JPH09176874A - Method for regenerating and recovering acid liquid mixture such as waste nitric acid-hydrofluoric acid mixture - Google Patents

Method for regenerating and recovering acid liquid mixture such as waste nitric acid-hydrofluoric acid mixture

Info

Publication number
JPH09176874A
JPH09176874A JP33356395A JP33356395A JPH09176874A JP H09176874 A JPH09176874 A JP H09176874A JP 33356395 A JP33356395 A JP 33356395A JP 33356395 A JP33356395 A JP 33356395A JP H09176874 A JPH09176874 A JP H09176874A
Authority
JP
Japan
Prior art keywords
acid
hydrofluoric acid
nitric
alkali
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33356395A
Other languages
Japanese (ja)
Inventor
Masanori Sugisawa
政宣 杉澤
Kohei Masuda
耕平 枡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP33356395A priority Critical patent/JPH09176874A/en
Publication of JPH09176874A publication Critical patent/JPH09176874A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover hydrofluoric acid of desired concn. without need for several batches and consequently to remarkably reduce the starting time of a device in the method for removing metallic sludge from a waste liq. contg. a nitric acid-hydrofluoric acid mixture discharged in a metal pickling stage, etc., to regenerate and recover a nitric acid-hydrofluoric acid mixture. SOLUTION: An acid liq. mixture such as a waste nitric acid-hydrofluoric acid mixture is neutralized with alkali to deposit and separate metals, etc., the filtrate is supplied to a bipolar membrane device 4 provided with a bipolar membrane, cation-exchange membrane and anion-exchange membrane to separate acid and alkali, which are regenerated and recovered from the bipolar membrane device 4. In this method, a neutral salt generated in the neutralization stage 2 with alkali contg. the anionic component with the ratio of the anionic component constituting a mixed acid to be recovered into the total anionic composition in the mixed acid lower than the ratio to the total anionic composition in the filtrate is previously added before the filtrate is supplied to the bipolar membrane device 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は硝フッ酸廃液等の酸
混合液の再生回収処理方法、さらに詳しくは、金属の酸
洗工程等において排出される硝フッ酸等の混合酸を含有
する廃液中から、金属スラッジを除去して硝フッ酸等の
混合酸を再生回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating and recovering an acid mixed solution such as nitric hydrofluoric acid waste solution, and more specifically, a waste solution containing a mixed acid such as nitric hydrofluoric acid discharged in a metal pickling process. The present invention relates to a method of regenerating and recovering mixed acid such as nitric hydrofluoric acid by removing metal sludge from the inside.

【0002】[0002]

【従来の技術】従来、この種の硝フッ酸等の混合酸を含
有する廃液から混合酸を再生回収処理する方法であって
本発明に近似する先行技術として特公表62−502695号に
開示された発明がある。
2. Description of the Related Art Conventionally, a method for regenerating and recovering a mixed acid from a waste liquid containing a mixed acid such as nitric hydrofluoric acid, which is a prior art similar to the present invention, is disclosed in Japanese Patent Publication No. 62-502695. There is an invention.

【0003】すなわちこの発明は、図3に示すように先
ず原水槽1aの硝フッ酸廃液等の酸混合液をpH調整槽2a
に供給し、アルカリ(たとえばKOH)を添加し、中和
して金属等を沈澱分離し、その濾液をバイポーラ膜、陽
イオン交換膜、陰イオン交換膜を備えたバイポーラ膜装
置4aを通過させて混合酸とアルカリとに分離して再生回
収する方法である。
That is, according to the present invention, as shown in FIG. 3, first, an acid mixed solution such as a nitric hydrofluoric acid waste solution in a raw water tank 1a is adjusted to a pH adjusting tank 2a.
And then add an alkali (for example, KOH) to neutralize and precipitate and separate metals and the like, and pass the filtrate through a bipolar membrane device 4a equipped with a bipolar membrane, a cation exchange membrane, and an anion exchange membrane. In this method, the mixed acid and alkali are separated and regenerated and recovered.

【0004】そして混合酸は酸洗槽11a に供給されて再
利用され、アルカリは再度pH調整槽2aに返送されて中
和用として再利用される。
The mixed acid is supplied to the pickling tank 11a for reuse, and the alkali is returned to the pH adjusting tank 2a again for reuse for neutralization.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
従来の方法では、回収される混合酸のうち、硝酸に比べ
るとフッ酸は回収され難く、回収フッ酸の濃度が低くな
る傾向がある。
However, in such a conventional method, hydrofluoric acid is less likely to be recovered than nitric acid in the recovered mixed acid, and the concentration of recovered hydrofluoric acid tends to be low.

【0006】この従来の方法はいわゆるクローズドシス
テムで行われ、回収された混合酸は繰り返して使用され
るため、いわゆるバッチ運転の場合、バッチ回数を重ね
ることによりフッ酸の濃度が高まり、所望の濃度のフッ
酸は得られる。
This conventional method is performed in a so-called closed system, and the recovered mixed acid is repeatedly used. Therefore, in so-called batch operation, the concentration of hydrofluoric acid is increased by increasing the number of batches, and the desired concentration is obtained. Hydrofluoric acid is obtained.

【0007】しかし、装置の立ち上げ時には目的に応じ
た所望濃度のフッ酸は回収されず、従来では複数回のバ
ッチ回数を経なければ所望濃度のフッ酸を回収できない
のが現状であった。従って、回収された混合酸を酸洗槽
に供給して再利用するためには、別途フッ酸を追加して
未回収分のフッ酸に相当する量を補充する必要があっ
た。
However, the hydrofluoric acid having a desired concentration according to the purpose is not recovered when the apparatus is started up, and conventionally, it has been impossible to recover the hydrofluoric acid having a desired concentration until a plurality of batches have been performed. Therefore, in order to supply the recovered mixed acid to the pickling tank for reuse, it was necessary to add hydrofluoric acid separately to replenish the amount corresponding to the unrecovered hydrofluoric acid.

【0008】ちなみに、廃酸中のフッ酸の濃度がたとえ
ば1.5 eq/L(1リットルあたりのグラム当量)の場合、
回収されるフッ酸の濃度は、図4に示すように1バッチ
目では約0.9 eq/Lであり、2バッチ目では約1.0 eq/Lと
なり、3バッチ目では約1.3eq/Lとなり、4バッチ目で
約1.5 eq/Lとなる。
Incidentally, when the concentration of hydrofluoric acid in the waste acid is, for example, 1.5 eq / L (gram equivalent per liter),
As shown in Fig. 4, the concentration of recovered hydrofluoric acid was about 0.9 eq / L for the first batch, about 1.0 eq / L for the second batch, and about 1.3 eq / L for the third batch. It becomes about 1.5 eq / L in the batch.

【0009】すなわち、従来では、廃酸中のフッ酸と同
等の濃度の回収フッ酸を得るために4バッチを要するこ
ととなり、かつ所望濃度のフッ酸を得るために不足する
フッ酸を別途投入するという不都合を生じていたのであ
る。
That is, conventionally, four batches are required to obtain recovered hydrofluoric acid at a concentration equivalent to that of hydrofluoric acid in waste acid, and hydrofluoric acid which is insufficient to obtain a desired concentration of hydrofluoric acid is added separately. It caused the inconvenience of doing.

【0010】本発明は、このような問題点を解決するた
めになされたもので、数回のバッチ回数を経なくとも所
望濃度のフッ酸を回収することができ、ひいては装置の
立ち上げ運転の時間を大幅に短縮することを課題とする
ものである。
The present invention has been made in order to solve such a problem, and it is possible to recover hydrofluoric acid of a desired concentration without passing through several batches, and thus to start up the apparatus. The challenge is to significantly reduce the time.

【0011】[0011]

【課題を解決するための手段】本発明は、このような課
題を解決するためになされたもので、その課題を解決す
るための手段は、硝フッ酸廃液等の酸混合液を、アルカ
リで中和し金属等を沈澱分離した後、濾液をバイポーラ
膜5、陽イオン交換膜6、陰イオン交換膜7を備えたバ
イポーラ膜装置4に供給して該バイポーラ膜装置4から
酸とアルカリとを分離し再生回収する硝フッ酸廃液等の
酸混合液の再生回収処理方法において、前記アルカリで
の中和工程で生ずる中性塩であって、回収される混合酸
を構成するアニオン成分のうち、混合酸中の全アニオン
成分に対して存在する比率が、濾液中の全アニオン成分
に対して存在する比率より低くなるアニオン成分を含む
中性塩を、前記バイポーラ膜装置4への供給前に予め添
加することにある。
Means for Solving the Problems The present invention has been made to solve such problems, and means for solving the problems is to use an acid mixed solution such as nitric-hydrofluoric acid waste solution with an alkali. After neutralizing and separating the metal and the like by precipitation, the filtrate is supplied to a bipolar membrane device 4 equipped with a bipolar membrane 5, a cation exchange membrane 6 and an anion exchange membrane 7, and the acid and alkali are extracted from the bipolar membrane device 4. In the method for regenerating and recovering an acid mixed solution such as a nitric hydrofluoric acid waste solution that is separated and regenerated and recovered, a neutral salt generated in the neutralization step with the alkali, of the anion components that form the mixed acid to be recovered, Before supplying to the bipolar membrane device 4, a neutral salt containing an anion component whose ratio relative to all anion components in the mixed acid is lower than that relative to all anion components in the filtrate is previously prepared. To add

【0012】この中性塩は、バイポーラ膜装置6への供
給前に添加されればよいが、アルカリでの中和工程後に
添加されるのが好ましい。
The neutral salt may be added before being supplied to the bipolar membrane device 6, but is preferably added after the step of neutralizing with an alkali.

【0013】また、中性塩の性状としては、濾液の濃度
を高める観点から固体のもの、より具体的には粉末状の
ものを使用することが好ましい。
As the property of the neutral salt, it is preferable to use a solid salt, more specifically a powdery one, from the viewpoint of increasing the concentration of the filtrate.

【0014】さらに、中性塩としては、酸混合液が硝フ
ッ酸廃液である場合には、フッ化カリウムが使用され
る。
Further, as the neutral salt, potassium fluoride is used when the acid mixture is a nitric hydrofluoric acid waste liquid.

【0015】上述のように、回収される混合酸を構成す
るアニオン成分のうち、混合酸中の全アニオン成分に対
して存在する比率が、濾液中の全アニオン成分に対して
存在する比率より低くなるアニオン成分を含む中性塩
を、予めバイポーラ膜装置4への供給前に添加しておく
と、その中性塩に起因して回収される酸の濃度が高まる
こととなる。
As described above, the ratio of the anion components constituting the recovered mixed acid to the total anion components in the mixed acid is lower than the ratio to the total anion components in the filtrate. If a neutral salt containing the following anion component is added in advance before being supplied to the bipolar membrane device 4, the concentration of the acid recovered due to the neutral salt will increase.

【0016】従って、酸混合液が硝フッ酸廃液である場
合には、フッ化カリウムのような金属フッ素化物の中性
塩をバイポーラ膜装置4への供給前に添加することで、
装置の立ち上げ運転時より所望濃度のフッ酸が回収され
ることとなるのである。
Therefore, when the acid mixed solution is a nitric hydrofluoric acid waste solution, by adding a neutral salt of a metal fluoride such as potassium fluoride before supplying it to the bipolar membrane device 4,
The desired concentration of hydrofluoric acid will be recovered from the start-up operation of the apparatus.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0018】実施形態1 本実施例は、酸混合液の一例としての硝フッ酸廃液から
の硝フッ酸の再生回収方法の実施例である。
Embodiment 1 This example is an example of a method for regenerating and recovering nitric hydrofluoric acid from a nitric hydrofluoric acid waste liquid as an example of an acid mixed liquid.

【0019】先ず、この再生回収方法に使用する装置の
構成について説明する。
First, the structure of the apparatus used in this recycling method will be described.

【0020】図1において、1は原液としての硝フッ酸
廃液を貯留するための原液貯留槽、2は前記硝フッ酸廃
液中の硝フッ酸を中和するためのpH調整槽で、流路3
を介して前記原液貯留槽1に接続されている。
In FIG. 1, 1 is a stock solution storage tank for storing a nitric hydrofluoric acid waste solution as a stock solution, 2 is a pH adjusting tank for neutralizing the nitric hydrofluoric acid in the nitric hydrofluoric acid waste solution, and a flow path Three
It is connected to the stock solution storage tank 1 via.

【0021】4は、前記pH調整槽2で中和されて金属
等が沈澱分離された濾液を、酸、アルカリ、及び脱塩水
に分離するためのバイポーラ膜装置で、バイポーラ膜
5、陽イオン交換膜6、陰イオン交換膜7を備えた構成
からなり、流路12を介して前記pH調整槽2に接続され
ている。
Numeral 4 is a bipolar membrane device for separating the filtrate, which is neutralized in the pH adjusting tank 2 and precipitated and separated from metals and the like, into acid, alkali, and demineralized water. It is composed of a membrane 6 and an anion exchange membrane 7, and is connected to the pH adjusting tank 2 via a channel 12.

【0022】そして、そのバイポーラ膜装置4の酸ライ
ン8は、金属等を洗浄する酸洗槽11に接続されており、
またアルカリライン9は前記pH調整槽2に接続されて
おり、さらに中性塩ライン10はそのまま脱塩水が排出さ
れるように設けられている。
The acid line 8 of the bipolar membrane device 4 is connected to a pickling tank 11 for washing metal or the like,
The alkali line 9 is connected to the pH adjusting tank 2, and the neutral salt line 10 is provided so that the desalted water is discharged as it is.

【0023】次に、上記のような構成からなる再生回収
装置で、硝フッ酸廃液から硝フッ酸を再生回収する方法
について説明する。
Next, a method of regenerating and recovering nitric hydrofluoric acid from the nitric hydrofluoric acid waste liquid by the reclaiming apparatus having the above-mentioned structure will be described.

【0024】先ず、ステンレス鋼材等を洗浄した後の硝
フッ酸廃液を、原液貯留槽1から流路3を経てpH調整
槽2へ供給する。
First, the nitric hydrofluoric acid waste liquid after cleaning the stainless steel material and the like is supplied from the stock solution storage tank 1 through the flow path 3 to the pH adjusting tank 2.

【0025】pH調整槽2に供給された硝フッ酸廃液に
は、水酸化カリウム(KOH)が添加されて中和され
る。
Potassium hydroxide (KOH) is added to the nitric hydrofluoric acid waste liquid supplied to the pH adjusting tank 2 for neutralization.

【0026】このとき、金属スラッジとして水酸化鉄,
水酸化クロム,水酸化ニッケル等の水酸化金属が沈澱
し、その濾液(KFとKNO3)が流路12を経てバイポー
ラ膜装置4に供給される。
At this time, iron hydroxide as metal sludge,
Metal hydroxide such as chromium hydroxide or nickel hydroxide is precipitated, and the filtrate (KF and KNO 3 ) is supplied to the bipolar membrane device 4 through the flow path 12.

【0027】ここで、pH調整槽2からバイポーラ膜装
置4へ供給される前の濾液(KFとKNO3)に、中性塩
としてフッ化カリウム(KF)の粉末が濾液に溶解する
ように添加される。このように粉末で添加する場合に
は、取扱いが容易であり、溶液と異なり水分を余分に加
えることがなく、また濾液の濃度が下がらない等の利点
がある。
Here, potassium fluoride (KF) powder as a neutral salt is added to the filtrate (KF and KNO 3 ) before being supplied from the pH adjusting tank 2 to the bipolar membrane device 4 so as to be dissolved in the filtrate. To be done. Thus, the addition in the form of powder has advantages that it is easy to handle, no extra water is added unlike the solution, and the concentration of the filtrate does not decrease.

【0028】供給された濾液(KFとKNO3)は、バイ
ポーラ膜装置4内で電離して該バイポーラ膜装置4の酸
ライン8からフッ酸(HF)及び硝酸(HNO3)が分離
され、アルカリライン9からは水酸化カリウム(KO
H)が分離される。
The supplied filtrate (KF and KNO 3 ) is ionized in the bipolar membrane device 4 to separate hydrofluoric acid (HF) and nitric acid (HNO 3 ) from the acid line 8 of the bipolar membrane device 4, and the alkali From line 9 potassium hydroxide (KO
H) is separated.

【0029】これをより詳細に説明すると、前記濾液は
前記バイポーラ膜装置4の脱塩室13を通過するが、この
とき脱塩室13中のKFは、図2に示すようにK+イオン
とF-イオンとに電離しており、またKNO3はK+イオ
ンとNO3 -イオンとに電離している。
Explaining this in more detail, the filtrate passes through the desalting chamber 13 of the bipolar membrane device 4, and at this time, KF in the desalting chamber 13 becomes K + ions as shown in FIG. F ions are ionized, and KNO 3 is ionized into K + ions and NO 3 ions.

【0030】そして、陽イオンであるK+は陽イオン交
換膜6を介してアルカリライン9側へ移動し、陰イオン
であるF-やNO3 -は陰イオン交換膜7を介して酸ライ
ン8側へ移動する。
The cation K + moves to the alkali line 9 side through the cation exchange membrane 6, and the anions F and NO 3 pass through the anion exchange membrane 7 and the acid line 8 side. Move to the side.

【0031】一方、バイポーラ膜5に接液するアルカリ
ライン9と酸ライン8に存在する水の一部がバイポーラ
膜5内部に浸透し、H+とOH-とに電離し、H+は陰極
側に移動し、OH-は陽極側に移動する。
On the other hand, part of the water existing in the alkaline line 9 and the acid line 8 which come into contact with the bipolar film 5 penetrates into the bipolar film 5 and is ionized into H + and OH −, and H + is on the cathode side. , And OH moves to the anode side.

【0032】従って、バイポーラ膜5内で電離したH+
は、バイポーラ膜5の陽イオン交換側を介して酸ライン
8側へ移動し、その酸ライン8において上記のようにし
て得られたF-やNO3 -と結合してHFやHNO3が生成
され、そのHFやHNO3が酸ライン8から分離回収さ
れることとなる。
Therefore, H + ionized in the bipolar film 5 is
Moves to the acid line 8 side through the cation exchange side of the bipolar membrane 5 and combines with the F and NO 3 obtained as described above in the acid line 8 to produce HF and HNO 3. The HF and HNO 3 are separated and recovered from the acid line 8.

【0033】また、バイポーラ膜5内で電離したOH-
は、バイポーラ膜5の陰イオン交換側を介してアルカリ
ライン9側へ移動し、そのアルカリライン9において上
記のようにして得られたK+と結合してKOHが生成さ
れ、そのKOHがアルカリライン9から分離回収される
こととなる。
OH ionized in the bipolar film 5
Moves to the alkali line 9 side through the anion exchange side of the bipolar membrane 5 and is combined with the K + obtained as described above in the alkali line 9 to generate KOH. 9 will be separated and collected.

【0034】一方、脱塩室13では、濾液中に含有されて
いるKFやKNO3が脱塩された状態で通過する。
On the other hand, in the desalting chamber 13, KF and KNO 3 contained in the filtrate pass in a desalted state.

【0035】脱塩室13において、K+及びF-はそれぞれ
アルカリライン9,酸ライン8に移動をし、KFが消費
されることにより濃度が低くなり、消費されなかったK
Fはそのまま脱塩室13を通過することとなる。
In the desalting chamber 13, K + and F move to the alkali line 9 and the acid line 8, respectively, and the KF is consumed, so that the concentration is lowered and the K is not consumed.
F will pass through the desalting chamber 13 as it is.

【0036】そして、酸ライン8から分離されたフッ酸
(HF)や硝酸(HNO3)は、酸洗槽11に返送され、さ
らに原液貯留槽1へ返送される。
The hydrofluoric acid (HF) and nitric acid (HNO 3 ) separated from the acid line 8 are returned to the pickling tank 11 and further to the stock solution storage tank 1.

【0037】また、アルカリライン9から分離された水
酸化カリウム(KOH)はpH調整槽2へ返送されて中
和用のアルカリとして再利用される。
The potassium hydroxide (KOH) separated from the alkali line 9 is returned to the pH adjusting tank 2 and reused as an alkali for neutralization.

【0038】このように酸とアルカリとが分離回収され
る過程において、酸のうち硝酸はフッ酸に比べて回収さ
れ易い。
In the process of separating and recovering the acid and the alkali in this way, nitric acid in the acid is more easily recovered than hydrofluoric acid.

【0039】これは、バイポーラ膜装置4においてNO
3 -の方がF-よりも陽イオン交換膜6を通過し易いため
と推定される。
This means that in the bipolar membrane device 4 NO
It is presumed that 3 is easier to pass through the cation exchange membrane 6 than F .

【0040】すなわち、KNO3の解離度に比べKFの
解離度の方が低いため、KFは膜を透過しにくく、KF
の一部はKFのまま中性塩ライン10に残る。従って酸ラ
イン8から回収される混合酸中のF-成分の比率は濾液
中の比率よりも低くなる。
That is, since the dissociation degree of KF is lower than that of KNO 3 , it is difficult for KF to permeate through the membrane and KF
Part of the salt remains in the neutral salt line 10 as KF. Therefore, the ratio of the F component in the mixed acid recovered from the acid line 8 becomes lower than that in the filtrate.

【0041】従って、濾液中のKFとKNO3のアニオ
ン成分F-とNO3 -では回収率に差が生ずることとな
り、回収される混合酸中の全アニオン成分に対するF-
成分の比率は濾液中の全アニオン成分に対するF-成分
の比率より低下することとなる。
[0041] Thus, the anion component of KF and KNO 3 in the filtrate F - and NO 3 - in the difference in the recovery rate will be occurs, F to all anionic components in the mixed acid to be recovered -
The ratio of the components will be lower than the ratio of the F component to all the anionic components in the filtrate.

【0042】このような理由により、一般には、酸の分
離回収の運転の初期においては、硝酸に比べるとフッ酸
の濃度は低くなるのである。
For these reasons, the concentration of hydrofluoric acid is generally lower than that of nitric acid in the initial stage of the operation for separating and recovering acid.

【0043】しかし、本実施形態では、バイポーラ膜装
置4へ処理水が供給される前にフッ化カリウム(KF)
が添加されるため、中和後に生じている中性塩のKF及
びKNO3のうち、KFの濃度が高くなる。
However, in this embodiment, potassium fluoride (KF) is supplied before the treated water is supplied to the bipolar membrane device 4.
Since K is added, the concentration of KF in the neutral salts KF and KNO 3 generated after neutralization is high.

【0044】すなわち、KFをバイポーラ装置への供給
前の濾液に添加することにより、中性塩ライン10中には
中和槽2からの中性塩に含まれるKFと合わせてKFの
物質量が増加する。
That is, by adding KF to the filtrate before the supply to the bipolar device, the amount of KF contained in the neutral salt line 10 together with KF contained in the neutral salt from the neutralization tank 2 is increased. To increase.

【0045】従って、KFの解離度が低くても、KFの
量が増加しているため、解離するアニオン成分(F-
の量が増加する。そして、膜を通過するアニオン成分
(F-)が増加し、酸ライン8において、フッ酸(H
F)となり、その結果、回収される混合酸中のフッ酸の
濃度が高くなる。
Therefore, even if the degree of dissociation of KF is low, the amount of KF increases, so that the anion component (F ) that dissociates is released.
Increase the amount of. Then, the anion component (F ) passing through the membrane increases, and in the acid line 8, hydrofluoric acid (H −
F), and as a result, the concentration of hydrofluoric acid in the recovered mixed acid increases.

【0046】この結果、バイポーラ膜装置4の通過後に
フッ酸の方が硝酸に比べて回収し難いとしても、予めフ
ッ化カリウムが添加されているために、回収されるフッ
酸の濃度が硝酸の濃度に比べて極端に低下することもな
く、適度に濃度調整がされることとなるのである。
As a result, even though hydrofluoric acid is more difficult to collect after passing through the bipolar membrane device 4 than nitric acid, the concentration of the recovered hydrofluoric acid is nitric acid because potassium fluoride is added in advance. The density will not be extremely lowered compared to the density, and the density will be adjusted appropriately.

【0047】その他の実施形態 尚、上記実施例では、酸混合液として硝フッ酸廃液を用
いる場合について説明したが、廃液中に含有される酸の
種類はこれに限定されるものではなく、これ以外の酸混
合液、たとえば硫酸とフッ酸の酸混合液、塩酸と硫酸の
酸混合液等に本発明を適用することも可能である。
Other Embodiments In the above examples, the case where the nitric hydrofluoric acid waste liquid is used as the acid mixed liquid has been described, but the kind of the acid contained in the waste liquid is not limited to this. It is also possible to apply the present invention to an acid mixed solution other than the above, such as an acid mixed solution of sulfuric acid and hydrofluoric acid and an acid mixed solution of hydrochloric acid and sulfuric acid.

【0048】ちなみに、硫酸とフッ酸との酸混合液の場
合には、回収混合酸中のアニオン成分の比率が濾液中の
アニオン成分の比率よりも低くなるのはF-であり、従
ってこの場合にも添加する中性塩としてはKF等が用い
られる。
By the way, in the case of the acid mixture of sulfuric acid and hydrofluoric acid, it is F that the ratio of the anion component in the recovered mixed acid is lower than the ratio of the anion component in the filtrate. KF or the like is used as the neutral salt to be added.

【0049】また、塩酸と硫酸との酸混合液の場合に
は、回収混合酸中のアニオン成分の比率が濾液中のアニ
オン成分の比率よりも低くなるのはSO4 -であり、この
場合には添加する中性塩としてはNa2SO4が用いられ
る。
In the case of an acid mixture of hydrochloric acid and sulfuric acid, it is SO 4 that the ratio of the anion component in the recovered mixed acid is lower than the ratio of the anion component in the filtrate. Na 2 SO 4 is used as the neutral salt to be added.

【0050】また、廃液の種類も、ステンレス鋼材の洗
浄後の廃液の他、他の種類の廃液に本発明を適用するこ
とも可能である。
As for the type of waste liquid, the present invention can be applied to other types of waste liquid, in addition to the waste liquid after cleaning the stainless steel material.

【0051】さらに、本発明は、主として上記のような
廃液に適用することを主眼とするものではあるが、廃液
以外の酸混合液に本発明を適用することも可能である。
Further, although the present invention is mainly intended to be applied to the above waste liquid, the present invention can also be applied to an acid mixed liquid other than the waste liquid.

【0052】[0052]

【実施例】実施例1 濃度2eq/Lのフッ酸(HF)と濃度2eq/Lの硝酸を含む
硝フッ酸廃液10m3に、濃度2eq/Lの苛性カリ(KOH)
20m3を添加して中和し、金属スラッジを沈澱させた。
Example 1 10 m 3 of nitric hydrofluoric acid waste liquid containing hydrofluoric acid (HF) at a concentration of 2 eq / L and nitric acid at a concentration of 2 eq / L was added to caustic potash (KOH) at a concentration of 2 eq / L.
20 m 3 was added to neutralize and precipitate the metal sludge.

【0053】中和後の濾液には濃度0.67eq/Lのフッ化カ
リウム(KF)と、濃度0.67eq/Lの硝酸カリウム(KN
3)とが含まれており、この濾液30m3に7.6 keq(キログ
ラム当量)のフッ化カリウムの粉末を添加する。
The neutralized filtrate contains potassium fluoride (KF) having a concentration of 0.67 eq / L and potassium nitrate (KN) having a concentration of 0.67 eq / L.
O 3 ) and 7.6 keq (kilogram equivalent) potassium fluoride powder is added to 30 m 3 of this filtrate.

【0054】このフッ化カリウムの粉末の添加により、
濾液中の硝酸カリウム(KNO3)の濃度が0.67eq/Lであ
るのに対し、フッ化カリウム(KF)の濃度は0.92eq/L
となる。
By adding the powder of potassium fluoride,
The concentration of potassium nitrate (KNO 3 ) in the filtrate is 0.67 eq / L, while the concentration of potassium fluoride (KF) is 0.92 eq / L.
Becomes

【0055】この濾液をバイポーラ膜装置を通過させる
と、容量10m3の酸が回収され、その回収酸中には濃度
2.0eq/Lのフッ酸(HF)と濃度2.0eq/Lの硝酸が含ま
れていた。よって、当初の硝フッ酸廃液中の濃度を同じ
フッ酸及び硝酸が1回目のバッチで回収することができ
た。
When this filtrate was passed through a bipolar membrane device, an acid having a volume of 10 m 3 was recovered. The recovered acid contained hydrofluoric acid (HF) at a concentration of 2.0 eq / L and nitric acid at a concentration of 2.0 eq / L. Was included. Therefore, the same concentration of hydrofluoric acid and nitric acid in the initial nitric-hydrofluoric acid waste liquid could be recovered in the first batch.

【0056】また、容量19m3の脱塩液が回収され、その
脱塩液中のフッ化カリウム(KF)の濃度は0.4eq/Lで
あった。
A desalted solution having a volume of 19 m 3 was recovered, and the concentration of potassium fluoride (KF) in the desalted solution was 0.4 eq / L.

【0057】比較例 比較例として、バイポーラ膜装置への供給前にフッ化カ
リウムを添加しない場合についての回収酸の濃度を測定
した。
Comparative Example As a comparative example, the concentration of the recovered acid was measured before adding potassium fluoride to the bipolar membrane device.

【0058】実施例1と同様に、濃度2eq/Lのフッ酸
(HF)と濃度2eq/Lの硝酸(HNO 3)を含む硝フッ酸
廃液10m3に、濃度2eq/Lの苛性カリ(KOH)20m3を添
加して中和し、金属スラッジを沈澱させた。
As in Example 1, hydrofluoric acid with a concentration of 2 eq / L
(HF) and nitric acid (HNO Three) Containing nitric hydrofluoric acid
Waste liquid 10mThree20m of caustic potash (KOH) with a concentration of 2eq / LThreeWith
It was neutralized by adding to precipitate metal sludge.

【0059】中和後の濾液の濃度は、実施例1と同様に
フッ化カリウム(KF)が0.67eq/L、硝酸カリウム(K
NO3)が0.67eq/Lであるが、実施例1のようにフッ化カ
リウム粉末の添加を行わず、そのままバイポーラ膜装置
を通過させた。
As in Example 1, the concentration of the filtrate after neutralization was 0.67 eq / L for potassium fluoride (KF) and potassium nitrate (KF).
Although NO 3 ) was 0.67 eq / L, potassium fluoride powder was not added as in Example 1 and the solution was allowed to pass through the bipolar membrane device as it was.

【0060】回収された脱塩液の量と濃度は実施例1と
同様で19m3及び0.4eq/Lであったが、回収酸中の硝酸の
濃度は2.47eq/L、フッ酸の濃度は1.53eq/Lであった。
The amount and concentration of the recovered desalted solution were 19 m 3 and 0.4 eq / L as in Example 1, but the concentration of nitric acid in the recovered acid was 2.47 eq / L, and the concentration of hydrofluoric acid was It was 1.53 eq / L.

【0061】実施例1と比較すると硝酸の濃度が高く、
フッ酸の濃度が低かったが、これは実施例1のようにフ
ッ化カリウム粉末の添加を比較例で行わなかったためと
推定される。回収酸中のフッ酸の濃度は、硝フッ酸廃液
のフッ酸の濃度より低いので、酸洗槽で再利用するため
には、未回収のフッ酸に相当する量(本比較例では濃度
4eq/L、容量1.9m3)のフッ酸を新たに補充しなければ
ならない。
As compared with Example 1, the concentration of nitric acid was high,
The concentration of hydrofluoric acid was low, which is presumed to be because the addition of the potassium fluoride powder was not performed in the comparative example as in Example 1. Since the concentration of hydrofluoric acid in the recovered acid is lower than the concentration of hydrofluoric acid in the nitric hydrofluoric acid waste liquid, in order to reuse the hydrofluoric acid in the pickling tank, an amount corresponding to unrecovered hydrofluoric acid (concentration 4 eq in this comparative example) was used. / L, capacity 1.9m 3 ) must be newly replenished with hydrofluoric acid.

【0062】考察 以上のような実施例1と比較例との対比により、バイポ
ーラ膜装置への供給前にフッ化カリウム粉末を添加させ
ておくことにより、回収酸中の硝酸とフッ酸の濃度調整
を好適に行うことが可能となり、特にフッ酸の濃度低下
を防止することができた。
Consideration From the comparison between Example 1 and Comparative Example as described above, the concentration of nitric acid and hydrofluoric acid in the recovered acid was adjusted by adding potassium fluoride powder before supplying to the bipolar membrane device. It was possible to preferably carry out, and it was possible to prevent a decrease in the concentration of hydrofluoric acid.

【0063】実施例2 濃度30g/L のフッ酸(HF)、濃度220g/Lの硝酸(HN
3)、及び濃度30g/Lの鉄を含む廃酸を、濃度112g/Lの
苛性カリ(KOH)中で中和し、沈澱したFe(OH)3
をフィルタープレスで除去後、質量5510g のKFを添加
してバイポーラ膜装置で処理したところ、当初の原水中
の濃度とほぼ同じ濃度である濃度29.8g/L のフッ酸と濃
度221g/Lの硝酸との混合酸が回収できた。
Example 2 Hydrofluoric acid (HF) having a concentration of 30 g / L and nitric acid (HN) having a concentration of 220 g / L
O 3 ), and a spent acid containing iron at a concentration of 30 g / L were neutralized in caustic potash (KOH) at a concentration of 112 g / L to precipitate Fe (OH) 3
After removing it with a filter press and adding 5510 g of KF and treating it with a bipolar membrane device, the concentration of hydrofluoric acid at a concentration of 29.8 g / L and the concentration of nitric acid at a concentration of 221 g / L, which are almost the same as those in the original raw water, The mixed acid with was recovered.

【0064】本実施例においても、酸の濃度低下、特に
フッ酸の濃度低下を防止することができた。
Also in this example, it was possible to prevent a decrease in the concentration of acid, particularly a decrease in the concentration of hydrofluoric acid.

【0065】従って、本実施例においては、初回のバッ
チから所望濃度のフッ酸を回収できるため、装置の運転
の立ち上げ時間も短縮することができることなる。
Therefore, in this embodiment, since the hydrofluoric acid having a desired concentration can be recovered from the first batch, the start-up time of the operation of the apparatus can be shortened.

【0066】[0066]

【発明の効果】叙上のように、本発明においては、アル
カリでの中和工程で生ずる中性塩であって、回収される
混合酸を構成するアニオン成分のうち、混合酸中の全ア
ニオン成分に対して存在する比率が、濾液中の全アニオ
ン成分に対して存在する比率より低くなるアニオン成分
からなる中性塩を、たとえば硝フッ酸廃液の場合にはフ
ッ化カリウム等を、バイポーラ膜装置への供給前に予め
添加するため、そのバイポーラ膜装置通過後の、回収混
合酸のうちのフッ酸の濃度低下を防止できる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, all the anions in the mixed acid, which are neutral salts produced in the step of neutralizing with an alkali, among the anionic components constituting the recovered mixed acid. A neutral salt composed of an anion component whose ratio to the components is lower than that to all the anion components in the filtrate, for example, potassium fluoride in the case of waste liquid of hydrofluoric acid is used as a bipolar membrane. Since it is added in advance before being supplied to the apparatus, it is possible to prevent a decrease in the concentration of hydrofluoric acid in the recovered mixed acid after passing through the bipolar membrane apparatus.

【0067】従って、いわゆるバッチ運転の場合であっ
ても、従来のようにバッチ回数を重ねることなく、装置
の立ち上げ運転時から所望の濃度のフッ酸は得られるこ
ととなり、その結果、装置運転の立ち上げ時間を従来に
比べて大幅に短縮することができるという効果がある。
Therefore, even in the case of so-called batch operation, hydrofluoric acid of a desired concentration can be obtained from the start-up operation of the apparatus without repeating the batch number as in the conventional case. The effect is that the startup time of can be significantly shortened compared to the conventional one.

【0068】ちなみに、従来では装置の立ち上げに4バ
ッチ要しており、その4バッチそれぞれにフッ酸を補充
しなければ酸洗槽で再利用できなかったが、本発明では
再利用のためにフッ酸を補充することは不要であり、か
つ1バッチで立ち上げを可能とすることができた。
By the way, conventionally, four batches were required to start up the apparatus, and each of the four batches could not be reused in the pickling tank unless supplemented with hydrofluoric acid. It was not necessary to replenish with hydrofluoric acid, and it was possible to start up in one batch.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の硝フッ酸廃液からの硝酸とフッ酸と
の分離回収装置の概略ブロック図。
FIG. 1 is a schematic block diagram of an apparatus for separating and recovering nitric acid and hydrofluoric acid from a nitric hydrofluoric acid waste liquid according to an embodiment.

【図2】バイポーラ膜装置の内部構造を示す概略図。FIG. 2 is a schematic diagram showing the internal structure of a bipolar membrane device.

【図3】従来の硝酸とフッ酸との分離回収装置の概略ブ
ロック図。
FIG. 3 is a schematic block diagram of a conventional device for separating and recovering nitric acid and hydrofluoric acid.

【図4】従来の廃酸中のフッ酸の濃度と回収フッ酸の濃
度との相関関係を示すグラフ。
FIG. 4 is a graph showing the correlation between the concentration of hydrofluoric acid in conventional waste acid and the concentration of recovered hydrofluoric acid.

【符号の説明】[Explanation of symbols]

4…バイポーラ膜装置 5…バイポーラ膜 6…陽イオン交換膜 7…陰イオン交換膜 4 ... Bipolar membrane device 5 ... Bipolar membrane 6 ... Cation exchange membrane 7 ... Anion exchange membrane

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硝フッ酸廃液等の酸混合液を、アルカリ
で中和し金属等を沈澱分離した後、濾液をバイポーラ膜
(5) 、陽イオン交換膜(6) 、陰イオン交換膜(7) を備え
たバイポーラ膜装置(4) に供給して該バイポーラ膜装置
(4) から酸とアルカリとを分離し再生回収する硝フッ酸
廃液等の酸混合液の再生回収処理方法において、前記ア
ルカリでの中和工程で生ずる中性塩であって、回収され
る混合酸を構成するアニオン成分のうち、混合酸中の全
アニオン成分に対して存在する比率が、濾液中の全アニ
オン成分に対して存在する比率より低くなるアニオン成
分を含む中性塩を、前記バイポーラ膜装置(4) への供給
前に予め添加することを特徴とする硝フッ酸廃液等の酸
混合液の再生回収処理方法。
1. A bipolar membrane prepared by neutralizing an acid mixture solution such as a nitric hydrofluoric acid waste solution with an alkali to precipitate and separate metals and the like, and then filtering the filtrate.
(5), a cation exchange membrane (6) and an anion exchange membrane (7) are supplied to a bipolar membrane device (4) to supply the bipolar membrane device.
(4) In the method for regenerating and recovering an acid mixture solution such as nitric-hydrofluoric acid waste solution, in which an acid and an alkali are separated and regenerated and recovered, a neutral salt generated in the neutralization step with the alkali is recovered and mixed. Of the anionic components that make up the acid, the ratio of the anionic component present relative to the total anionic components in the mixed acid is lower than the ratio present relative to the total anionic components in the filtrate, and a neutral salt containing an anionic component is added to the bipolar A method for regenerating and recovering an acid mixed liquid such as nitric hydrofluoric acid waste liquid, which is added in advance before being supplied to the membrane device (4).
【請求項2】 前記中性塩が、アルカリでの中和工程後
に添加される請求項1記載の硝フッ酸廃液等の酸混合液
の再生回収処理方法。
2. The method for regenerating and recovering an acid mixture solution such as a waste nitric-hydrofluoric acid waste solution according to claim 1, wherein the neutral salt is added after the step of neutralizing with an alkali.
【請求項3】 前記中性塩が粉末状である請求項1又は
2記載の硝フッ酸廃液等の酸混合液の再生回収処理方
法。
3. The method for regenerating and recovering an acid mixed solution such as a nitric hydrofluoric acid waste solution according to claim 1 or 2, wherein the neutral salt is in a powder form.
【請求項4】 前記中性塩が、フッ化カリウムである請
求項1乃至3のいずれかに記載の硝フッ酸廃液等の酸混
合液の再生回収処理方法。
4. The method for regenerating and recovering an acid mixture solution such as a nitric-hydrofluoric acid waste solution according to claim 1, wherein the neutral salt is potassium fluoride.
JP33356395A 1995-12-21 1995-12-21 Method for regenerating and recovering acid liquid mixture such as waste nitric acid-hydrofluoric acid mixture Pending JPH09176874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33356395A JPH09176874A (en) 1995-12-21 1995-12-21 Method for regenerating and recovering acid liquid mixture such as waste nitric acid-hydrofluoric acid mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33356395A JPH09176874A (en) 1995-12-21 1995-12-21 Method for regenerating and recovering acid liquid mixture such as waste nitric acid-hydrofluoric acid mixture

Publications (1)

Publication Number Publication Date
JPH09176874A true JPH09176874A (en) 1997-07-08

Family

ID=18267451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33356395A Pending JPH09176874A (en) 1995-12-21 1995-12-21 Method for regenerating and recovering acid liquid mixture such as waste nitric acid-hydrofluoric acid mixture

Country Status (1)

Country Link
JP (1) JPH09176874A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071457A (en) * 2001-09-04 2003-03-11 Maezawa Ind Inc Method for recovering mineral acid from mixed acid of boric acid and mineral acid
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
KR100590715B1 (en) * 2001-08-31 2006-06-15 주식회사 포스코 Filtering system for clean pickling solution
CN100361905C (en) * 2006-04-28 2008-01-16 常州市裕和金属材料有限公司 Method for treating waste acid liquor
CN100441520C (en) * 2006-01-24 2008-12-10 常州市裕和金属材料有限公司 High-efficiency environment-friendly acid-mixed plating removal liquor
WO2010092946A1 (en) * 2009-02-13 2010-08-19 株式会社神鋼環境ソリューション Method for processing waste water containing fluorine and silicon, method for producing calcium fluoride, and facility for processing fluorine-containing waste water
CN105859005A (en) * 2016-05-10 2016-08-17 宝钢工程技术集团有限公司 Method and system for treating stainless steel cold-rolling and pickling waste acid
CN109502858A (en) * 2017-09-15 2019-03-22 上海江柘环境工程技术有限公司 A kind of photovoltaic industry fluorine-contained wastewater treatment system and its processing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100590715B1 (en) * 2001-08-31 2006-06-15 주식회사 포스코 Filtering system for clean pickling solution
JP2003071457A (en) * 2001-09-04 2003-03-11 Maezawa Ind Inc Method for recovering mineral acid from mixed acid of boric acid and mineral acid
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
JP4544970B2 (en) * 2004-11-09 2010-09-15 Jfeスチール株式会社 Processing method for pickling waste liquid and processing equipment for pickling waste liquid
CN100441520C (en) * 2006-01-24 2008-12-10 常州市裕和金属材料有限公司 High-efficiency environment-friendly acid-mixed plating removal liquor
CN100361905C (en) * 2006-04-28 2008-01-16 常州市裕和金属材料有限公司 Method for treating waste acid liquor
WO2010092946A1 (en) * 2009-02-13 2010-08-19 株式会社神鋼環境ソリューション Method for processing waste water containing fluorine and silicon, method for producing calcium fluoride, and facility for processing fluorine-containing waste water
CN105859005A (en) * 2016-05-10 2016-08-17 宝钢工程技术集团有限公司 Method and system for treating stainless steel cold-rolling and pickling waste acid
CN109502858A (en) * 2017-09-15 2019-03-22 上海江柘环境工程技术有限公司 A kind of photovoltaic industry fluorine-contained wastewater treatment system and its processing method

Similar Documents

Publication Publication Date Title
KR950006502B1 (en) Recovery of acids from materials comprising acid and sait
AU633075B2 (en) Electrodialytic water splitter
WO1993002227A1 (en) Process and apparatus for treating fluoride containing acid solutions
US4943360A (en) Process for recovering nitric acid and hydrofluoric acid from waste pickle liquors
US4549946A (en) Process and an electrodialytic cell for electrodialytically regenerating a spent electroless copper plating bath
US5804057A (en) Method of removing metal salts from solution by electrolysis an electrode closely associated with an ion exchange resin
US4636288A (en) Electrodialytic conversion of multivalent metal salts
US5281318A (en) Process for processing a waste etching solution containing a fluorine component and an ammonia component to recover valuables therefrom
JPH0723538B2 (en) Method for continuously removing and obtaining ethylenediaminetetraacetic acid from process water for electroless copper plating
JPH09176874A (en) Method for regenerating and recovering acid liquid mixture such as waste nitric acid-hydrofluoric acid mixture
US3304246A (en) Method of electrolytically descaling steel including selective recovery of dissolved scale products
EP0415482B1 (en) Membrane electrolysis apparatus and method of removing metal ions using such apparatus
JPH07112559B2 (en) Method for treating alkaline fluoride waste liquid containing metal ions and oils
JPH09122643A (en) Method for treating waste water from ion exchange resin regeneration and its apparatus
JP2002371368A (en) Method for treating aged electroless nickel plating liquid
JP3519112B2 (en) Method and apparatus for treating liquid to be treated such as waste liquid containing ammonia compound
JPH09201516A (en) Method for regenerating and recovering treatment of acid mixed liquid such as waste liquid of nitric acid and hydrofluoric acid
JP2002322581A (en) Method for regenerating waste solution of nitric- hydrofluoric acid and method for pickling stainless steel
JPH09887A (en) Method for regenerating acid waste liquid
CN1149086A (en) Process for regeneration of electrolytes, in particular of Na2SO4 from waste pickles for stainless steel, in particular, stainless steel strips
JPS603593A (en) Method of electrolytically decontaminating radioactive metallic waste
JPH06182346A (en) Electrodialysis device
JP2002322582A (en) Method for regenerating waste solution of nitric- hydrofluoric acid and method for pickling stainless steel
JPH0539600A (en) Method for electrolytic descaling of stainless steel in neutral salt
JP3572119B2 (en) Method and apparatus for separating and recovering two acids from an acid mixture such as nitric hydrofluoric acid waste liquid