JP3767041B2 - Method for synthesizing zeolite β - Google Patents

Method for synthesizing zeolite β Download PDF

Info

Publication number
JP3767041B2
JP3767041B2 JP27212896A JP27212896A JP3767041B2 JP 3767041 B2 JP3767041 B2 JP 3767041B2 JP 27212896 A JP27212896 A JP 27212896A JP 27212896 A JP27212896 A JP 27212896A JP 3767041 B2 JP3767041 B2 JP 3767041B2
Authority
JP
Japan
Prior art keywords
raw material
material composition
sio
dried
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27212896A
Other languages
Japanese (ja)
Other versions
JPH09175818A (en
Inventor
正彦 松方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP27212896A priority Critical patent/JP3767041B2/en
Publication of JPH09175818A publication Critical patent/JPH09175818A/en
Application granted granted Critical
Publication of JP3767041B2 publication Critical patent/JP3767041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、触媒または吸着剤として有用なゼオライトβの製造方法に関するものである。
【0002】
【従来の技術】
ゼオライトβは米国特許3,308,069号明細書で初めて開示された12員環細孔を有するゼオライトである。これまでに提案されている合成方法は、テンプレート剤としてテトラエチルアンモニウムイオンを用いた水性反応スラリーを原料としていた。すなわち典型的な例においてはH2 O/SiO2 の比が20であり、均一な攪拌混合が可能な水性スラリーを用いる。H2 O/SiO2 の比が10以下になると均一混合が不可能になる。
【0003】
したがって,従来技術においては原料成分の均一混合スラリーを調製し、それを加熱することによってゼオライトβを結晶化していた。
【0004】
しかしながら、上記した従来法では加熱時に原料成分の一部は水に溶解するため、結晶へ転化する成分の割合は必然的に低下するとともにアルカリ成分が希釈されるため、結晶化時間が長くなる。また、水性スラリーを加熱するため、生成結晶の重量に対して比較的大きな容積の密閉容器を必要とする等の欠点を有している。
【0005】
【発明が解決しようとする課題】
本発明の目的は、水分含有量を低減することによって原料組成物の容積を減少させて反応の効率を高めること、および結晶化時間を短縮すること、また同時に原料成分の収率を高める方法を提案することにある。
【0006】
【課題を解決するための手段】
本発明は、化学組成が酸化物のモル比で表して
SiO /Al =10〜1000
O/SiO =0.0〜0.4
TEA O/SiO =0.1〜1.0
(ここでMはアルカリ金属,TEAはテトラエチルアンモニウムを表す)である50℃以上の温度で乾燥した水分含有量の少ない粉末状原料組成物を、80〜200℃で自生する水蒸気とのみ接触させることによって原料組成物の容積を減少させ、実質的に反応容器内に占める原料組成物の割合を大きくして反応効率を高める方法である。また同時に水分含有量を減少することにより、加熱時に水へ溶解する原料成分を減少させて収率を向上させる方法である。
【0007】
以下、本発明の詳細について説明する。
【0008】
本発明の粉末原料組成物は、アルミナ、シリカ、アルカリ成分およびテトラエチルアンモニウムイオンから成り、水分は多量に含有する必要がない。
【0009】
アルミナ成分としては硫酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、アルミノシリケートゲルなどが、またシリカ源としてはコロイダルシリカ、無定形シリカ、珪酸ナトリウム、アルミノシリケートゲルなどが用いられ、他の成分とも十分均一に混合できる形態のものが望ましい。アルカリ源としては苛性ソーダ、アルミン酸ソーダおよびケイ酸ソーダの中のアルカリ成分、またはアルミノシリケートゲル中のアルカリ成分などが好適に用いられる。また、水酸化カリウム、アルミン酸カリウムなどを用いても良い。テトラエチルアンモニウムイオンはテトラエチルアンモニウムイオンを含有する化合物であればよく、通常はテトラエチルアンモニウムヒドロキシドが用いられる。
【0010】
これらの原料組成物は、まず水の存在下で十分に混合し、均一なスラリーとする。この場合の水の量は特に限定されない。次にこの均一スラリーを攪拌しながら50℃以上の温度で乾燥し、粉末状原料組成物を得る。乾燥温度の上限は特に限定されないが、水分が沸騰しない温度範囲が好ましく、その温度での平衡水分量になるまで均一に乾燥する。乾燥温度が50℃未満では粉末状原料組成物の水分含有量が高くなり、結晶化の際に原料成分が溶出して収率が低下する。また、乾燥する方法は特に限定されないが、原料混合物の水性スラリーを攪拌下で乾燥することが望ましい。
【0011】
得られる粉末状原料組成物の化学組成は酸化物のモル比で表して
SiO2 /Al2 3 =10〜1000
2 O/SiO2 =0.0〜0.4
TEA2 O/SiO2 =0.1〜10
でなければならない。(ここでMはアルカリ金属、TEAはテトラエチルアンモニウムを表す)
より好ましい範囲は、
SiO2 /Al2 3 =30〜600
2 O/SiO2 =0.0〜0.1
TEA2 O/SiO2 =0.15〜0.25
である。
【0012】
このようにして調製した粉末状原料組成物は密閉容器の中に入れ、水と直接接触することなく、反応温度で自生する水蒸気とのみ接触させて結晶化する。
【0013】
結晶化する温度は80〜200℃の範囲である。80℃以下の温度では結晶化速度が非常に遅く経済合理性に欠ける。また、200℃以上の温度ではテトラエチルアンモニウムイオンの分解が激しくなり、結晶度の高いゼオライトβが得られ難い。
【0014】
粉末状原料組成物を水蒸気のみと接触させて加熱する方法および装置は特に限定されるものではない。実施例で用いた装置を図1に示すが、実施態様はこれに限定されない。粉末状原料組成物を容器内に入れ、その外側に水を入れた密閉容器を用いてもよい。また、水蒸気と接触させながら粉末状原料組成物を連続的に移動させる方法でもよい。
【0015】
【発明の効果】
本発明の方法によれば、粉末状原料組成物を用いることにより原料組成物の容積を減少させることができるので、容積あたりの反応効率を高めることができる。
【0016】
また、原料成分が水に溶解することがなく、ほとんどが結晶に転移するので反応収率を高めることができるとともに結晶化時間を大幅に短縮できる。したがって、水蒸気と接触させながら粉末状原料組成物を連続的に移動させる方式を採用すれば、ゼオライトβの連続合成が可能である。また、廃液がほとんど発生しないため、回収、廃液処理の必要がなく経済的である。
【0017】
【実施例】
以下の実施例により、本発明を具体的に説明するが、本発明は、これらの実施例により何等限定されるものではない。
【0018】
実施例1
10gのコロイダルシリカ(SiO2 ,30wt%)に4モルの水酸化ナトリウム水溶液0.9ミリリットルと13.6gのテトラエチルアンモニウムヒドロキシド水溶液(濃度20%)を攪拌しながら加えた。その後、この混合スラリーに、10ミリリットルの水に0.57gの硫酸アルミニウムを溶解した水溶液を添加した。この水性原料混合物を1時間攪拌した後80℃の温度に保持しながら、水分が平衡量になるまで攪拌、乾燥して原料組成物を得た。この原料組成物の化学組成は無水換算で下記のとおりであった。
【0019】
1.09Na2 O・Al2 3 ・30.3SiO2 ・5.6TEA2
この原料組成物を粉砕して、粉末状原料組成物を得た。これを図1に示した密閉容器内の支持板の上に置き、容器の底に水を入れ、180℃で120時間加熱した。生成物を簡単に水洗後、80℃で乾燥した。生成物のX線回折測定の結果、図2に示すようにゼオライトβであった。その化学組成は
0.02Na2 O・Al2 3 ・33.7SiO2 ・1.05TEA2 O・9.5H2
であった。
【0020】
実施例2
実施例1と同じ原料を用いて水性原料混合物を調製し、これを80℃の温度で攪拌乾燥、粉砕して、無水換算で
1.52Na2 O・Al2 3 ・30.3SiO2 ・5.6TEA2
の組成を有する粉末状原料組成物を得た。
【0021】
これを実施例1と同様の方法で180℃で3時間加熱した。生成物を簡単に水洗後、80℃で乾燥した。そのX線回折図は図2と本質的に同じであった。
【0022】
有機物と水分を含まない成分の組成は
0.11Na2 O・Al2 3 ・30.2SiO2
であった。
【0023】
実施例3
実施例1と同じ原料を用いて水性原料混合物を調製し、これを80℃の温度で攪拌乾燥、粉砕して、無水換算で
2.18Na2 O・Al2 3 ・60.6SiO2 ・11.2TEA2
の組成を有する粉末状原料組成物を得た。
【0024】
これを実施例1と同様の方法で180℃で120時間加熱した。生成物を簡単に水洗後、80℃で乾燥した。そのX線回折図は図2と本質的に同じであった。
有機物と水分を含まない成分の組成は
0.23Na2 O・Al2 3 ・66.7SiO2
であった。
【0025】
実施例4
アルカリ源として水酸化ナトリウムと水酸化カリウムを用いた以外は実施例1と同じ方法で水性原料混合物を調製し、これを80℃の温度で攪拌乾燥、粉砕して、無水換算で
3.64Na2 O・1.82K2 O・Al2 3 ・60.6SiO2 ・11.2TEA2
の組成を有する粉末状原料組成物を得た。
【0026】
これを実施例1と同様の方法で、180℃,65時間加熱した。生成物を簡単に水洗後、80℃で乾燥した。そのX線回折図は図2と本質的に同じであった。
有機物と水分を含まない成分の組成は
0.49Na2 O・0.18K2 O・Al2 3 ・62.3SiO2
であった。
【0027】
実施例5
実施例1と同じ原料を用いて水性原料混合物を調製し、これを80℃の温度で攪拌乾燥、粉砕して、無水換算で
5.00Na2 O・Al2 3 ・100SiO2 ・18.5TEA2 O
の組成を有する粉末状原料組成物を得た。
【0028】
これを実施例1と同様の方法で180℃,4時間加熱した。生成物を簡単に水洗後、80℃で乾燥した。そのX線回折図は図2と本質的に同じであった。
【0029】
生成物のSiO2 /Al2 3 比は78.3であった。
【0030】
実施例6
実施例1と同じ原料を用いて水性原料混合物を調製し、これを80℃の温度で攪拌乾燥、粉砕して、無水換算で
21.8Na2 O・Al2 3 ・606SiO2 ・112TEA2 O
の組成を有する粉末状原料組成物を得た。
【0031】
これを実施例1と同様の方法で180℃,72時間加熱した。生成物を簡単に水洗後、80℃で乾燥した。そのX線回折図は図2と本質的に同じであった。
【0032】
生成物のSiO2 /Al2 3 比は343であった。
【0033】
実施例7
実施例1と同じ原料を用いて水性原料混合物を調製し、これを80℃の温度で攪拌乾燥、粉砕して、無水換算で
45.5Na2 O・Al2 3 ・909SiO2 ・168TEA2 O
の組成を有する粉末状原料組成物を得た。
【0034】
これを実施例1と同様の方法で180℃,12時間加熱した。生成物を簡単に水洗後、80℃で乾燥した。そのX線回折図は図2と本質的に同じであった。
【0035】
生成物のSiO2 /Al2 3 比は463であった。
【0036】
比較例1
実施例1で調製したのと同じ原料混合割合で調製した水性スラリーを濾過して、浸潤状原料組成物を得た。水分含有量はドライベースで115%であった。これを実施例1と同じ方法で180℃で120時間加熱した。支持体の上の原料混合物は大部分が落下し、残存した白色粉末はほとんど無定形であった。
【図面の簡単な説明】
【図1】実施例で粉末状原料組成物と水蒸気とを接触するために使用した装置を示す。
【符号の説明】
(a):密閉容器
(b):熱電対
(c):テフロン容器
(d):支持板
(e):粉末状原料組成物
(f):水
【図2】実施例1の生成物のCuKαX線回折図を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing zeolite β useful as a catalyst or an adsorbent.
[0002]
[Prior art]
Zeolite β is a zeolite having 12-membered ring pores first disclosed in US Pat. No. 3,308,069. The synthesis methods proposed so far have been based on an aqueous reaction slurry using tetraethylammonium ions as a template agent. That is, in a typical example, an aqueous slurry having a H 2 O / SiO 2 ratio of 20 and capable of uniform stirring and mixing is used. When the ratio of H 2 O / SiO 2 is 10 or less, uniform mixing becomes impossible.
[0003]
Therefore, in the prior art, zeolite β is crystallized by preparing a homogeneous mixed slurry of raw material components and heating it.
[0004]
However, in the conventional method described above, a part of the raw material components are dissolved in water during heating, so that the proportion of components converted into crystals inevitably decreases and the alkali components are diluted, so that the crystallization time becomes longer. Further, since the aqueous slurry is heated, there is a drawback that a closed container having a relatively large volume with respect to the weight of the produced crystal is required.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to reduce the water content to reduce the volume of the raw material composition to increase the efficiency of the reaction, to shorten the crystallization time, and at the same time to increase the yield of the raw material components. It is to propose.
[0006]
[Means for Solving the Problems]
In the present invention, the chemical composition is expressed by the molar ratio of oxide
SiO 2 / Al 2 O 3 = 10 to 1000
M 2 O / SiO 2 = 0.0~0.4
TEA 2 O / SiO 2 = 0.1 to 1.0
(Here, M represents an alkali metal and TEA represents tetraethylammonium) A powdery raw material composition having a low water content dried at a temperature of 50 ° C. or higher is brought into contact only with water vapor grown at 80 to 200 ° C. Thus, the volume of the raw material composition is reduced, and the ratio of the raw material composition substantially occupied in the reaction vessel is increased to increase the reaction efficiency. At the same time, by reducing the water content, the raw material components dissolved in water during heating are reduced to improve the yield.
[0007]
Details of the present invention will be described below.
[0008]
The powder raw material composition of the present invention comprises alumina, silica, an alkali component and tetraethylammonium ions, and does not need to contain a large amount of moisture.
[0009]
Aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminosilicate gel, etc. are used as the alumina component, and colloidal silica, amorphous silica, sodium silicate, aluminosilicate gel, etc. are used as the silica source. It is desirable to have a form that can be mixed. As the alkali source, caustic soda, sodium aluminate, and alkali components in sodium silicate, or alkali components in aluminosilicate gel are preferably used. Further, potassium hydroxide, potassium aluminate or the like may be used. The tetraethylammonium ion may be a compound containing tetraethylammonium ion, and tetraethylammonium hydroxide is usually used.
[0010]
These raw material compositions are first thoroughly mixed in the presence of water to form a uniform slurry. The amount of water in this case is not particularly limited. Next, this uniform slurry is dried at a temperature of 50 ° C. or higher while stirring to obtain a powdery raw material composition. The upper limit of the drying temperature is not particularly limited, but a temperature range in which moisture does not boil is preferable, and drying is performed uniformly until the equilibrium moisture content at that temperature is reached. When the drying temperature is less than 50 ° C., the water content of the powdery raw material composition increases, and the raw material components are eluted during crystallization, resulting in a decrease in yield. The drying method is not particularly limited, but it is desirable to dry the aqueous slurry of the raw material mixture with stirring.
[0011]
The chemical composition of the obtained powdery raw material composition is expressed in terms of the molar ratio of oxide, and SiO 2 / Al 2 O 3 = 10 to 1000.
M 2 O / SiO 2 = 0.0 to 0.4
TEA 2 O / SiO 2 = 0.1-10
Must. (Where M represents an alkali metal and TEA represents tetraethylammonium)
A more preferred range is
SiO 2 / Al 2 O 3 = 30 to 600
M 2 O / SiO 2 = 0.0 to 0.1
TEA 2 O / SiO 2 = 0.15 to 0.25
It is.
[0012]
The powdery raw material composition thus prepared is placed in a closed container and crystallized by contacting only with water vapor which is spontaneously generated at the reaction temperature without directly contacting with water.
[0013]
The temperature for crystallization is in the range of 80-200 ° C. At temperatures below 80 ° C., the crystallization rate is very slow and lacks economic rationality. Further, at a temperature of 200 ° C. or higher, the decomposition of tetraethylammonium ions becomes severe, and it is difficult to obtain zeolite β having a high degree of crystallinity.
[0014]
The method and apparatus for heating the powdery raw material composition by bringing it into contact with water vapor is not particularly limited. Although the apparatus used in the Example is shown in FIG. 1, an embodiment is not limited to this. You may use the airtight container which put powdery raw material composition in the container and put water in the outer side. Moreover, the method of moving a powdery raw material composition continuously, making it contact with water vapor | steam may be sufficient.
[0015]
【The invention's effect】
According to the method of the present invention, since the volume of the raw material composition can be reduced by using the powdery raw material composition, the reaction efficiency per volume can be increased.
[0016]
Further, since the raw material components are not dissolved in water and most of them are transferred to crystals, the reaction yield can be increased and the crystallization time can be greatly shortened. Therefore, if a method of continuously moving the powdery raw material composition in contact with water vapor is employed, continuous synthesis of zeolite β is possible. In addition, since almost no waste liquid is generated, there is no need for recovery and waste liquid treatment, which is economical.
[0017]
【Example】
The present invention is specifically described by the following examples, but the present invention is not limited to these examples.
[0018]
Example 1
To 10 g of colloidal silica (SiO 2 , 30 wt%), 0.9 ml of a 4 molar aqueous sodium hydroxide solution and 13.6 g of an aqueous tetraethylammonium hydroxide solution (concentration 20%) were added with stirring. Thereafter, an aqueous solution in which 0.57 g of aluminum sulfate was dissolved in 10 ml of water was added to the mixed slurry. The aqueous raw material mixture was stirred for 1 hour and then stirred and dried until the water content reached an equilibrium amount while maintaining the temperature at 80 ° C. to obtain a raw material composition. The chemical composition of this raw material composition was as follows in anhydrous terms.
[0019]
1.09Na 2 O · Al 2 O 3 · 30.3SiO 2 · 5.6TEA 2 O
This raw material composition was pulverized to obtain a powdery raw material composition. This was placed on a support plate in an airtight container shown in FIG. 1, water was added to the bottom of the container and heated at 180 ° C. for 120 hours. The product was simply washed with water and dried at 80 ° C. As a result of X-ray diffraction measurement of the product, it was zeolite β as shown in FIG. Its chemical composition 0.02Na 2 O · Al 2 O 3 · 33.7SiO 2 · 1.05TEA 2 O · 9.5H 2 O
Met.
[0020]
Example 2
The aqueous raw material mixture was prepared using the same raw material as in the Example 1, this stirring dried at a temperature of 80 ° C., and pulverized, 1.52Na 2 O · Al 2 O 3 · 30.3SiO 2 · 5 in anhydrous basis .6 TEA 2 O
A powdery raw material composition having the following composition was obtained.
[0021]
This was heated at 180 ° C. for 3 hours in the same manner as in Example 1. The product was simply washed with water and dried at 80 ° C. Its X-ray diffraction pattern was essentially the same as FIG.
[0022]
The composition of the organic substance and the component not containing water is 0.11 Na 2 O.Al 2 O 3 .30.2 SiO 2
Met.
[0023]
Example 3
An aqueous raw material mixture was prepared using the same raw materials as in Example 1, and this was stirred, dried and pulverized at a temperature of 80 ° C., and was converted into 2.18Na 2 O · Al 2 O 3 · 60.6SiO 2 · 11 in anhydrous terms. .2TEA 2 O
A powdery raw material composition having the following composition was obtained.
[0024]
This was heated at 180 ° C. for 120 hours in the same manner as in Example 1. The product was simply washed with water and dried at 80 ° C. Its X-ray diffraction pattern was essentially the same as FIG.
The composition of the organic substance and the component not containing moisture is 0.23 Na 2 O.Al 2 O 3 .66.7 SiO 2
Met.
[0025]
Example 4
An aqueous raw material mixture was prepared in the same manner as in Example 1 except that sodium hydroxide and potassium hydroxide were used as the alkali source, and this was stirred and dried at a temperature of 80 ° C., pulverized, and 3.64 Na 2 in anhydrous conversion. O ・ 1.82K 2 O ・ Al 2 O 3・ 60.6SiO 2・ 11.2TEA 2 O
A powdery raw material composition having the following composition was obtained.
[0026]
This was heated in the same manner as in Example 1 at 180 ° C. for 65 hours. The product was simply washed with water and dried at 80 ° C. Its X-ray diffraction pattern was essentially the same as FIG.
The composition of the organic and moisture-free components is 0.49Na 2 O.0.18K 2 O.Al 2 O 3 .62.3SiO 2
Met.
[0027]
Example 5
An aqueous raw material mixture was prepared using the same raw materials as in Example 1, and this was stirred and dried at a temperature of 80 ° C., pulverized, and converted into anhydrous 5.00 Na 2 O.Al 2 O 3 .100SiO 2 .18.5 TEA. 2 O
A powdery raw material composition having the following composition was obtained.
[0028]
This was heated at 180 ° C. for 4 hours in the same manner as in Example 1. The product was simply washed with water and dried at 80 ° C. Its X-ray diffraction pattern was essentially the same as FIG.
[0029]
The product had a SiO 2 / Al 2 O 3 ratio of 78.3.
[0030]
Example 6
The aqueous raw material mixture was prepared using the same raw material as in the Example 1, this stirring dried at a temperature of 80 ° C., and pulverized, 21.8Na 2 O · Al 2 O 3 · 606SiO 2 · 112TEA 2 O in anhydrous basis
A powdery raw material composition having the following composition was obtained.
[0031]
This was heated at 180 ° C. for 72 hours in the same manner as in Example 1. The product was simply washed with water and dried at 80 ° C. Its X-ray diffraction pattern was essentially the same as FIG.
[0032]
The product had a SiO 2 / Al 2 O 3 ratio of 343.
[0033]
Example 7
The aqueous raw material mixture was prepared using the same raw material as in the Example 1, this stirring dried at a temperature of 80 ° C., and pulverized, 45.5Na 2 O · Al 2 O 3 · 909SiO 2 · 168TEA 2 O in anhydrous basis
A powdery raw material composition having the following composition was obtained.
[0034]
This was heated at 180 ° C. for 12 hours in the same manner as in Example 1. The product was simply washed with water and dried at 80 ° C. Its X-ray diffraction pattern was essentially the same as FIG.
[0035]
The product had a SiO 2 / Al 2 O 3 ratio of 463.
[0036]
Comparative Example 1
The aqueous slurry prepared at the same raw material mixing ratio as prepared in Example 1 was filtered to obtain an infiltrated raw material composition. The moisture content was 115% on a dry basis. This was heated at 180 ° C. for 120 hours in the same manner as in Example 1. Most of the raw material mixture on the support fell, and the remaining white powder was almost amorphous.
[Brief description of the drawings]
FIG. 1 shows an apparatus used for contacting a powdery raw material composition and water vapor in an example.
[Explanation of symbols]
(A): Airtight container (b): Thermocouple (c): Teflon container (d): Support plate (e): Powdery raw material composition (f): Water [FIG. 2] CuKαX of the product of Example 1 A line diffraction diagram is shown.

Claims (2)

化学組成が酸化物のモル比で表して
SiO /Al =10〜1000
O/SiO =0.0〜0.4
TEA O/SiO =0.1〜1.0
(ここでMはアルカリ金属,TEAはテトラエチルアンモニウムを表す)である50℃以上の温度で乾燥した粉末状原料組成物を80〜200℃で自生する水蒸気とのみ接触させることを特徴とするゼオライトβの合成方法。
The chemical composition is expressed as the molar ratio of oxide.
SiO 2 / Al 2 O 3 = 10 to 1000
M 2 O / SiO 2 = 0.0~0.4
TEA 2 O / SiO 2 = 0.1 to 1.0
Zeolite β characterized in that the powdery raw material composition dried at a temperature of 50 ° C. or higher, where M is an alkali metal and TEA is tetraethylammonium, is brought into contact only with water vapor that is spontaneously generated at 80 to 200 ° C. Synthesis method.
水性原料組成物を攪拌下で50℃以上の温度で乾燥して粉末状原料組成物を調製することを特徴とする特許請求の範囲第項記載のゼオライトβの合成方法。The method for synthesizing zeolite β according to claim 1, wherein the aqueous raw material composition is dried at a temperature of 50 ° C or higher under stirring to prepare a powdery raw material composition.
JP27212896A 1995-10-27 1996-10-15 Method for synthesizing zeolite β Expired - Fee Related JP3767041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27212896A JP3767041B2 (en) 1995-10-27 1996-10-15 Method for synthesizing zeolite β

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28066895 1995-10-27
JP7-280668 1995-10-27
JP27212896A JP3767041B2 (en) 1995-10-27 1996-10-15 Method for synthesizing zeolite β

Publications (2)

Publication Number Publication Date
JPH09175818A JPH09175818A (en) 1997-07-08
JP3767041B2 true JP3767041B2 (en) 2006-04-19

Family

ID=26550050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27212896A Expired - Fee Related JP3767041B2 (en) 1995-10-27 1996-10-15 Method for synthesizing zeolite β

Country Status (1)

Country Link
JP (1) JP3767041B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69826768T2 (en) 1997-07-02 2006-03-09 Tosoh Corp., Shinnanyo Adsorbent for hydrocarbon and catalyst for exhaust gas purification
US6294150B2 (en) 1997-11-07 2001-09-25 Ngk Insulators, Ltd. Highly heat resistant β-zeolite and absorbent for automobile exhaust gas purification and adsorbent for automobile exhaust gas purification
DE60036508T2 (en) 1999-06-18 2008-06-26 Nippon Shokubai Co., Ltd. Non-binder zeolite molding, process for its preparation and its use
JP4812149B2 (en) * 1999-11-11 2011-11-09 株式会社日本触媒 Beta-type binderless zeolite molding and method for producing the same
JP5082361B2 (en) 2006-09-27 2012-11-28 東ソー株式会社 Β-type zeolite for SCR catalyst and method for purifying nitrogen oxides using the same
JP5142123B2 (en) * 2007-03-28 2013-02-13 義弘 杉 Method for synthesizing beta (β) -zeolite
FR2916435B1 (en) * 2007-05-25 2010-01-08 Inst Francais Du Petrole NEW PROCESS FOR THE PREPARATION OF ZOLITHE EU-1
FR2920423B1 (en) * 2007-09-04 2009-11-13 Inst Francais Du Petrole PREPARATION OF A POROUS COMPOSITE MATERIAL BASED ON ZEOLITHE EU-1 AND ITS IMPLEMENTATION IN ISOMERIZATION OF AROMATIC C8.
JP6423729B2 (en) 2015-02-09 2018-11-14 三井金属鉱業株式会社 Method for producing beta-type zeolite
JP6814433B2 (en) 2016-06-17 2021-01-20 三井金属鉱業株式会社 Method for producing beta-type zeolite

Also Published As

Publication number Publication date
JPH09175818A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
JP3090455B2 (en) Zeolite and method for producing the same
US3114603A (en) Process for synthetic zeolite a
JP2523433B2 (en) Method for producing P-type zeolite
JP3299763B2 (en) Method for producing modified sodium disilicate
JP3767041B2 (en) Method for synthesizing zeolite β
EP0196078B1 (en) Synthesis of improved zeolites
JPH0327488B2 (en)
US3594121A (en) Dry gel process for preparing zeolite y
JPH0566323B2 (en)
JP2704421B2 (en) Method for producing chain-like horizontal clay mineral
JPH0512285B2 (en)
JP3322308B2 (en) Synthetic method of zeolite
JP4123546B2 (en) Zeolite OU-1 and synthesis method thereof
JPS6121911A (en) Preparation of faujasite type zeolite
US3920798A (en) Zeolite y synthesis
JP2618021B2 (en) Method for synthesizing true spherical pentasil type zeolite powder
JPH0676207B2 (en) Zeolite production method
JP2000185912A (en) Crystalline titanosilicate zeolite and its production
JPS5913445B2 (en) Method for producing calcium borate
IE904222A1 (en) Process for preparing reactive silicon dioxide phase
JPH06100314A (en) Production of a type zeolite
JPH07291616A (en) Production of crystalline calcium silicate hydrate
CA1327562C (en) Process for preparing a high silica zeolite having the faujasite topology, ecr-32
JPH04254409A (en) Production of hydroxysodalite
US3523764A (en) Process for the manufacture of magnesium aluminosilicate for medical uses

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees