the arm lever is operated is made too large. I can't. Therefore, it is not sufficient to supply a large amount of pressure oil required for the arm cylinder during water averaging work, and the discharge oil supplied to the supply oil passage on the upstream side of the boom switching valve is not shown in the drawing. Since the oil is discharged to the oil tank through the valve, there is a problem that the operation efficiency of the prime mover is poor. The present invention has been made to solve the above problems in the prior art, and when performing water leveling work by simultaneous operation of the arm and the boom, it is possible to maintain the hydraulic pressure necessary for the raising operation of the boom and the prime mover. It is an object of the present invention to provide a hydraulic circuit for a hydraulic excavator that does not reduce the operating efficiency of the hydraulic excavator.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、ブーム用切替弁の油供給側と合流用切替弁
の油供給側との間を迂回接続する迂回バイパス油路中に
補助切替弁を設け、該補助切替弁を第1の油供給源の吐
出圧に応じて流量制御することにより、第1の油供給源
の吐出油の無駄なエネルギー損失を抑制したものであ
り、好ましくは、第1の油供給源の吐出圧を検出する吐
出圧センサーと、第1の油供給源の吐出圧に対応する補
助切替弁を通過する駆動用圧油の分岐流量の関係を規定
する変換関数に基づいて吐出圧センサーが検出した第1
の油供給源の吐出圧に対応する分岐流量を求め、該分岐
流量に従って補助切替弁の開口面積を制御する制御手段
を有したものである。
In order to solve the above problems, the present invention provides a bypass bypass oil passage for bypass connection between the oil supply side of a boom switching valve and the oil supply side of a merging switching valve. By providing an auxiliary switching valve and controlling the flow rate of the auxiliary switching valve according to the discharge pressure of the first oil supply source, it is possible to suppress wasteful energy loss of the discharge oil of the first oil supply source. Preferably, the relationship between the discharge pressure sensor that detects the discharge pressure of the first oil supply source and the branch flow rate of the drive pressure oil that passes through the auxiliary switching valve corresponding to the discharge pressure of the first oil supply source is defined. First detected by the discharge pressure sensor based on the conversion function
The control means for determining the branch flow rate corresponding to the discharge pressure of the oil supply source and controlling the opening area of the auxiliary switching valve in accordance with the branch flow rate.

【0006】[0006]

【発明の実施の形態】本発明は少なくとも2つの油供給
源を具え、その中の1つの油供給源にはブーム用切替弁
とアームシリンダーへの合流用切替弁が上流側からこの
順でタンデム接続され、アーム用切替弁から流出した圧
油と合流用切替弁から流出した圧油あるいは合流用切替
弁で流出を阻止された圧油が合流してアームシリンダー
へ流入するように構成された油圧回路を搭載した油圧シ
ョベルに適用され、水平均し作業時の効率的な圧油の配
分を実現することにより、ブームの上げ動作に必要な駆
動油圧を保持しながら、エネルギー損失、即ち、無駄な
燃料の浪費を抑止したものである。以下、図面を参照し
て本発明を具体化した実施例により詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention comprises at least two oil supply sources, one of which has a boom switching valve and a merging switching valve for joining to an arm cylinder in tandem from the upstream side in this order. Hydraulic pressure that is connected so that pressure oil flowing out from the arm switching valve and pressure oil flowing out from the merging switching valve or pressure oil blocked from flowing out by the merging switching valve merges and flows into the arm cylinder. It is applied to a hydraulic excavator equipped with a circuit and realizes water pressure averaging to efficiently distribute pressure oil while maintaining the drive oil pressure necessary for raising the boom, while eliminating energy loss, that is, waste. It is a measure to prevent waste of fuel. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0007】[0007]

【実施例】図1は本発明の第1の実施例に係る油圧回路
図である。同図において、11はアーム、12はアーム
シリンダー、13はブーム、14はブームシリンダー、
15は第1油圧ポンプ、16は第1油圧ポンプ15の吐
出油が供給されるブーム用切替弁、17はブーム用切替
弁16にタンデム接続された合流用切替弁、18は第2
油圧ポンプ、19は第2油圧ポンプ18の吐出油が供給
されるアーム用切替弁、20はバケット、21はブーム
用切替弁16を切替え操作するためのブーム切替パイロ
ット弁、22はアーム用切替弁19を切替え操作するた
めのアーム切替パイロット弁、23は第1油圧ポンプ1
5の吐出油が合流用切替弁17側にバイパスされる管路
途中に設けられ、通過する圧油の流出を阻止あるいは流
量を制御する補助切替弁、31はパイロット油圧ポン
プ、32は補助切替弁23のパイロット室に導かれるパ
イロット油の流量を分岐流量制御信号に比例して制御す
る比例電磁弁、33は第1油圧ポンプ15の吐出圧に基
づいて第1油圧ポンプ15の吐出油の合流用切替弁17
側への分岐流量を規定する分岐流量制御信号を比例電磁
弁32に出力するコントローラー、34は第1油圧ポン
プ15の吐出圧を検出する吐出圧センサーである。
1 is a hydraulic circuit diagram according to a first embodiment of the present invention. In the figure, 11 is an arm, 12 is an arm cylinder, 13 is a boom, 14 is a boom cylinder,
Reference numeral 15 is a first hydraulic pump, 16 is a boom switching valve to which the discharge oil of the first hydraulic pump 15 is supplied, 17 is a merging switching valve tandem-connected to the boom switching valve 16, and 18 is a second
A hydraulic pump, 19 is an arm switching valve to which the discharge oil of the second hydraulic pump 18 is supplied, 20 is a bucket, 21 is a boom switching pilot valve for switching the boom switching valve 16, and 22 is an arm switching valve. An arm switching pilot valve for switching 19 and 23 is the first hydraulic pump 1
The discharge oil of No. 5 is an auxiliary switching valve that is provided in the middle of the pipeline that is bypassed to the merging switching valve 17 side to prevent outflow of the passing pressure oil or control the flow rate, 31 is a pilot hydraulic pump, and 32 is an auxiliary switching valve. A proportional solenoid valve for controlling the flow rate of the pilot oil guided to the pilot chamber of 23 in proportion to the branch flow rate control signal, and 33 for joining the discharge oil of the first hydraulic pump 15 based on the discharge pressure of the first hydraulic pump 15. Switching valve 17
A controller that outputs a branch flow rate control signal that defines the branch flow rate to the side to the proportional solenoid valve 32, and 34 is a discharge pressure sensor that detects the discharge pressure of the first hydraulic pump 15.

【0008】図2は比例電磁弁32からのパイロット圧
e に対する補助切替弁23の開口面積SS の開口特性
図である。同図に示すように、補助切替弁23の開口面
積SS は比例電磁弁32からのパイロット圧Pe が増大
するに連れて所定の不感帯を経て直線的に最大開口面積
に到るまで増大する開口特性となっている。図3はコン
トローラーの内部構成を示すブロック図である。同図に
おいて、25は吐出圧センサー34からの吐出圧信号等
の各種信号を受信する入力部、26は例えば、入力部2
5に入力した吐出圧信号と後述する記憶部に記憶されて
いる特性曲線の関数に基づいて上述の分岐流量制御信号
を演算する演算部、27は第1油圧ポンプ15の吐出圧
P と補助切替弁23の目標開口面積ST との関係を規
定する特性曲線の変換関数と複数の変換関数を予め記憶
する記憶部、28は演算部26が演算した分岐流量制御
信号を出力する出力部である。
FIG. 2 is an opening characteristic diagram of the opening area S S of the auxiliary switching valve 23 with respect to the pilot pressure P e from the proportional solenoid valve 32. As shown in the figure, the opening area S S of the auxiliary switching valve 23 increases linearly through a predetermined dead zone as the pilot pressure P e from the proportional solenoid valve 32 increases until it reaches the maximum opening area. It has an opening characteristic. FIG. 3 is a block diagram showing the internal configuration of the controller. In the figure, 25 is an input unit for receiving various signals such as a discharge pressure signal from the discharge pressure sensor 34, and 26 is, for example, the input unit 2
A computing unit that computes the above-mentioned branch flow rate control signal based on the function of the discharge pressure signal input to 5 and the characteristic curve stored in the storage unit described later, and 27 is the discharge pressure P P of the first hydraulic pump 15 and the auxiliary. A storage unit that stores in advance a conversion function of a characteristic curve that defines the relationship with the target opening area S T of the switching valve 23 and a plurality of conversion functions, and 28 is an output unit that outputs the branch flow rate control signal calculated by the calculation unit 26. is there.

【0009】図4は記憶部27から読み出した第1油圧
ポンプ15の吐出圧PP と補助切替弁23の目標開口面
積ST との関係を規定する変換関数の特性曲線と、複数
の変換関数に従って分岐流量制御信号を演算する過程に
おける複数の変換関数の特性曲線を表示したグラフであ
って、(a)は第1油圧ポンプ15の吐出圧PP と補助
切替弁23の目標開口面積ST との関係を規定する特性
曲線、(b)は目標開口面積ST と比例電磁弁32から
の目標パイロット圧Pe との関係を表す特性曲線、
(c)は目標パイロット圧Pe と分岐流量制御信号の電
流値IC との関係を表す特性曲線を示している。
FIG. 4 is a characteristic curve of a conversion function that defines the relationship between the discharge pressure P P of the first hydraulic pump 15 read from the storage unit 27 and the target opening area S T of the auxiliary switching valve 23, and a plurality of conversion functions. 6A is a graph showing characteristic curves of a plurality of conversion functions in the process of calculating the branch flow rate control signal according to the above, in which (a) is the discharge pressure P P of the first hydraulic pump 15 and the target opening area S T of the auxiliary switching valve 23. characteristic curve defining the relationship between, (b) the characteristic curve representing the relationship between the target opening area S T with the target pilot pressure P e from the proportional solenoid valve 32,
(C) shows a characteristic curve representing the relationship between the target pilot pressure P e and the current value I C of the branch flow rate control signal.

【0010】図1および図4を参照して本実施例の動作
を説明する。本発明は油圧ショベルの水平均し作業に注
目して為されたものであり、該作業において特徴的な動
作をするので、ここではアーム11とブーム13が同時
操作される水平均し作業時の動作について説明する。ま
ず、コントローラー33の演算処理について説明する。
始めに、記憶部27から図4(a)に示す第1油圧ポン
プ15の吐出圧PP と補助切替弁23の目標開口面積S
T との関係を規定する特性曲線の変換関数を読み出す。
この特性曲線の変換関数は当該油圧ショベルの動作特性
等に基づいて決定され、予め記憶部27に格納されてい
る。同図に示すように、本実施例では目標開口面積ST
は第1油圧ポンプ15の吐出圧PP が下限吐出圧P0
達するまでは0、即ち、補助切替弁23が閉じており、
吐出圧PP が下限吐出圧P0 を越えると、目標開口面積
T は徐々に増大して最大開口面積SM となるように設
定されている。
The operation of this embodiment will be described with reference to FIGS. The present invention was made by paying attention to the water averaging work of the hydraulic excavator. Since the characteristic operation is performed in the work, here, the water averaging work in which the arm 11 and the boom 13 are simultaneously operated is performed. The operation will be described. First, the arithmetic processing of the controller 33 will be described.
First, from the storage unit 27, the discharge pressure P P of the first hydraulic pump 15 and the target opening area S of the auxiliary switching valve 23 shown in FIG.
Read the conversion function of the characteristic curve that defines the relationship with T.
The conversion function of this characteristic curve is determined based on the operating characteristics of the hydraulic excavator and the like, and is stored in the storage unit 27 in advance. As shown in the figure, in this embodiment, the target opening area S T
Is 0 until the discharge pressure P P of the first hydraulic pump 15 reaches the lower limit discharge pressure P 0, that is, the auxiliary switching valve 23 is closed,
When the discharge pressure P P exceeds the lower limit discharge pressure P 0 , the target opening area S T is gradually increased to the maximum opening area S M.

【0011】演算部26はこの吐出圧PP と目標開口面
積ST との間の変換関数を、吐出圧PP と比例電磁弁3
2からの目標パイロット圧Pe との間の変換関数を用い
て、目標開口面積ST とパイロット圧Pe との間の変換
関数(図4(b))に変換し、さらに、目標開口面積S
T を与えるパイロット圧Pe と分岐流量制御信号の電流
値IC との間の変換関数(図4(c))に変換する。こ
うして得られた3種類の変換関数を用いて、入力部25
に入力した吐出圧PP 信号から電流値IC の分岐流量制
御信号を演算して出力部28より比例電磁弁32に出力
する。
The calculation unit 26 calculates the conversion function between the discharge pressure P P and the target opening area S T as the discharge pressure P P and the proportional solenoid valve 3.
Using the conversion function between the target pilot pressure P e from 2, into a transformation function between a target opening area S T and the pilot pressure P e (FIG. 4 (b)), further, the target opening area S
It is converted into a conversion function (FIG. 4 (c)) between the pilot pressure P e giving T and the current value I C of the branch flow rate control signal. Using the three kinds of conversion functions thus obtained, the input unit 25
A branch flow rate control signal having a current value I C is calculated from the discharge pressure P P signal input to the output signal and output from the output unit 28 to the proportional solenoid valve 32.

【0012】前述のように、水平均し作業はアームシリ
ンダー12とブームシリンダー14を縮小させてバケッ
ト20をほぼ最大到達位置まで到達させた後、アームシ
リンダー12を伸長させてアーム11を運転席側に引き
込むと共にブームシリンダー14を伸長させてブーム1
3を始めは中程度で、その後、徐々に減速させながら持
ち上げる操作により実行される。この操作を図1に即し
て説明すると、水平均し作業開始時には、ブーム切替パ
イロット弁21は中操作量程度で、アーム切替パイロッ
ト弁22はほぼ最大操作量で同時に操作される。このよ
うな運転者のレバー操作により、ブーム切替パイロット
弁21およびアーム切替パイロット弁22から流出した
パイロット油はそれぞれブーム用切替弁16の右パイロ
ット室および合流用切替弁17とアーム用切替弁19の
左パイロット室に流入し、ブーム用切替弁16および合
流用切替弁17とアーム用切替弁19をそれぞれ右切替
位置および左切替位置に切り替えさせる。これにより、
ブーム用切替弁16の中央バイパス油路への圧油の供給
は絞られるから、第1油圧ポンプ15の吐出油はブーム
用切替弁16を経てブームシリンダー14のボトム側
に、第2油圧ポンプ18の吐出油はアーム用切替弁19
を経てアームシリンダー12のボトム側に流入する。
As described above, in the water averaging work, the arm cylinder 12 and the boom cylinder 14 are contracted so that the bucket 20 reaches the maximum reaching position, and then the arm cylinder 12 is extended to move the arm 11 to the driver seat side. The boom cylinder 14 and the boom 1
3 is started at a middle level, and thereafter, it is executed by an operation of lifting while gradually decelerating. This operation will be described with reference to FIG. 1. At the start of the water averaging operation, the boom switching pilot valve 21 is operated with a medium operation amount and the arm switching pilot valve 22 is operated with a maximum operation amount at the same time. By such a lever operation of the driver, the pilot oil flowing out from the boom switching pilot valve 21 and the arm switching pilot valve 22 is supplied to the right pilot chamber of the boom switching valve 16 and the merging switching valve 17 and the arm switching valve 19, respectively. It flows into the left pilot chamber and switches the boom switching valve 16, the merging switching valve 17, and the arm switching valve 19 to the right switching position and the left switching position, respectively. This allows
Since the supply of pressure oil to the central bypass oil passage of the boom switching valve 16 is throttled, the discharge oil of the first hydraulic pump 15 passes through the boom switching valve 16 to the bottom side of the boom cylinder 14 and the second hydraulic pump 18 The discharge oil of is the switching valve 19 for the arm.
And flows into the bottom side of the arm cylinder 12.

【0013】この時のブーム用切替弁16のスプール開
口はかなり開いているので、第1油圧ポンプ15の吐出
油はブーム用切替弁16により殆ど絞り抵抗を受けずに
ブームシリンダー14に流入する。従って、第1油圧ポ
ンプ15の吐出圧PP は下限吐出圧P0 に達していない
から、目標開口面積ST =0、比例電磁弁32の目標パ
イロット圧Pe は初期吐出圧Pe0、分岐流量制御信号の
電流値IC は初期値IC0となり、補助切替弁23は閉じ
ており、第1油圧ポンプ15の吐出油は迂回バイパス油
路を通って合流用切替弁17の油供給側には流入しな
い。その後、ブーム13の上昇速度を低下させるため
に、ブーム切替パイロット弁21が戻し操作される。こ
れにより、ブーム用切替弁16のスプール位置は少し右
側に戻され、スプール開口が徐々に絞られる。
At this time, since the spool opening of the boom switching valve 16 is considerably open, the oil discharged from the first hydraulic pump 15 flows into the boom cylinder 14 with almost no throttling resistance by the boom switching valve 16. Therefore, since the discharge pressure P P of the first hydraulic pump 15 has not reached the lower limit discharge pressure P 0 , the target opening area S T = 0, the target pilot pressure P e of the proportional solenoid valve 32 is the initial discharge pressure P e0 , and the branch The current value I C of the flow rate control signal becomes the initial value I C0 , the auxiliary switching valve 23 is closed, and the discharge oil of the first hydraulic pump 15 passes through the bypass bypass oil passage to the oil supply side of the merging switching valve 17. Does not flow. After that, the boom switching pilot valve 21 is returned to reduce the rising speed of the boom 13. As a result, the spool position of the boom switching valve 16 is slightly returned to the right side, and the spool opening is gradually narrowed.

【0014】この時、ブーム用切替弁16の中央バイパ
ス油路へのスプール開口は未だ閉じた状態にあるので、
第1油圧ポンプ15の吐出油はブーム用切替弁16を経
てアクチュエーターへ充分な流量で流出できないことか
ら、吐出圧センサー34で検出される第1油圧ポンプ1
5の吐出圧PP は次第に上昇し、やがて下限吐出圧P0
を越える。従って、目標開口面積ST >0、比例電磁弁
32の目標パイロット圧Pe >Pe0、分岐流量制御信号
の電流値IC >IC0となり、補助切替弁23は次第に開
かれ、第1油圧ポンプ15の吐出油は一部が迂回バイパ
ス油路を通って合流用切替弁17の油供給側に流出す
る。そして、ブーム切替パイロット弁21が戻し操作さ
れるに従って、第1油圧ポンプ15の吐出圧PP が上昇
すると、目標開口面積ST 、比例電磁弁32の目標パイ
ロット圧Pe 、分岐流量制御信号の電流値IC が増加
し、補助切替弁23および迂回バイパス油路を通って合
流用切替弁17の油供給側に流出する第1油圧ポンプ1
5の吐出油の流量が増大して、第1油圧ポンプ15の吐
出圧PP の上昇を抑制するように働く。
At this time, since the spool opening of the boom switching valve 16 to the central bypass oil passage is still closed,
Since the discharge oil of the first hydraulic pump 15 cannot flow out to the actuator through the boom switching valve 16 at a sufficient flow rate, the first hydraulic pump 1 detected by the discharge pressure sensor 34.
The discharge pressure P P of 5 gradually increases, and eventually the lower limit discharge pressure P 0
Beyond. Therefore, the target opening area S T > 0, the target pilot pressure P e > P e0 of the proportional solenoid valve 32, the current value I C > I C0 of the branch flow rate control signal, and the auxiliary switching valve 23 is gradually opened and the first hydraulic pressure is increased. A part of the oil discharged from the pump 15 flows out to the oil supply side of the merging switching valve 17 through the bypass oil passage. When the discharge pressure P P of the first hydraulic pump 15 rises as the boom switching pilot valve 21 is returned, the target opening area S T , the target pilot pressure P e of the proportional solenoid valve 32, and the branch flow rate control signal. The first hydraulic pump 1 whose current value I C increases and flows out to the oil supply side of the merging switching valve 17 through the auxiliary switching valve 23 and the bypass bypass oil passage.
5 increases the flow rate of the discharge oil, and works to suppress the rise of the discharge pressure P P of the first hydraulic pump 15.

【0015】従って、第1油圧ポンプ15の吐出圧PP
が上昇して図示しない放圧弁を介して第1油圧ポンプ1
5の吐出油が無駄に放圧されて油タンクに排出されるの
を防止できる。やがて、バケット20が最大到達位置の
ほぼ半ばの距離まで引き戻し操作されると、ブーム切替
パイロット弁21が中立位置まで戻され、ブーム用切替
弁16の右パイロット室に供給されたパイロット油の流
量が0になるので、ブーム用切替弁16のスプール位置
は中立位置に戻る。この時には既にブーム用切替弁16
の中央バイパス油路へのスプール開口は大きく開いてい
るので、第1油圧ポンプ15の吐出油がブーム用切替弁
16の中央バイパス油路を通って合流用切替弁17の油
供給側に流出するから、迂回バイパス油路を通って合流
用切替弁17の油供給側に合流する圧油と共に多量の圧
油が合流用切替弁17の油供給側に供給されることにな
り、第1油圧ポンプ15の吐出圧PP は低下する。
Therefore, the discharge pressure P P of the first hydraulic pump 15
Rises and the first hydraulic pump 1 passes through a pressure relief valve (not shown).
It is possible to prevent the discharged oil of No. 5 from being unnecessarily released and discharged to the oil tank. Eventually, when the bucket 20 is pulled back to a distance approximately halfway the maximum reaching position, the boom switching pilot valve 21 is returned to the neutral position, and the flow rate of the pilot oil supplied to the right pilot chamber of the boom switching valve 16 is increased. Since it becomes 0, the spool position of the boom switching valve 16 returns to the neutral position. At this time, the switching valve 16 for the boom has already been
Since the spool opening to the central bypass oil passage is greatly opened, the discharge oil of the first hydraulic pump 15 flows out to the oil supply side of the merging switching valve 17 through the central bypass oil passage of the boom switching valve 16. A large amount of pressure oil is supplied to the oil supply side of the merging switching valve 17 together with the pressure oil merging to the oil supply side of the merging switching valve 17 through the bypass bypass oil passage. The discharge pressure P P of 15 decreases.

【0016】そして、バケット20が最大到達位置のほ
ぼ半ばの距離を通過すると、ブーム切替パイロット弁2
1はブーム13を下げる方向に操作され、ブーム用切替
弁16の中央バイパス油路へのスプール開口は閉じられ
ると共に、スプール位置が絞りを伴いながら左切替位置
に切り替えられる。これにより、第1油圧ポンプ15の
吐出圧PP が上昇するから、コントローラー33は比例
電磁弁32に吐出圧PP に見合った電流値IC の分岐流
量制御信号を出力し、補助切替弁23の開口面積SS
吐出圧PP に見合った開口面積となるように開かせる。
こうして、バケット20が最大接近位置に到達するま
で、アーム11の引込み操作とブーム13の下げ操作が
行われる。
Then, when the bucket 20 passes a distance approximately halfway of the maximum reaching position, the boom switching pilot valve 2
1 is operated to lower the boom 13, the spool opening of the boom switching valve 16 to the central bypass oil passage is closed, and the spool position is switched to the left switching position with the throttling. As a result, the discharge pressure P P of the first hydraulic pump 15 rises, so the controller 33 outputs to the proportional solenoid valve 32 a branch flow rate control signal having a current value I C commensurate with the discharge pressure P P , and the auxiliary switching valve 23. The opening area S S is opened so as to correspond to the discharge pressure P P.
In this way, the retracting operation of the arm 11 and the lowering operation of the boom 13 are performed until the bucket 20 reaches the maximum approach position.

【0017】このように、本実施例では水平均し作業が
行われる場合に、ブーム切替レバーが中立位置近傍で操
作される時に、ブーム用切替弁16の中央バイパス油路
へのスプール開口が閉じられた状態でスプール位置が絞
りを伴いながら左右の切替位置に切り替えられることに
よる第1油圧ポンプ15の吐出油の滞留油を、補助切替
弁23を第1油圧ポンプ15の吐出圧PP に見合った開
口面積となるように開かせることにより、迂回バイパス
油路を介して合流用切替弁17の油供給側に合流させ
て、アーム11の引込み操作に有効に活用するようにし
たので、第1油圧ポンプ15の吐出油の油タンクへの無
駄な放圧排出を防止できる。また、第1油圧ポンプ15
の吐出圧PP と補助切替弁23の目標開口面積ST との
関係を規定する特性曲線の関数に基づいて第1油圧ポン
プ15の吐出圧PP に見合った開口面積SS となるよう
に補助切替弁23を開閉制御したので、迂回バイパス油
路を介して合流用切替弁17の油供給側に合流させる第
1油圧ポンプ15の吐出油の流量を所望の特性に応じた
値とすることができる。
As described above, in this embodiment, when the water leveling operation is performed, when the boom switching lever is operated in the vicinity of the neutral position, the spool opening of the boom switching valve 16 to the central bypass oil passage is closed. When the spool position is switched to the left or right switching position with the throttle in the opened state, the accumulated oil of the discharge oil of the first hydraulic pump 15 is adjusted to the discharge pressure P P of the first hydraulic pump 15 by the auxiliary switching valve 23. Since it is opened so as to have a large opening area, it merges with the oil supply side of the merging switching valve 17 via the bypass bypass oil passage, so that it can be effectively utilized for the retracting operation of the arm 11. It is possible to prevent wasteful discharge of discharged oil from the hydraulic pump 15 to the oil tank. In addition, the first hydraulic pump 15
So that the opening area S S commensurate with the discharge pressure P P of the first hydraulic pump 15 based on the relationship between the target opening area S T of the discharge pressure P P and the auxiliary switching valve 23 to the function of the regulatory characteristic curve Since the opening / closing control of the auxiliary switching valve 23 is performed, the flow rate of the discharge oil of the first hydraulic pump 15 to be merged with the oil supply side of the merging switching valve 17 via the bypass bypass oil passage is set to a value according to a desired characteristic. You can

【0018】図5は本発明の第2の実施例に係る油圧回
路図である。同図において、17aはアーム合流用切替
弁、24は高圧選択弁であり、第1の実施例と同一また
は同一と見做せる箇所には同一の符号を付し、その重複
する説明を省略する。なお、以下の説明においても同様
とする。本実施例では第1の実施例における合流用切替
弁17がアーム合流用切替弁17aに置き換えられ、そ
のパイロット室には高圧選択弁24で選択され、アーム
切替パイロット弁22の一方の切替弁から流出したパイ
ロット油が流入するようになっており、さらに、補助切
替弁23から流出した第1油圧ポンプ15の吐出油が迂
回バイパス油路を介してアーム合流用切替弁17aの油
供給側に流入すると共にアーム用切替弁19の油供給側
にも流入するようになっている。
FIG. 5 is a hydraulic circuit diagram according to the second embodiment of the present invention. In the figure, 17a is an arm merging switching valve, and 24 is a high-pressure selection valve. The parts which are the same as or considered to be the same as those in the first embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted. . The same applies to the following description. In this embodiment, the merging switching valve 17 in the first embodiment is replaced by the arm merging switching valve 17a, and the pilot chamber thereof is selected by the high-pressure selection valve 24 and is switched from one switching valve of the arm switching pilot valve 22. The outflowing pilot oil flows in, and the discharged oil of the first hydraulic pump 15 outflowing from the auxiliary switching valve 23 further flows into the oil supply side of the arm merging switching valve 17a via the bypass bypass oil passage. At the same time, it also flows into the oil supply side of the arm switching valve 19.

【0019】従って、アーム切替パイロット弁22が中
立位置にある時はアーム合流用切替弁17aの油供給側
は油タンクに連絡され、アーム切替パイロット弁22が
何れかの方向に操作された時は閉じられる。水平均し作
業が行われる場合には、ブーム切替パイロット弁21お
よびアーム切替パイロット弁22は同時に操作されるか
ら、アーム合流用切替弁17aは閉じられ、補助切替弁
23から流出した圧油はアーム用切替弁19の油供給側
にのみ流入して、第2油圧ポンプ18の吐出油と合流す
る。このように構成された本実施例の動作は水平均し作
業において補助切替弁23から流出した圧油の流路が異
なるが、結局、アームシリンダー12に流入する圧油に
合流する点で第1の実施例のものと基本的に変わらな
い。
Therefore, when the arm switching pilot valve 22 is in the neutral position, the oil supply side of the arm merging switching valve 17a is connected to the oil tank, and when the arm switching pilot valve 22 is operated in either direction. To be closed. When the water leveling operation is performed, the boom switching pilot valve 21 and the arm switching pilot valve 22 are simultaneously operated, so the arm merging switching valve 17a is closed and the pressure oil flowing out from the auxiliary switching valve 23 is transferred to the arm. It flows only into the oil supply side of the operation switching valve 19 and joins with the oil discharged from the second hydraulic pump 18. In the operation of the present embodiment configured as described above, the flow path of the pressure oil flowing out from the auxiliary switching valve 23 in the water averaging work is different, but in the end, it joins the pressure oil flowing into the arm cylinder 12 and is therefore the first. It is basically the same as that of the embodiment.

【0020】図6は本発明の第3の実施例に係る油圧回
路図である。同図において、35はモード切替スイッチ
である。本実施例では一端が接地電位に接続されたモー
ド切替スイッチ35の他端がコントローラー33に接続
されている点で第1の実施例のものと異なっており、モ
ード切替スイッチ35の切替えにより、第1油圧ポンプ
15の吐出圧PP に対する補助切替弁23の目標開口面
積ST の関係を規定する特性曲線の変換関数が変わるよ
うになっている。
FIG. 6 is a hydraulic circuit diagram according to the third embodiment of the present invention. In the figure, reference numeral 35 is a mode changeover switch. This embodiment is different from that of the first embodiment in that the other end of the mode changeover switch 35, one end of which is connected to the ground potential, is connected to the controller 33. The conversion function of the characteristic curve that defines the relationship of the target opening area S T of the auxiliary switching valve 23 with respect to the discharge pressure P P of the first hydraulic pump 15 is changed.

【0021】図7はモード切替スイッチ35の切替えに
より選択される2つのモード1およびモード2の特性曲
線を示すグラフである。モード1のグラフは第1の実施
例のものと同一であり、モード2のグラフはモード1の
特性曲線と形状は同一であるが、下限吐出圧がモード1
の下限吐出圧P01よりやや大きな下限吐出圧P02となっ
ている。
FIG. 7 is a graph showing characteristic curves of two modes 1 and 2 selected by switching the mode selector switch 35. The graph of mode 1 is the same as that of the first embodiment, and the graph of mode 2 has the same shape as the characteristic curve of mode 1, but the lower limit discharge pressure is mode 1.
It is slightly major lower discharge pressure P 02 than the lower discharge pressure P 01 in.

【0022】このように、2つのモードを切り替えられ
るようにすることにより、バケット20の重量に応じて
2つのモードを切り替えて、重いバケット20を装着す
る時はモード2を選択すればブーム13の上げ動作時に
必要とされるブームシリンダー14に対する充分な駆動
圧を確保できる。なお、本実施例では第1油圧ポンプ1
5の吐出圧PP に対する補助切替弁23の目標開口面積
T の特性を変えるモードは2段に選択できるようにし
たが、勿論、多段に切り替えられるようにしても良い
し、特性曲線は任意の曲線で構成することができる。
In this way, by switching between the two modes, the two modes are switched according to the weight of the bucket 20, and when the heavy bucket 20 is mounted, the mode 2 can be selected to select the boom 13. It is possible to secure a sufficient drive pressure for the boom cylinder 14 required during the raising operation. In this embodiment, the first hydraulic pump 1
Although the mode for changing the characteristic of the target opening area S T of the auxiliary switching valve 23 with respect to the discharge pressure P P of 5 can be selected in two stages, of course, it may be switched in multiple stages and the characteristic curve is arbitrary. Can be made up of curves.

【0023】また、上述の実施例では補助切替弁23の
目標開口面積ST は第1油圧ポンプ15の吐出圧PP
検出した吐出圧センサー34からの吐出圧信号に基づい
てコントローラー33が比例電磁弁32に分岐流量制御
信号を出力し、補助切替弁23の開口面積SS を吐出圧
P に見合った開口面積となるように開かせるようにし
たが、補助切替弁23を比例電磁弁で構成し、コントロ
ーラー33が直接、補助切替弁23を切り替えるように
しても良いし、第1油圧ポンプ15の吐出圧PP に対す
る補助切替弁23の目標開口面積ST の関係を規定する
特性曲線が直線で近似できる場合には第1油圧ポンプ1
5の吐出圧PP を直接、補助切替弁23のパイロット室
に導くように構成しても良い。
Further, in the above embodiment, the target opening area S T of the auxiliary switching valve 23 is proportional to the controller 33 based on the discharge pressure signal from the discharge pressure sensor 34 which detects the discharge pressure P P of the first hydraulic pump 15. A branch flow control signal is output to the solenoid valve 32 to open the opening area S S of the auxiliary switching valve 23 so that the opening area corresponds to the discharge pressure P P. Alternatively, the controller 33 may directly switch the auxiliary switching valve 23, or a characteristic curve defining the relationship between the discharge pressure P P of the first hydraulic pump 15 and the target opening area S T of the auxiliary switching valve 23. Is approximated by a straight line, the first hydraulic pump 1
The discharge pressure P P of 5 may be directly guided to the pilot chamber of the auxiliary switching valve 23.

【0024】[0024]

【発明の効果】以上説明したように請求項1記載の発明
によれば、補助切替弁を第1の油供給源の吐出圧に応じ
て流量制御することにより、第1の油供給源の吐出油の
無駄なエネルギー損失を抑制したので、アームとブーム
の同時操作による水平均し作業を行う際に、ブームの上
げ動作に必要な油圧を保持し得ると共に、原動機の動作
効率の低下を抑制することができる。請求項2記載の発
明によれば、第1の油供給源の吐出圧に対応する補助切
替弁を通過する駆動用圧油の分岐流量の関係を規定する
変換関数に基づいて第1の油供給源の吐出圧を検出する
吐出圧センサーが検出した第1の油供給源の吐出圧に対
応する分岐流量を求め、該分岐流量に従って補助切替弁
の開口面積を制御する制御手段を有したので、第1の油
供給源の吐出油の分岐流量を所望の特性に応じた値とす
ることができる。請求項3記載の発明によれば、モード
切替スイッチの切り替えにより第1の油供給源の吐出圧
に対応する補助切替弁を通過する駆動用圧油の分岐流量
の関係を規定する変換関数を変えるようにしたので、所
望の変換関数を選択することにより、第1の油供給源の
吐出圧に対応する分岐流量を適宜調整でき、例えば、ブ
ームの上げ動作時にその重量に応じて必要とされるブー
ムシリンダーの駆動圧を確保することができる。
As described above, according to the first aspect of the invention, the discharge of the first oil supply source is controlled by controlling the flow rate of the auxiliary switching valve according to the discharge pressure of the first oil supply source. Since the wasteful energy loss of oil is suppressed, the hydraulic pressure required for raising the boom can be maintained and the decrease in operating efficiency of the prime mover can be suppressed when performing water leveling work by simultaneous operation of the arm and boom. be able to. According to the second aspect of the invention, the first oil supply is based on the conversion function that defines the relationship of the branch flow rate of the driving pressure oil that passes through the auxiliary switching valve corresponding to the discharge pressure of the first oil supply source. Since a branch flow rate corresponding to the discharge pressure of the first oil supply source detected by the discharge pressure sensor for detecting the discharge pressure of the oil source is obtained, and the control means for controlling the opening area of the auxiliary switching valve according to the branch flow rate is provided, The branch flow rate of the oil discharged from the first oil supply source can be set to a value according to desired characteristics. According to the third aspect of the invention, the conversion function that defines the relationship of the branch flow rate of the driving pressure oil that passes through the auxiliary switching valve corresponding to the discharge pressure of the first oil supply source is changed by switching the mode switching switch. Therefore, by selecting a desired conversion function, the branch flow rate corresponding to the discharge pressure of the first oil supply source can be appropriately adjusted. For example, the branch flow rate is required according to the weight of the boom during the raising operation. The drive pressure of the boom cylinder can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る油圧回路図FIG. 1 is a hydraulic circuit diagram according to a first embodiment of the present invention.

【図2】比例電磁弁からのパイロット圧に対する補助切
替弁の開口面積の開口特性図
FIG. 2 is an opening characteristic diagram of the opening area of the auxiliary switching valve with respect to the pilot pressure from the proportional solenoid valve.

【図3】コントローラーの内部構成を示すブロック図FIG. 3 is a block diagram showing an internal configuration of a controller.

【図4】第1油圧ポンプの吐出圧と補助切替弁の目標開
口面積との関係を規定する変換関数の特性曲線と、分岐
流量制御信号演算過程における複数の変換関数の特性曲
線を表示したグラフ
FIG. 4 is a graph showing a characteristic curve of a conversion function that defines the relationship between the discharge pressure of the first hydraulic pump and the target opening area of the auxiliary switching valve, and a characteristic curve of a plurality of conversion functions in the process of calculating the branch flow rate control signal.

【図5】本発明の第2の実施例に係る油圧回路図FIG. 5 is a hydraulic circuit diagram according to a second embodiment of the present invention.

【図6】本発明の第3の実施例に係る油圧回路図FIG. 6 is a hydraulic circuit diagram according to a third embodiment of the present invention.

【図7】モード切替スイッチの切替えにより選択される
モードの特性曲線を示すグラフ
FIG. 7 is a graph showing a characteristic curve of a mode selected by switching the mode selector switch.

【符号の説明】[Explanation of symbols]

11 アーム 12 アームシリンダー 13 ブーム 14 ブームシリンダー 15 第1油圧ポンプ 16 ブーム用切替弁 17 合流用切替弁 17a アーム合流用切替弁 18 第2油圧ポンプ 19 アーム用切替弁 20 バケット 21 ブーム切替パイロット弁 22 アーム切替パイロット弁 23 補助切替弁 24 高圧選択弁 31 パイロット油圧ポンプ 32 比例電磁弁 33 コントローラー 34 吐出圧センサー 35 モード切替スイッチ 11 Arms 12 Arm Cylinders 13 Booms 14 Boom Cylinders 15 1st Hydraulic Pump 16 Boom Switching Valves 17 Merging Switching Valves 17a Arms Merging Switching Valves 18 2nd Hydraulic Pumps 19 Arm Switching Valves 20 Buckets 21 Boom Switching Pilot Valves 22 Arms Changeover pilot valve 23 Auxiliary changeover valve 24 High pressure selection valve 31 Pilot hydraulic pump 32 Proportional solenoid valve 33 Controller 34 Discharge pressure sensor 35 Mode changeover switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古渡 陽一 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (72)発明者 豊岡 司 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (72)発明者 吉永 滋博 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichi Furuwato 650 Jinrachi-cho, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Co., Ltd. Tsuchiura factory (72) Inventor, Shigehiro Yoshinaga, 650 Jinrachicho, Tsuchiura City, Ibaraki Prefecture Hitachi Construction Machinery Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の駆動用圧油の油供給源と、該油供
給源の1つの第1の油供給源に上流から下流に向かって
タンデム接続され、ブームシリンダーへの駆動用圧油の
方向と流量を切り替えるためのブーム用切替弁およびア
ームシリンダーへの駆動用圧油を合流させるための合流
用切替弁と、前記油供給源の他の1つの第2の油供給源
に接続され、アームシリンダーへの駆動用圧油の方向と
流量を切り替えるためアーム用切替弁とを具えた油圧シ
ョベルの油圧回路において、前記ブーム用切替弁の油供
給側と前記合流用切替弁の油供給側との間を迂回接続す
る迂回バイパス油路中に補助切替弁を設け、該補助切替
弁を前記第1の油供給源の吐出圧に応じて流量制御する
ことにより、前記第1の油供給源の吐出油の無駄なエネ
ルギー損失を抑制したことを特徴とする油圧ショベルの
油圧回路。
1. An oil supply source of a plurality of drive pressure oils, and a first oil supply source of one of the oil supply sources are connected in tandem from upstream to downstream, and the drive pressure oils to the boom cylinder are connected. Connected to a boom switching valve for switching the direction and flow rate, a merging switching valve for merging driving pressure oil to the arm cylinder, and another one second oil supply source of the oil supply source, In a hydraulic circuit of a hydraulic excavator equipped with an arm switching valve for switching the direction and flow rate of driving pressure oil to the arm cylinder, an oil supply side of the boom switching valve and an oil supply side of the merging switching valve. By providing an auxiliary switching valve in a bypass bypass oil passage that makes a detour connection between the two, and controlling the flow rate of the auxiliary switching valve according to the discharge pressure of the first oil supply source, Suppresses wasteful energy loss of discharged oil The hydraulic circuit of a hydraulic excavator characterized by
【請求項2】 第1の油供給源の吐出圧を検出する吐出
圧センサーと、前記第1の油供給源の吐出圧に対応する
補助切替弁を通過する駆動用圧油の分岐流量の関係を規
定する変換関数に基づいて前記吐出圧センサーが検出し
た前記第1の油供給源の吐出圧に対応する前記分岐流量
を求め、該分岐流量に従って前記補助切替弁の開口面積
を制御する制御手段を有したことを特徴とする請求項1
記載の油圧ショベルの油圧回路。
2. A relationship between a discharge pressure sensor that detects the discharge pressure of the first oil supply source and a branch flow rate of the driving pressure oil that passes through an auxiliary switching valve corresponding to the discharge pressure of the first oil supply source. Control means for determining the branch flow rate corresponding to the discharge pressure of the first oil supply source detected by the discharge pressure sensor on the basis of a conversion function that defines, and controlling the opening area of the auxiliary switching valve in accordance with the branch flow rate. It has the following.
Hydraulic circuit of the described excavator.
【請求項3】 モード切替スイッチを有し、該モード切
替スイッチの切り替えにより第1の油供給源の吐出圧に
対応する補助切替弁を通過する駆動用圧油の分岐流量の
関係を規定する変換関数を変えるようにしたことを特徴
とする請求項2記載の油圧ショベルの油圧回路。
3. A conversion which has a mode changeover switch, and defines the relationship of the branch flow rate of the driving pressure oil passing through the auxiliary changeover valve corresponding to the discharge pressure of the first oil supply source by switching the mode changeover switch. The hydraulic circuit of the hydraulic excavator according to claim 2, wherein the function is changed.
JP07341473A 1995-12-27 1995-12-27 Hydraulic circuit of excavator Expired - Fee Related JP3142764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07341473A JP3142764B2 (en) 1995-12-27 1995-12-27 Hydraulic circuit of excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07341473A JP3142764B2 (en) 1995-12-27 1995-12-27 Hydraulic circuit of excavator

Publications (2)

Publication Number Publication Date
JPH09177138A true JPH09177138A (en) 1997-07-08
JP3142764B2 JP3142764B2 (en) 2001-03-07

Family

ID=18346343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07341473A Expired - Fee Related JP3142764B2 (en) 1995-12-27 1995-12-27 Hydraulic circuit of excavator

Country Status (1)

Country Link
JP (1) JP3142764B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234115A (en) * 2013-06-13 2014-12-24 杨皓捷 Pressure storage type efficient and energy-saving excavator
CN105156380A (en) * 2015-08-18 2015-12-16 北汽福田汽车股份有限公司 Engineering machine leveling control device, system and method and engineering machine
CN114737634A (en) * 2022-03-25 2022-07-12 燕山大学 Method for solving composite action coordination of positive flow excavator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342293B2 (en) * 2009-03-26 2013-11-13 住友建機株式会社 Hydraulic circuit for construction machinery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234115A (en) * 2013-06-13 2014-12-24 杨皓捷 Pressure storage type efficient and energy-saving excavator
CN105156380A (en) * 2015-08-18 2015-12-16 北汽福田汽车股份有限公司 Engineering machine leveling control device, system and method and engineering machine
CN114737634A (en) * 2022-03-25 2022-07-12 燕山大学 Method for solving composite action coordination of positive flow excavator
CN114737634B (en) * 2022-03-25 2023-03-14 燕山大学 Method for solving composite action coordination of positive flow excavator

Also Published As

Publication number Publication date
JP3142764B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
JP3183815B2 (en) Hydraulic circuit of excavator
KR910009256B1 (en) Hydraulic driver for civil construction machine
JP4799624B2 (en) Hydraulic drive control device
JP6467515B2 (en) Construction machinery
US10393151B2 (en) Hydraulic drive system for working machine
WO1997003292A1 (en) Hydraulic driving device
JPH10103306A (en) Actuator operating characteristic controller
JPWO2014192458A1 (en) Hydraulic drive unit for construction machinery
JP3816893B2 (en) Hydraulic drive
KR20150108837A (en) Hydraulic driving device for construction machine
JP6450487B1 (en) Hydraulic excavator drive system
JP2021032316A (en) Hydraulic system of construction machine
JP4240075B2 (en) Hydraulic control circuit of excavator
JP2003004003A (en) Hydraulic control circuit of hydraulic shovel
KR100797315B1 (en) Hydraulic apparatus for controlling complex work mode of travel and front works
US11378101B2 (en) Shovel
CN114555957A (en) Regeneration device, hydraulic drive system provided with regeneration device, and control device for hydraulic drive system
JP3594680B2 (en) Hydraulic regenerator of hydraulic machine
JP2019528415A (en) Construction machine control system and construction machine control method
JPH09177138A (en) Hydraulic circuit of hydraulic shovel
JP2009167659A (en) Hydraulic control circuit of utility machine
JP3236491B2 (en) Hydraulic system for construction machinery
JPH0657787A (en) Flow rate control device for crusher
JP4732625B2 (en) Hydraulic control equipment for construction machinery
JP5642620B2 (en) Energy recovery device for work machines

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees