JPH09175818A - Synthesis of zeolite beta - Google Patents

Synthesis of zeolite beta

Info

Publication number
JPH09175818A
JPH09175818A JP27212896A JP27212896A JPH09175818A JP H09175818 A JPH09175818 A JP H09175818A JP 27212896 A JP27212896 A JP 27212896A JP 27212896 A JP27212896 A JP 27212896A JP H09175818 A JPH09175818 A JP H09175818A
Authority
JP
Japan
Prior art keywords
raw material
material composition
dried
composition
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27212896A
Other languages
Japanese (ja)
Other versions
JP3767041B2 (en
Inventor
Masahiko Matsukata
正彦 松方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP27212896A priority Critical patent/JP3767041B2/en
Publication of JPH09175818A publication Critical patent/JPH09175818A/en
Application granted granted Critical
Publication of JP3767041B2 publication Critical patent/JP3767041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for raising reaction efficiency, shorting a crystallization time and simultaneously increasing the yield of a raw material component by reducing a water content to lessen the volume of a raw material composition. SOLUTION: This method for synthesizing zeolite β comprises bringing a powdery raw material composition dried at >=50 deg.C into contact only with steam generated by the composition itself. The powdery raw material composition having the molar ratios of oxides of the chemical composition of SiO2 /Al2 O3 =10-1,000, M2 O/SiO2 =0.0-0.4 and TEA2 O/SiO2 =0.1-1.0 (M is an alkali metal; TEA is tetraethylammonium) dried at >=50 deg.C is used. An aqueous raw material composition is dried at >=50 deg.C while stirring to prepare the powdery raw material composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、触媒または吸着剤
として有用なゼオライトβの製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing zeolite β useful as a catalyst or an adsorbent.

【0002】[0002]

【従来の技術】ゼオライトβは米国特許3,308,0
69号明細書で初めて開示された12員環細孔を有する
ゼオライトである。これまでに提案されている合成方法
は、テンプレート剤としてテトラエチルアンモニウムイ
オンを用いた水性反応スラリーを原料としていた。すな
わち典型的な例においてはH2 O/SiO2 の比が20
であり、均一な攪拌混合が可能な水性スラリーを用い
る。H2 O/SiO2 の比が10以下になると均一混合
が不可能になる。
2. Description of the Prior Art Zeolite β is disclosed in US Pat.
It is a zeolite having 12-membered ring pores, which was first disclosed in the specification of No. 69. The synthesis methods proposed so far have been based on an aqueous reaction slurry using tetraethylammonium ion as a template agent. That is, in a typical example, the ratio of H 2 O / SiO 2 is 20.
And an aqueous slurry capable of uniform stirring and mixing is used. When the H 2 O / SiO 2 ratio is 10 or less, uniform mixing becomes impossible.

【0003】したがって,従来技術においては原料成分
の均一混合スラリーを調製し、それを加熱することによ
ってゼオライトβを結晶化していた。
Therefore, in the prior art, zeolite β was crystallized by preparing a uniform mixed slurry of raw material components and heating it.

【0004】しかしながら、上記した従来法では加熱時
に原料成分の一部は水に溶解するため、結晶へ転化する
成分の割合は必然的に低下するとともにアルカリ成分が
希釈されるため、結晶化時間が長くなる。また、水性ス
ラリーを加熱するため、生成結晶の重量に対して比較的
大きな容積の密閉容器を必要とする等の欠点を有してい
る。
However, in the above-mentioned conventional method, since a part of the raw material components are dissolved in water during heating, the proportion of the components converted into crystals is inevitably lowered and the alkali component is diluted, so that the crystallization time is increased. become longer. Further, since the aqueous slurry is heated, there is a drawback that a closed container having a relatively large volume with respect to the weight of the produced crystals is required.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、水分
含有量を低減することによって原料組成物の容積を減少
させて反応の効率を高めること、および結晶化時間を短
縮すること、また同時に原料成分の収率を高める方法を
提案することにある。
The object of the present invention is to reduce the volume of the raw material composition by increasing the water content to increase the reaction efficiency, and at the same time to shorten the crystallization time. It is to propose a method for increasing the yield of raw material components.

【0006】[0006]

【課題を解決するための手段】本発明は、水分含有量の
少ない粉末状原料組成物を、80〜200℃で自生する
水蒸気とのみ接触させることによって原料組成物の容積
を減少させ、実質的に反応容器内に占める原料組成物の
割合を大きくして反応効率を高める方法である。また同
時に水分含有量を減少することにより、加熱時に水へ溶
解する原料成分を減少させて収率を向上させる方法であ
る。
The present invention reduces the volume of a raw material composition by contacting a powdery raw material composition having a low water content only with steam that naturally grows at 80 to 200 ° C. In addition, the ratio of the raw material composition in the reaction vessel is increased to increase the reaction efficiency. At the same time, by reducing the water content, the raw material components that dissolve in water during heating are reduced, and the yield is improved.

【0007】以下、本発明の詳細について説明する。The details of the present invention will be described below.

【0008】本発明の粉末原料組成物は、アルミナ、シ
リカ、アルカリ成分およびテトラエチルアンモニウムイ
オンから成り、水分は多量に含有する必要がない。
The powder raw material composition of the present invention comprises alumina, silica, an alkali component and tetraethylammonium ion and does not need to contain a large amount of water.

【0009】アルミナ成分としては硫酸アルミニウム、
アルミン酸ナトリウム、水酸化アルミニウム、アルミノ
シリケートゲルなどが、またシリカ源としてはコロイダ
ルシリカ、無定形シリカ、珪酸ナトリウム、アルミノシ
リケートゲルなどが用いられ、他の成分とも十分均一に
混合できる形態のものが望ましい。アルカリ源としては
苛性ソーダ、アルミン酸ソーダおよびケイ酸ソーダの中
のアルカリ成分、またはアルミノシリケートゲル中のア
ルカリ成分などが好適に用いられる。また、水酸化カリ
ウム、アルミン酸カリウムなどを用いても良い。テトラ
エチルアンモニウムイオンはテトラエチルアンモニウム
イオンを含有する化合物であればよく、通常はテトラエ
チルアンモニウムヒドロキシドが用いられる。
Aluminum sulfate as the alumina component,
Sodium aluminate, aluminum hydroxide, aluminosilicate gel, etc. are used, and as the silica source, colloidal silica, amorphous silica, sodium silicate, aluminosilicate gel, etc. are used. desirable. As the alkali source, alkali components in caustic soda, sodium aluminate and sodium silicate, or alkali components in aluminosilicate gel are preferably used. Alternatively, potassium hydroxide, potassium aluminate, or the like may be used. The tetraethylammonium ion may be a compound containing tetraethylammonium ion, and usually tetraethylammonium hydroxide is used.

【0010】これらの原料組成物は、まず水の存在下で
十分に混合し、均一なスラリーとする。この場合の水の
量は特に限定されない。次にこの均一スラリーを攪拌し
ながら50℃以上の温度で乾燥し、粉末状原料組成物を
得る。乾燥温度の上限は特に限定されないが、水分が沸
騰しない温度範囲が好ましく、その温度での平衡水分量
になるまで均一に乾燥する。乾燥温度が50℃未満では
粉末状原料組成物の水分含有量が高くなり、結晶化の際
に原料成分が溶出して収率が低下する。また、乾燥する
方法は特に限定されないが、原料混合物の水性スラリー
を攪拌下で乾燥することが望ましい。
These raw material compositions are first thoroughly mixed in the presence of water to form a uniform slurry. The amount of water in this case is not particularly limited. Next, this homogeneous slurry is dried at a temperature of 50 ° C. or higher with stirring to obtain a powdery raw material composition. The upper limit of the drying temperature is not particularly limited, but a temperature range in which water does not boil is preferable, and uniform drying is performed until the equilibrium water content at that temperature is reached. If the drying temperature is lower than 50 ° C., the water content of the powdery raw material composition becomes high, and the raw material components are eluted during crystallization to lower the yield. The method for drying is not particularly limited, but it is desirable to dry the aqueous slurry of the raw material mixture with stirring.

【0011】得られる粉末状原料組成物の化学組成は酸
化物のモル比で表して SiO2 /Al2 3 =10〜1000 M2 O/SiO2 =0.0〜0.4 TEA2 O/SiO2 =0.1〜10 でなければならない。(ここでMはアルカリ金属、TE
Aはテトラエチルアンモニウムを表す) より好ましい範囲は、 SiO2 /Al2 3 =30〜600 M2 O/SiO2 =0.0〜0.1 TEA2 O/SiO2 =0.15〜0.25 である。
The chemical composition of the obtained powdery raw material composition is expressed by the molar ratio of oxides: SiO 2 / Al 2 O 3 = 10 to 1000 M 2 O / SiO 2 = 0.0 to 0.4 TEA 2 O / SiO 2 = 0.1-10. (Where M is alkali metal, TE
A represents tetraethylammonium) A more preferable range is: SiO 2 / Al 2 O 3 = 30 to 600 M 2 O / SiO 2 = 0.0 to 0.1 TEA 2 O / SiO 2 = 0.15 to 0. 25.

【0012】このようにして調製した粉末状原料組成物
は密閉容器の中に入れ、水と直接接触することなく、反
応温度で自生する水蒸気とのみ接触させて結晶化する。
The powdery raw material composition thus prepared is put in a closed container and crystallized by being brought into contact with only water vapor which naturally grows at the reaction temperature without directly contacting with water.

【0013】結晶化する温度は80〜200℃の範囲で
ある。80℃以下の温度では結晶化速度が非常に遅く経
済合理性に欠ける。また、200℃以上の温度ではテト
ラエチルアンモニウムイオンの分解が激しくなり、結晶
度の高いゼオライトβが得られ難い。
The crystallization temperature is in the range of 80 to 200 ° C. At a temperature of 80 ° C or lower, the crystallization rate is very slow and the economic rationality is lacking. Further, at a temperature of 200 ° C. or higher, the decomposition of tetraethylammonium ion becomes severe, and it is difficult to obtain zeolite β having high crystallinity.

【0014】粉末状原料組成物を水蒸気のみと接触させ
て加熱する方法および装置は特に限定されるものではな
い。実施例で用いた装置を図1に示すが、実施態様はこ
れに限定されない。粉末状原料組成物を容器内に入れ、
その外側に水を入れた密閉容器を用いてもよい。また、
水蒸気と接触させながら粉末状原料組成物を連続的に移
動させる方法でもよい。
The method and apparatus for heating the powdery raw material composition by contacting it with steam only are not particularly limited. The apparatus used in the examples is shown in FIG. 1, but the embodiment is not limited thereto. Put the powdery raw material composition in a container,
You may use the closed container which put the water in the outer side. Also,
A method of continuously moving the powdery raw material composition while contacting with steam may be used.

【0015】[0015]

【発明の効果】本発明の方法によれば、粉末状原料組成
物を用いることにより原料組成物の容積を減少させるこ
とができるので、容積あたりの反応効率を高めることが
できる。
According to the method of the present invention, since the volume of the raw material composition can be reduced by using the powdery raw material composition, the reaction efficiency per volume can be increased.

【0016】また、原料成分が水に溶解することがな
く、ほとんどが結晶に転移するので反応収率を高めるこ
とができるとともに結晶化時間を大幅に短縮できる。し
たがって、水蒸気と接触させながら粉末状原料組成物を
連続的に移動させる方式を採用すれば、ゼオライトβの
連続合成が可能である。また、廃液がほとんど発生しな
いため、回収、廃液処理の必要がなく経済的である。
Further, since the raw material components are not dissolved in water and most of them are transformed into crystals, the reaction yield can be increased and the crystallization time can be greatly shortened. Therefore, if the method of continuously moving the powdery raw material composition while contacting with steam is adopted, continuous synthesis of zeolite β is possible. In addition, since almost no waste liquid is generated, there is no need for recovery and waste liquid treatment, which is economical.

【0017】[0017]

【実施例】以下の実施例により、本発明を具体的に説明
するが、本発明は、これらの実施例により何等限定され
るものではない。
EXAMPLES The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.

【0018】実施例1 10gのコロイダルシリカ(SiO2 ,30wt%)に
4モルの水酸化ナトリウム水溶液0.9ミリリットルと
13.6gのテトラエチルアンモニウムヒドロキシド水
溶液(濃度20%)を攪拌しながら加えた。その後、こ
の混合スラリーに、10ミリリットルの水に0.57g
の硫酸アルミニウムを溶解した水溶液を添加した。この
水性原料混合物を1時間攪拌した後80℃の温度に保持
しながら、水分が平衡量になるまで攪拌、乾燥して原料
組成物を得た。この原料組成物の化学組成は無水換算で
下記のとおりであった。
Example 1 To 10 g of colloidal silica (SiO 2 , 30 wt%), 0.9 ml of 4 mol aqueous sodium hydroxide solution and 13.6 g of tetraethylammonium hydroxide aqueous solution (concentration 20%) were added with stirring. . Then, in this mixed slurry, 0.57 g in 10 ml of water
An aqueous solution of aluminum sulfate was added. The aqueous raw material mixture was stirred for 1 hour and then kept at a temperature of 80 ° C., and was stirred and dried until the water had an equilibrium amount, to obtain a raw material composition. The chemical composition of this raw material composition was as follows on an anhydrous basis.

【0019】1.09Na2 O・Al2 3 ・30.3
SiO2 ・5.6TEA2 O この原料組成物を粉砕して、粉末状原料組成物を得た。
これを図1に示した密閉容器内の支持板の上に置き、容
器の底に水を入れ、180℃で120時間加熱した。生
成物を簡単に水洗後、80℃で乾燥した。生成物のX線
回折測定の結果、図2に示すようにゼオライトβであっ
た。その化学組成は 0.02Na2 O・Al2 3 ・33.7SiO2
1.05TEA2 O・9.5H2 O であった。
[0019] 1.09Na 2 O · Al 2 O 3 · 30.3
SiO 2 · 5.6 TEA 2 O This raw material composition was pulverized to obtain a powdery raw material composition.
This was placed on the support plate in the closed container shown in FIG. 1, water was added to the bottom of the container, and heated at 180 ° C. for 120 hours. The product was briefly washed with water and then dried at 80 ° C. As a result of X-ray diffraction measurement of the product, it was zeolite β as shown in FIG. Its chemical composition is 0.02Na 2 O ・ Al 2 O 3・ 33.7SiO 2
It was 1.05 TEA 2 O.9.5 H 2 O.

【0020】実施例2 実施例1と同じ原料を用いて水性原料混合物を調製し、
これを80℃の温度で攪拌乾燥、粉砕して、無水換算で 1.52Na2 O・Al2 3 ・30.3SiO2
5.6TEA2 O の組成を有する粉末状原料組成物を得た。
Example 2 An aqueous raw material mixture was prepared using the same raw materials as in Example 1,
This is stirred and dried at a temperature of 80 ° C., crushed, and converted into anhydrous 1.52Na 2 O.Al 2 O 3 / 30.3SiO 2
A powdery raw material composition having a composition of 5.6 TEA 2 O was obtained.

【0021】これを実施例1と同様の方法で180℃で
3時間加熱した。生成物を簡単に水洗後、80℃で乾燥
した。そのX線回折図は図2と本質的に同じであった。
This was heated at 180 ° C. for 3 hours in the same manner as in Example 1. The product was briefly washed with water and then dried at 80 ° C. Its X-ray diffractogram was essentially the same as in FIG.

【0022】有機物と水分を含まない成分の組成は 0.11Na2 O・Al2 3 ・30.2SiO2 であった。The composition of the components containing neither organic matter nor water was 0.11Na 2 O.Al 2 O 3 30.2SiO 2 .

【0023】実施例3 実施例1と同じ原料を用いて水性原料混合物を調製し、
これを80℃の温度で攪拌乾燥、粉砕して、無水換算で 2.18Na2 O・Al2 3 ・60.6SiO2 ・1
1.2TEA2 O の組成を有する粉末状原料組成物を得た。
Example 3 An aqueous raw material mixture was prepared using the same raw materials as in Example 1,
This stirring dried at a temperature of 80 ° C., and pulverized, 2.18Na 2 O · Al 2 O 3 · 60.6SiO 2 · 1 in anhydrous basis
A powdery raw material composition having a composition of 1.2 TEA 2 O was obtained.

【0024】これを実施例1と同様の方法で180℃で
120時間加熱した。生成物を簡単に水洗後、80℃で
乾燥した。そのX線回折図は図2と本質的に同じであっ
た。有機物と水分を含まない成分の組成は 0.23Na2 O・Al2 3 ・66.7SiO2 であった。
This was heated at 180 ° C. for 120 hours in the same manner as in Example 1. The product was briefly washed with water and then dried at 80 ° C. Its X-ray diffractogram was essentially the same as in FIG. The composition of the components containing no organic matter and water was 0.23Na 2 O.Al 2 O 3 .66.7SiO 2 .

【0025】実施例4 アルカリ源として水酸化ナトリウムと水酸化カリウムを
用いた以外は実施例1と同じ方法で水性原料混合物を調
製し、これを80℃の温度で攪拌乾燥、粉砕して、無水
換算で 3.64Na2 O・1.82K2 O・Al2 3 ・6
0.6SiO2 ・11.2TEA2 O の組成を有する粉末状原料組成物を得た。
Example 4 An aqueous raw material mixture was prepared in the same manner as in Example 1 except that sodium hydroxide and potassium hydroxide were used as the alkali source, and the mixture was dried by stirring at 80 ° C., pulverizing and drying. Converted to 3.64 Na 2 O ・ 1.82K 2 O ・ Al 2 O 3・ 6
A powdery raw material composition having a composition of 0.6SiO 2 · 11.2 TEA 2 O was obtained.

【0026】これを実施例1と同様の方法で、180
℃,65時間加熱した。生成物を簡単に水洗後、80℃
で乾燥した。そのX線回折図は図2と本質的に同じであ
った。有機物と水分を含まない成分の組成は 0.49Na2 O・0.18K2 O・Al2 3 ・6
2.3SiO2 であった。
In the same manner as in the first embodiment, 180
It heated at 65 degreeC for 65 hours. After washing the product briefly with water, 80 ℃
And dried. Its X-ray diffractogram was essentially the same as in FIG. The composition of the components that do not contain organic matter and moisture 0.49Na 2 O · 0.18K 2 O · Al 2 O 3 · 6
It was 2.3 SiO 2 .

【0027】実施例5 実施例1と同じ原料を用いて水性原料混合物を調製し、
これを80℃の温度で攪拌乾燥、粉砕して、無水換算で 5.00Na2 O・Al2 3 ・100SiO2 ・1
8.5TEA2 O の組成を有する粉末状原料組成物を得た。
Example 5 An aqueous raw material mixture was prepared using the same raw materials as in Example 1,
This stirring dried at a temperature of 80 ° C., and pulverized, 5.00Na 2 O · Al 2 O 3 · 100SiO 2 · 1 in anhydrous basis
A powdery raw material composition having a composition of 8.5 TEA 2 O was obtained.

【0028】これを実施例1と同様の方法で180℃,
4時間加熱した。生成物を簡単に水洗後、80℃で乾燥
した。そのX線回折図は図2と本質的に同じであった。
The same procedure as in Example 1 was repeated at 180 ° C.
Heat for 4 hours. The product was briefly washed with water and then dried at 80 ° C. Its X-ray diffractogram was essentially the same as in FIG.

【0029】生成物のSiO2 /Al2 3 比は78.
3であった。
The product SiO 2 / Al 2 O 3 ratio is 78.
It was 3.

【0030】実施例6 実施例1と同じ原料を用いて水性原料混合物を調製し、
これを80℃の温度で攪拌乾燥、粉砕して、無水換算で 21.8Na2 O・Al2 3 ・606SiO2 ・11
2TEA2 O の組成を有する粉末状原料組成物を得た。
Example 6 An aqueous raw material mixture was prepared using the same raw materials as in Example 1,
This is stirred and dried at a temperature of 80 ° C., pulverized, and converted into anhydrous water, 21.8 Na 2 O.Al 2 O 3 · 606SiO 2 · 11.
A powdery raw material composition having a composition of 2TEA 2 O was obtained.

【0031】これを実施例1と同様の方法で180℃,
72時間加熱した。生成物を簡単に水洗後、80℃で乾
燥した。そのX線回折図は図2と本質的に同じであっ
た。
This was subjected to the same procedure as in Example 1 at 180 ° C.,
Heated for 72 hours. The product was briefly washed with water and then dried at 80 ° C. Its X-ray diffractogram was essentially the same as in FIG.

【0032】生成物のSiO2 /Al2 3 比は343
であった。
The product had a SiO 2 / Al 2 O 3 ratio of 343.
Met.

【0033】実施例7 実施例1と同じ原料を用いて水性原料混合物を調製し、
これを80℃の温度で攪拌乾燥、粉砕して、無水換算で 45.5Na2 O・Al2 3 ・909SiO2 ・16
8TEA2 O の組成を有する粉末状原料組成物を得た。
Example 7 An aqueous raw material mixture was prepared using the same raw materials as in Example 1,
This is stirred and dried at a temperature of 80 ° C., pulverized, and then converted into anhydrous 45.5 Na 2 O.Al 2 O 3 .909SiO 2 .16.
A powdery raw material composition having a composition of 8TEA 2 O was obtained.

【0034】これを実施例1と同様の方法で180℃,
12時間加熱した。生成物を簡単に水洗後、80℃で乾
燥した。そのX線回折図は図2と本質的に同じであっ
た。
The same procedure as in Example 1 was conducted at 180 ° C.
Heated for 12 hours. The product was briefly washed with water and then dried at 80 ° C. Its X-ray diffractogram was essentially the same as in FIG.

【0035】生成物のSiO2 /Al2 3 比は463
であった。
The product had a SiO 2 / Al 2 O 3 ratio of 463.
Met.

【0036】比較例1 実施例1で調製したのと同じ原料混合割合で調製した水
性スラリーを濾過して、浸潤状原料組成物を得た。水分
含有量はドライベースで115%であった。これを実施
例1と同じ方法で180℃で120時間加熱した。支持
体の上の原料混合物は大部分が落下し、残存した白色粉
末はほとんど無定形であった。
Comparative Example 1 An aqueous slurry prepared with the same raw material mixing ratio as that prepared in Example 1 was filtered to obtain an infiltrated raw material composition. The water content was 115% on a dry basis. This was heated in the same manner as in Example 1 at 180 ° C. for 120 hours. Most of the raw material mixture on the support dropped, and the remaining white powder was almost amorphous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で粉末状原料組成物と水蒸気とを接触す
るために使用した装置を示す。
FIG. 1 shows an apparatus used for contacting a powdery raw material composition and steam in Examples.

【符号の説明】[Explanation of symbols]

(a):密閉容器 (b):熱電対 (c):テフロン容器 (d):支持板 (e):粉末状原料組成物 (f):水 (A): Airtight container (b): Thermocouple (c): Teflon container (d): Support plate (e): Powdery raw material composition (f): Water

【図2】実施例1の生成物のCuKαX線回折図を示
す。
2 shows a CuKα X-ray diffractogram of the product of Example 1. FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】50℃以上の温度で乾燥した粉末状原料組
成物を80〜200℃で自生する水蒸気とのみ接触させ
ることを特徴とするゼオライトβの合成方法。
1. A method for synthesizing zeolite β, which comprises contacting a powdery raw material composition dried at a temperature of 50 ° C. or higher with only water vapor that naturally grows at 80 to 200 ° C.
【請求項2】化学組成が酸化物のモル比で表して SiO2 /Al2 3 =10〜1000 M2 O/SiO2 =0.0〜0.4 TEA2 O/SiO2 =0.1〜1.0 (ここでMはアルカリ金属,TEAはテトラエチルアン
モニウムを表す)である50℃以上の温度で乾燥した粉
末状原料組成物を用いることを特徴とする特許請求の範
囲第1項記載のゼオライトβの合成方法。
2. A chemical composition expressed as a molar ratio of oxides: SiO 2 / Al 2 O 3 = 10 to 1000 M 2 O / SiO 2 = 0.0 to 0.4 TEA 2 O / SiO 2 = 0. The powdery raw material composition dried at a temperature of 50 ° C. or higher, which is 1 to 1.0 (wherein M represents an alkali metal and TEA represents tetraethylammonium), is used. Method for the synthesis of zeolite β.
【請求項3】水性原料組成物を攪拌下で50℃以上の温
度で乾燥して粉末状原料組成物を調製することを特徴と
する特許請求の範囲第2項記載のゼオライトβの合成方
法。
3. The method for synthesizing zeolite β according to claim 2, wherein the powdery raw material composition is prepared by drying the aqueous raw material composition under stirring at a temperature of 50 ° C. or higher.
JP27212896A 1995-10-27 1996-10-15 Method for synthesizing zeolite β Expired - Fee Related JP3767041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27212896A JP3767041B2 (en) 1995-10-27 1996-10-15 Method for synthesizing zeolite β

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-280668 1995-10-27
JP28066895 1995-10-27
JP27212896A JP3767041B2 (en) 1995-10-27 1996-10-15 Method for synthesizing zeolite β

Publications (2)

Publication Number Publication Date
JPH09175818A true JPH09175818A (en) 1997-07-08
JP3767041B2 JP3767041B2 (en) 2006-04-19

Family

ID=26550050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27212896A Expired - Fee Related JP3767041B2 (en) 1995-10-27 1996-10-15 Method for synthesizing zeolite β

Country Status (1)

Country Link
JP (1) JP3767041B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139324A (en) * 1999-11-11 2001-05-22 Nippon Shokubai Co Ltd Beta type binderless zeolite molding and method for manufacturing the same
US6294150B2 (en) 1997-11-07 2001-09-25 Ngk Insulators, Ltd. Highly heat resistant β-zeolite and absorbent for automobile exhaust gas purification and adsorbent for automobile exhaust gas purification
US6521207B2 (en) 1999-06-18 2003-02-18 Nippon Shokubai Co., Ltd. Molding of binderless zeolite, method for production thereof, and uses thereof
US6641788B1 (en) 1997-07-02 2003-11-04 Tosoh Corporation Absorbent for a hydrocarbon, and exhaust gas-purifying catalyst
WO2008038422A1 (en) 2006-09-27 2008-04-03 Tosoh Corporation β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
JP2008239450A (en) * 2007-03-28 2008-10-09 Yoshihiro Sugi SYNTHETIC METHOD OF BETA(beta)-ZEOLITE
JP2009062270A (en) * 2007-09-04 2009-03-26 Ifp Preparation of porous composite material based on eu-1 zeolite and its implementation in isomerization of 8c aromatic compound
JP2010527902A (en) * 2007-05-25 2010-08-19 イエフペ Novel process for preparing EU-1 zeolite
KR20170115088A (en) 2015-02-09 2017-10-16 유니제오 가부시키가이샤 Method for producing beta type zeolite
US10870582B2 (en) 2016-06-17 2020-12-22 Mitsui Mining & Smelting Co., Ltd. Method of producing beta zeolite

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641788B1 (en) 1997-07-02 2003-11-04 Tosoh Corporation Absorbent for a hydrocarbon, and exhaust gas-purifying catalyst
US6294150B2 (en) 1997-11-07 2001-09-25 Ngk Insulators, Ltd. Highly heat resistant β-zeolite and absorbent for automobile exhaust gas purification and adsorbent for automobile exhaust gas purification
US6521207B2 (en) 1999-06-18 2003-02-18 Nippon Shokubai Co., Ltd. Molding of binderless zeolite, method for production thereof, and uses thereof
JP2001139324A (en) * 1999-11-11 2001-05-22 Nippon Shokubai Co Ltd Beta type binderless zeolite molding and method for manufacturing the same
US9061241B2 (en) 2006-09-27 2015-06-23 Tosoh Corporation β-Zeolite for SCR catalyst and method for purifying nitrogen oxides using same
JP2008081348A (en) * 2006-09-27 2008-04-10 Tosoh Corp Beta-type zeolite for scr catalyst and method for removing nitrogen oxide by using the same
WO2008038422A1 (en) 2006-09-27 2008-04-03 Tosoh Corporation β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
JP2008239450A (en) * 2007-03-28 2008-10-09 Yoshihiro Sugi SYNTHETIC METHOD OF BETA(beta)-ZEOLITE
JP2010527902A (en) * 2007-05-25 2010-08-19 イエフペ Novel process for preparing EU-1 zeolite
JP2009062270A (en) * 2007-09-04 2009-03-26 Ifp Preparation of porous composite material based on eu-1 zeolite and its implementation in isomerization of 8c aromatic compound
KR20170115088A (en) 2015-02-09 2017-10-16 유니제오 가부시키가이샤 Method for producing beta type zeolite
US10501328B2 (en) 2015-02-09 2019-12-10 Mistui Mining & Smelting Co., Ltd. Method for producing beta zeolite
US10870582B2 (en) 2016-06-17 2020-12-22 Mitsui Mining & Smelting Co., Ltd. Method of producing beta zeolite

Also Published As

Publication number Publication date
JP3767041B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP3090455B2 (en) Zeolite and method for producing the same
US3114603A (en) Process for synthetic zeolite a
JP2523433B2 (en) Method for producing P-type zeolite
JP3299763B2 (en) Method for producing modified sodium disilicate
JPH0327488B2 (en)
JP3767041B2 (en) Method for synthesizing zeolite β
US3594121A (en) Dry gel process for preparing zeolite y
EP0142347B1 (en) Process for preparing type l zeolites by nucleating technique
US3391994A (en) Method for producing faujasitetype zeolites
CN106379913A (en) Method for synthesizing P zeolite molecular sieve from rice husk
JPH0251404A (en) Production of anhydrous sodium sulfide crystal
JP3322308B2 (en) Synthetic method of zeolite
US3390958A (en) Process for preparing crystalline zeolitic molecular sieves
JP4123546B2 (en) Zeolite OU-1 and synthesis method thereof
JP2000185912A (en) Crystalline titanosilicate zeolite and its production
US3676063A (en) Process for preparing synthetic crystalline zeolitic sodium aluminosilicate
US3920798A (en) Zeolite y synthesis
IE904222A1 (en) Process for preparing reactive silicon dioxide phase
CA1327562C (en) Process for preparing a high silica zeolite having the faujasite topology, ecr-32
JP4470003B2 (en) High silica mordenite and its synthesis method
JPH07291616A (en) Production of crystalline calcium silicate hydrate
JP3678790B2 (en) Method for producing faujasite type zeolite
US5549881A (en) Process for preparing a seeded high-silica zeolite having the faujasite topology
JP3366163B2 (en) Titanium-containing mordenite and method for producing the same
JPS6221725B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050808

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20140210

LAPS Cancellation because of no payment of annual fees