JPH09174208A - Method for continuously casting steel and immersion nozzle therefor - Google Patents

Method for continuously casting steel and immersion nozzle therefor

Info

Publication number
JPH09174208A
JPH09174208A JP34040995A JP34040995A JPH09174208A JP H09174208 A JPH09174208 A JP H09174208A JP 34040995 A JP34040995 A JP 34040995A JP 34040995 A JP34040995 A JP 34040995A JP H09174208 A JPH09174208 A JP H09174208A
Authority
JP
Japan
Prior art keywords
molten steel
mold
solidified shell
discharge port
downward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34040995A
Other languages
Japanese (ja)
Inventor
Akito Kiyose
明人 清瀬
Kensuke Okazawa
健介 岡澤
Yutaka Kishida
豊 岸田
Ikuo Sawada
郁夫 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34040995A priority Critical patent/JPH09174208A/en
Publication of JPH09174208A publication Critical patent/JPH09174208A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method of a steel, capable of easily producing a cast slab reduced in blow hole and non-metallic inclusion on the surface layer part by forming the vertical component of molten steel flow in the range within a specified distance from interface between a solidified shell and the molten steel in a specified value or lower of the thickness of the solidified shell in a mold to downward stream. SOLUTION: A nozzle used in this method is formed to have an arc surface 3 of radius (γ) in the extending part of the wall 2 at the upper part of a spouting hole 1 so as to satisfy r>3h, where (h) is the height of the spouting hole 1. The molten steel spouted from the nozzle flows along the arc-state wall and flows slantingly upward. The molten steel flows along a meniscus, and after colliding to the mold, it flows along the mold downward. Therefore, the molten steel flows downward near the solidified shell in the inner part of the mold. Then, the vertical component of the molten steel flowing in the range within 20mm from the interface between the solidified shell and the molten steel in 0-10mm of the solidified shell thickness in the mold is made downward stream.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表層部に気泡や非
金属介在物が少ない鋳片を製造するための鋼の連続鋳造
方法および連続鋳造用の浸漬ノズルに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel continuous casting method and a dipping nozzle for continuous casting for producing a slab having a small amount of air bubbles and non-metallic inclusions in the surface layer portion.

【0002】[0002]

【従来の技術】自動車のボディ等に用いられる薄鋼板
は、その表面に疵がないものが求められている。一般
に、鋳片の表層部に存在する気泡や非金属介在物は圧延
時に表面に露出し表面疵となることが知られている。し
たがって、表面疵を低減するためには鋳片の表層部に存
在する気泡や非金属介在物を少なくする必要がある。特
に、鋳片の表面から10mm以内の範囲における100μ
m以上の気泡や非金属介在物を十分除去することが重要
である。連続鋳造においては、鋳片は鋳型およびその下
方にある二次冷却帯で冷却され、凝固シェルが発達して
いく。鋳造速度や鋳型での冷却条件等によっても異なる
が、通常の連続鋳造で用いられる長さ800〜1000
mmの鋳型を用いると、鋳片の表面から10mm以内の凝固
はほぼ鋳型内で完了する。したがって、凝固シェルに気
泡や非金属介在物が捕捉されないように、鋳型内での溶
鋼流動を制御することが重要である。
2. Description of the Related Art Thin steel sheets used for automobile bodies are required to have no flaws on their surfaces. It is generally known that air bubbles and non-metallic inclusions present in the surface layer of the cast slab are exposed on the surface during rolling and cause surface defects. Therefore, in order to reduce surface defects, it is necessary to reduce bubbles and non-metallic inclusions existing in the surface layer of the cast slab. Especially 100μ in the range within 10mm from the surface of the slab
It is important to sufficiently remove bubbles and non-metallic inclusions of m or more. In continuous casting, the slab is cooled in the mold and the secondary cooling zone below it, and the solidified shell develops. The length used in normal continuous casting is 800 to 1000, although it varies depending on the casting speed and cooling conditions in the mold.
With a mm mold, solidification within 10 mm from the surface of the slab is almost complete in the mold. Therefore, it is important to control the molten steel flow in the mold so that air bubbles and non-metallic inclusions are not captured by the solidified shell.

【0003】一般に、鋼の連続鋳造において、浸漬ノズ
ル4より鋳型5内に供給された溶鋼は、図2に示すよう
に、凝固シェルに衝突し、上下ふたつの流れに分かれ
る。このため、鋳型上部では、上向きの流れとなり、鋳
型下部では下向きの流れとなる。従来は鋳型下部での下
向き流れによって、気泡や介在物の浮上が阻害されてい
ると考えられ、上向きの溶鋼流動を付与し気泡や非金属
介在物の浮上を促進しようとしていた。例えば、図3に
示すように、電磁撹拌装置6を用いて溶鋼を鋳型内壁面
で上向きに流動させながら連続鋳造を行なう方法が、特
開昭61−140356号公報に開示されている。
Generally, in continuous casting of steel, the molten steel supplied from the immersion nozzle 4 into the mold 5 collides with the solidified shell as shown in FIG. 2, and is divided into two upper and lower streams. Therefore, the upper part of the mold has an upward flow, and the lower part of the mold has a downward flow. In the past, it was thought that the downward flow in the lower part of the mold hindered the levitation of bubbles and inclusions, and tried to impart upward molten steel flow to promote the levitation of bubbles and non-metallic inclusions. For example, as shown in FIG. 3, a method of performing continuous casting by using an electromagnetic stirrer 6 while flowing molten steel upward on the inner wall surface of the mold is disclosed in JP-A-61-140356.

【0004】一方、浸漬ノズルからの吐出流によって、
鋳型内の溶鋼流動を制御する方法もある。この場合に
は、浸漬ノズルからの吐出角度や吐出口の面積、浸漬ノ
ズルの浸漬深さ等を変更している。
On the other hand, by the discharge flow from the immersion nozzle,
There is also a method of controlling the molten steel flow in the mold. In this case, the discharge angle from the immersion nozzle, the area of the discharge port, the immersion depth of the immersion nozzle, etc. are changed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、後述す
るように、溶鋼流動を上向きにした場合には、かえって
気泡や非金属介在物が凝固シェル内面に付着しやすくな
るため、鋳片表層部の気泡や非金属介在物の数が多くな
る。さらに、鋳型内溶鋼のメニスカス位置の変動が大き
くなるためモールドパウダーの巻き込みが増加し、巻き
込まれたモールドパウダーがそのまま非金属介在物とし
て鋳片内に残存するという問題点もある。凝固シェル近
傍で下向きの溶鋼流を得るため、ノズルの吐出角度を上
向きにして、溶鋼をメニスカスに沿わせて鋳型に衝突
後、下降流にする方法があるが、吐出流によってメニス
カスが乱され、モールドパウダー起因の非金属介在物が
増加する。
However, as will be described later, when the flow of molten steel is directed upward, bubbles and non-metallic inclusions tend to adhere to the inner surface of the solidified shell, and therefore bubbles in the surface layer of the cast slab. And the number of non-metallic inclusions increases. Further, there is a problem that the variation of the meniscus position of the molten steel in the mold is increased and the entrainment of the mold powder is increased, and the entrained mold powder remains as a non-metallic inclusion in the slab. In order to obtain a downward molten steel flow in the vicinity of the solidification shell, there is a method in which the discharge angle of the nozzle is upward, the molten steel collides with the mold along the meniscus, and then descends, but the meniscus is disturbed by the discharge flow. Non-metallic inclusions due to mold powder increase.

【0006】本発明は上記の従来技術の課題を解決する
ためになされたもので、表層部の気泡や非金属介在物が
少ない良質の鋳片を製造することを可能にする鋼の連続
鋳造方法とこの方法に用いるに適した連続鋳造用浸漬ノ
ズルを提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and is a continuous casting method for steel that enables production of a good quality slab with few bubbles and non-metallic inclusions in the surface layer. And an immersion nozzle for continuous casting suitable for use in this method.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために考案されたもので、その要旨は、(1)鋳型
内の凝固シェルの厚みが0mm以上10mm以下の範囲で、
凝固シェルと溶鋼との界面から20mm以内の範囲におけ
る溶鋼流の鉛直成分を下向きとすることを特徴とする鋼
の連続鋳造方法、(2)凝固シェルと溶鋼との界面から
20mmの位置における溶鋼流速の鉛直下向き成分が5cm
/s以上50cm/s以下であることを特徴とする(1)記載
の鋼の連続鋳造方法、(3)吐出口1の上部の壁2の延
長に半径rの円弧面3を有し、吐出口1の高さをhとし
たとき、r>3hである吐出口部をもつ浸漬ノズルを用
いることを特徴とする(1)および(2)記載の鋼の連
続鋳造方法、(4)吐出口1の上部の壁2の延長に半径
rの円弧面3を有し、吐出口1の高さをhとしたとき、
r>3hである吐出口部をもつことを特徴とする鋼の連
続鋳造用浸漬ノズル、である。
The present invention was devised to solve the above problems, and its gist is (1) when the thickness of the solidification shell in the mold is 0 mm or more and 10 mm or less,
A continuous casting method for steel, characterized in that the vertical component of the molten steel flow within 20 mm from the interface between the solidified shell and the molten steel is directed downward, (2) molten steel flow velocity at a position 20 mm from the interface between the solidified shell and the molten steel Vertical downward component of 5cm
/ s or more and 50 cm / s or less, (1) the continuous casting method for steel according to (1), which has an arc surface 3 of radius r in the extension of the upper wall 2 of the discharge port 1, A method for continuous casting of steel according to (1) and (2), characterized in that, when the height of the outlet 1 is h, an immersion nozzle having a discharge port portion where r> 3h is used, (4) discharge port 1 has an arc surface 3 with a radius r in the extension of the upper wall 2 and the height of the discharge port 1 is h,
An immersion nozzle for continuous casting of steel, characterized in that it has a discharge port with r> 3h.

【0008】[0008]

【発明の実施の形態】以下、本発明の内容と実施の形態
について説明する。鋳片表層部の気泡の数に及ぼす鋳型
内の溶鋼流速の影響を図4に示す。ここで、溶鋼流速は
凝固シェルと溶鋼との界面から20mmの位置での鉛直成
分であり、鋳片内の一次デンドライトアームの鋳片表面
に垂直な方向からの傾き角度より求めた。気泡の数は、
鋳片の表面から10mm以内の範囲における100μm以
上の気泡の単位面積当たりの数である。溶鋼流速の鉛直
成分を−5cm/s以下、すなわち溶鋼流速の鉛直成分が下
向きに5cm/s以上であれば、鋳片表層部の気泡の数が少
なくなり、圧延後も表面疵がほとんど発生しない。
DETAILED DESCRIPTION OF THE INVENTION The contents and embodiments of the present invention will be described below. FIG. 4 shows the effect of the molten steel flow velocity in the mold on the number of bubbles in the surface layer of the cast slab. Here, the molten steel flow velocity is a vertical component at a position of 20 mm from the interface between the solidified shell and the molten steel, and was obtained from the inclination angle of the primary dendrite arm in the slab from the direction perpendicular to the surface of the slab. The number of bubbles is
It is the number of bubbles of 100 μm or more per unit area within a range of 10 mm from the surface of the slab. If the vertical component of the molten steel flow velocity is -5 cm / s or less, that is, if the vertical component of the molten steel flow velocity is 5 cm / s or more downward, the number of bubbles in the surface layer of the cast slab is small and surface defects are hardly generated even after rolling. .

【0009】鋳片表層部の非金属介在物の数に及ぼす鋳
型内の溶鋼流速の影響を図5に示す。ここで、溶鋼流速
は凝固シェルと溶鋼との界面から20mmの位置での鉛直
成分であり、鋳片内の一次デンドライトアームの鋳片表
面に垂直な方向からの傾き角度より求めた。非金属介在
物の数は、鋳片の表面から10mm以内の範囲における1
00μm以上の非金属介在物の単位面積当たりの数であ
る。溶鋼流速の鉛直成分を−5cm/s以下、すなわち溶鋼
流速の鉛直成分が下向きに5cm/s以上であれば、鋳片表
層部の非金属介在物の数が少なくなる。しかし、下向き
の溶鋼流速が50cm/s超になると、非金属介在物の個数
が増加する。これは、下向きの流れによって、鋳型内溶
鋼のメニスカス部にあるモールドフラックスが溶鋼中に
巻き込まれるために生じる非金属介在物が増加するため
である。溶鋼中に巻き込まれる非金属介在物は下向き流
速が大きくなるほど多くなる。
FIG. 5 shows the effect of the flow rate of molten steel in the mold on the number of non-metallic inclusions in the surface layer of the cast slab. Here, the molten steel flow velocity is a vertical component at a position of 20 mm from the interface between the solidified shell and the molten steel, and was obtained from the inclination angle of the primary dendrite arm in the slab from the direction perpendicular to the surface of the slab. The number of non-metallic inclusions is 1 within the range of 10 mm from the surface of the slab.
It is the number per unit area of non-metallic inclusions of 00 μm or more. When the vertical component of the molten steel flow velocity is -5 cm / s or less, that is, when the vertical component of the molten steel flow velocity is 5 cm / s or more downward, the number of non-metallic inclusions in the surface layer of the cast slab becomes small. However, when the downward molten steel flow velocity exceeds 50 cm / s, the number of nonmetallic inclusions increases. This is because the downward flow increases the amount of non-metallic inclusions generated when the mold flux in the meniscus portion of the molten steel in the mold is caught in the molten steel. The amount of non-metallic inclusions entrained in the molten steel increases as the downward flow velocity increases.

【0010】したがって、鋳片の表層部、特に、鋳片の
表面から10mm以内の気泡と非金属介在物の個数を低減
するためには、凝固シェルと溶鋼との界面から20mmの
位置での鉛直成分を下向きに5cm/s以上50cm/s以下に
限定する。
Therefore, in order to reduce the number of air bubbles and non-metallic inclusions within 10 mm from the surface of the cast slab, especially the surface of the cast slab, the vertical position at a position 20 mm from the interface between the solidified shell and the molten steel is required. Limit the components downward to 5 cm / s or more and 50 cm / s or less.

【0011】上記の溶鋼流を容易に得るための浸漬ノズ
ル形状について図に基づいて説明する。通常、浸漬ノズ
ルからの吐出流によって溶鋼流を制御する場合には、吐
出角度と吐出口の面積が主な制御因子であったが、これ
ら2つの因子を変更しても、鋳型内溶鋼のメニスカス部
を乱さず、かつ、凝固シェル近傍で下降流を形成させる
ことは困難である。
The immersion nozzle shape for easily obtaining the above molten steel flow will be described with reference to the drawings. Normally, when the molten steel flow is controlled by the discharge flow from the immersion nozzle, the discharge angle and the area of the discharge port were the main control factors. However, even if these two factors are changed, the meniscus of the molten steel in the mold will change. It is difficult to form a downward flow near the solidified shell without disturbing the part.

【0012】本発明では、従来着目されていなかった吐
出口上部の壁を含む吐出口の形状に着目した。図1は、
本発明の浸漬ノズルの吐出口近傍の(a)正面図、
(b)側面図、(c)断面図である。吐出口1の上部の
壁2の延長に半径rの円弧面3を有し、吐出口1の高さ
をhとしたとき、r>3hを満たすような形状である。
ノズルから吐出された溶鋼は、図6に示すように、円弧
状の壁に沿って流れ、斜め上向きに流れる。溶鋼はメニ
スカスに沿って流れ、鋳型に衝突した後は鋳型に沿って
下方に流れる。したがって、鋳型内部の凝固シェル近傍
では下向きに溶鋼が流れる。このため、凝固シェルに気
泡や非金属介在物が付着しにくく、鋳片の表層部の気泡
や非金属介在物が少なくなる。下向きの溶鋼流速を制御
するには、ノズルの吐出口の高さや幅を調節すればよ
い。これに対して、r<3hの場合は、溶鋼流が曲面か
ら剥離するため、斜め上向きに流れず、鋳型壁に衝突す
る。したがって、鋳型壁に衝突した溶鋼流の一部は下降
流となるが、特に鋳型上部では、大半が上昇流となる。
このため、鋳型上部、すなわち鋳片でみると表層部に気
泡や非金属介在物が多くなってしまう。
In the present invention, attention has been paid to the shape of the ejection port including the upper wall of the ejection port, which has not been noticed in the past. FIG.
(A) Front view of the vicinity of the discharge port of the immersion nozzle of the present invention,
It is a side view and (c) sectional view. The upper wall 2 of the discharge port 1 has an arc surface 3 having a radius r in the extension thereof, and has a shape that satisfies r> 3h when the height of the discharge port 1 is h.
The molten steel discharged from the nozzle flows along the arcuate wall as shown in FIG. 6, and flows obliquely upward. The molten steel flows along the meniscus and, after colliding with the mold, flows downward along the mold. Therefore, the molten steel flows downward near the solidified shell inside the mold. Therefore, air bubbles and non-metallic inclusions are less likely to adhere to the solidified shell, and air bubbles and non-metal inclusions on the surface layer portion of the cast slab are reduced. In order to control the downward molten steel flow velocity, the height and width of the nozzle outlet may be adjusted. On the other hand, in the case of r <3h, the molten steel flow separates from the curved surface and thus does not flow obliquely upward and collides with the mold wall. Therefore, a part of the molten steel flow colliding with the mold wall becomes a downward flow, but most of the molten steel flow becomes an upward flow especially in the upper part of the mold.
Therefore, when viewed in the upper part of the mold, that is, in the slab, there are many bubbles and non-metallic inclusions in the surface layer part.

【0013】なお、吐出口1の円弧面3の半径rの上限
については、これが大きすぎるとノズルの材料費が高く
なりコスト高となることから、rは大体150mm以下と
することが望ましい。また、本発明の浸漬ノズルは鋼の
連続鋳造用の浸漬ノズルの製造に通常用いられる方法、
すなわちラバープレス法によって製造することができ
る。
Regarding the upper limit of the radius r of the arc surface 3 of the discharge port 1, if the radius r is too large, the material cost of the nozzle becomes high and the cost becomes high. Therefore, it is desirable that r is approximately 150 mm or less. Further, the immersion nozzle of the present invention is a method usually used for manufacturing an immersion nozzle for continuous casting of steel,
That is, it can be manufactured by the rubber pressing method.

【0014】[0014]

【実施例】【Example】

(実施例1)重量%で、C:0.001〜0.006、
Si:0.005〜0.02、Mn:0.05〜0.
2、P:0.01〜0.02、S:0.002〜0.0
2、Al:0.02〜0.1、Ti:0.001〜0.
05、残部Feおよび不可避的不純物元素よりなる鋼を
連続鋳造した。鋳片の幅は1500mm、厚みは240mm
であり、鋳造速度は1.5m/min である。このとき、浸
漬ノズルには図1に示すような、吐出口1の上部の壁2
の延長に半径100mmの円弧面3を有し、吐出口1の高
さが30mmである吐出口部を有するものを用いた。比較
例1はリニアモーター型の電磁攪拌装置を用いて、鋳型
内の鋳型壁近傍の溶鋼流が上向きとなるようにした場合
である。
(Example 1) C: 0.001-0.006 by weight%,
Si: 0.005-0.02, Mn: 0.05-0.
2, P: 0.01 to 0.02, S: 0.002 to 0.0
2, Al: 0.02 to 0.1, Ti: 0.001 to 0.
05, the balance Fe and the steel consisting of unavoidable impurity elements were continuously cast. The width of the slab is 1500 mm and the thickness is 240 mm
And the casting speed is 1.5 m / min. At this time, the immersion nozzle has a wall 2 on the upper portion of the discharge port 1 as shown in FIG.
2 has an arc surface 3 with a radius of 100 mm and a discharge port 1 having a height of 30 mm. Comparative Example 1 is a case where a linear motor type electromagnetic stirrer is used so that the molten steel flow in the vicinity of the mold wall in the mold is directed upward.

【0015】本発明の方法では、凝固シェル厚が10mm
までの範囲では、凝固シェルから20mmの位置での溶鋼
流速は鉛直下向きに5〜50cm/sであった。一方、比較
例1の方法では、凝固シェル厚が10mmまでの範囲で
は、凝固シェルから20mmの位置での溶鋼流速は鉛直上
向きに5〜50cm/sであった。
In the method of the present invention, the solidified shell thickness is 10 mm.
In the range up to, the molten steel flow velocity at a position of 20 mm from the solidified shell was 5 to 50 cm / s vertically downward. On the other hand, in the method of Comparative Example 1, the molten steel flow velocity at a position of 20 mm from the solidified shell was 5 to 50 cm / s vertically upward in the range of the solidified shell thickness up to 10 mm.

【0016】鋳片の表面から10mm以内に存在する10
0μm以上の気泡と非金属介在物の個数を調査した結
果、表1に示すように本発明の方法では、比較例1に比
べて気泡の個数、非金属介在物の個数ともに1/10以
下に減少した。
10 existing within 10 mm from the surface of the slab
As a result of investigating the number of bubbles and non-metallic inclusions of 0 μm or more, as shown in Table 1, in the method of the present invention, both the number of bubbles and the number of non-metallic inclusions are 1/10 or less as compared with Comparative Example 1. Diminished.

【表1】 [Table 1]

【0017】(実施例2)重量%で、C:0.001〜
0.006、Si:0.005〜0.02、Mn:0.
05〜0.2、P:0.01〜0.02、S:0.00
2〜0.02、Al:0.02〜0.1、Ti:0.0
01〜0.05、残部Feおよび不可避的不純物元素よ
りなる鋼を連続鋳造した。鋳片の幅は1500mm、厚み
は240mmであり、鋳造速度は1.5m/min である。こ
のとき、浸漬ノズルには図1に示すような、吐出口1の
上部の壁2の延長に半径100mmの円弧面3を有し、吐
出口1の高さが30mmである吐出口部を有するものを用
いた。比較例2は吐出口1の上部の壁2の延長に半径8
0mmの円弧面3を有し、吐出口1の高さが30mmである
吐出口部を有するものを用いた場合である。すなわちr
<3hの場合である。
(Example 2) C: 0.001% by weight
0.006, Si: 0.005 to 0.02, Mn: 0.
05-0.2, P: 0.01-0.02, S: 0.00
2 to 0.02, Al: 0.02 to 0.1, Ti: 0.0
Steel consisting of 01 to 0.05 and the balance Fe and unavoidable impurity elements was continuously cast. The width of the slab is 1500 mm, the thickness is 240 mm, and the casting speed is 1.5 m / min. At this time, as shown in FIG. 1, the immersion nozzle has an arc surface 3 having a radius of 100 mm in an extension of the upper wall 2 of the discharge port 1 and a discharge port portion having a height of the discharge port 1 of 30 mm. I used one. In the comparative example 2, the radius of the extension of the upper wall 2 of the discharge port 1 is 8
This is the case of using the one having the arc surface 3 of 0 mm and the ejection port portion in which the height of the ejection port 1 is 30 mm. That is, r
This is the case of <3 h.

【0018】本発明の方法では、凝固シェル厚が10mm
までの範囲では、凝固シェルから20mmの位置での溶鋼
流速は鉛直下向きに5〜50cm/sであった。一方、比較
例2の方法では、凝固シェル厚が10mmまでの範囲で
は、凝固シェルから20mmの位置での溶鋼流速は鉛直上
向き50cm/sから鉛直下向きに10cm/sであった。
In the method of the present invention, the solidified shell thickness is 10 mm.
In the range up to, the molten steel flow velocity at a position of 20 mm from the solidified shell was 5 to 50 cm / s vertically downward. On the other hand, in the method of Comparative Example 2, the molten steel flow velocity at the position of 20 mm from the solidified shell was from 50 cm / s vertically upward to 10 cm / s vertically downward in the range where the thickness of the solidified shell was up to 10 mm.

【0019】鋳片の表面から10mm以内に存在する10
0μm以上の気泡と非金属介在物の個数を調査した結
果、表2に示すように本発明の方法では、比較例2に比
べて気泡の個数、非金属介在物の個数ともに1/5以下
に減少した。
10 existing within 10 mm from the surface of the slab
As a result of investigating the number of bubbles and non-metallic inclusions of 0 μm or more, as shown in Table 2, in the method of the present invention, both the number of bubbles and the number of non-metallic inclusions are 1/5 or less as compared with Comparative Example 2. Diminished.

【表2】 [Table 2]

【0020】(実施例3)重量%で、C:0.001〜
0.006、Si:0.005〜0.02、Mn:0.
05〜0.2、P:0.01〜0.02、S:0.00
2〜0.02、Al:0.02〜0.1、Ti:0.0
01〜0.05、残部Feおよび不可避的不純物元素よ
りなる鋼を連続鋳造した。鋳片の幅は1500mm、厚み
は240mmであり、鋳造速度は1.5m/min である。こ
のとき、浸漬ノズルには図1に示すような、吐出口1の
上部の壁2の延長に半径100mmの円弧面3を有し、吐
出口1の高さが30mmである吐出口部を有するものを用
いた。比較例3は吐出口1の上部の壁2の延長に半径8
0mmの円弧面3を有し、吐出口1の高さが20mmである
吐出口部を有するものを用いた場合である。この場合吐
出流速が大きくなる。
(Example 3) C: 0.001-wt%
0.006, Si: 0.005 to 0.02, Mn: 0.
05-0.2, P: 0.01-0.02, S: 0.00
2 to 0.02, Al: 0.02 to 0.1, Ti: 0.0
Steel consisting of 01 to 0.05 and the balance Fe and unavoidable impurity elements was continuously cast. The width of the slab is 1500 mm, the thickness is 240 mm, and the casting speed is 1.5 m / min. At this time, as shown in FIG. 1, the immersion nozzle has an arc surface 3 having a radius of 100 mm in an extension of the upper wall 2 of the discharge port 1 and a discharge port portion having a height of the discharge port 1 of 30 mm. I used one. In Comparative Example 3, the radius of the extension of the upper wall 2 of the discharge port 1 is 8
This is the case where the one having the arc surface 3 of 0 mm and the ejection port portion in which the height of the ejection port 1 is 20 mm is used. In this case, the discharge flow velocity becomes high.

【0021】比較例3は、リニアモーター型の電磁攪拌
装置を用いて、鋳型壁近傍の溶鋼流が下向きになるよう
にした場合である。この時、凝固シェル厚が10mmまで
の範囲では、凝固シェルから20mmの位置での溶鋼流速
は鉛直下向きに50〜70cm/sとした。一方、本発明の
方法では、凝固シェル厚が10mmまでの範囲では、凝固
シェルから20mmの位置での溶鋼流速は鉛直下向きに5
〜50cm/sであった。
Comparative Example 3 is a case where a molten steel flow in the vicinity of the mold wall is directed downward by using a linear motor type electromagnetic stirrer. At this time, in the range where the thickness of the solidified shell was up to 10 mm, the molten steel flow velocity at a position of 20 mm from the solidified shell was set to 50 to 70 cm / s vertically downward. On the other hand, in the method of the present invention, in the range where the thickness of the solidified shell is up to 10 mm, the molten steel flow velocity at the position of 20 mm from the solidified shell is 5 downward in the vertical direction.
It was ~ 50 cm / s.

【0022】鋳片の表面から10mm以内に存在する10
0μm以上の気泡と非金属介在物の個数を調査した結
果、表3に示すように本発明の方法では、比較例3に比
べて気泡の個数は同等であるが、非金属介在物の個数は
1/5以下に減少した。
10 within 10 mm from the surface of the slab
As a result of investigating the number of bubbles having a size of 0 μm or more and the non-metallic inclusions, as shown in Table 3, the number of bubbles was equal to that of the method of the present invention as compared with Comparative Example 3, but the number of non-metallic inclusions was It decreased to less than 1/5.

【表3】 [Table 3]

【0023】[0023]

【発明の効果】本発明の方法により、表層部に気泡や非
金属介在物が少ない鋳片を容易に製造することができ
る。このため、本発明の方法で製造される鋳片を熱間圧
延、冷間圧延して製造される薄鋼板の表面品質が向上す
るとともに、表面欠陥起因の不良品の発生が減少し、歩
留まりを向上させることができる。また、本発明の鋳造
用浸漬ノズルによれば、上記した方法を好適な状態で実
施することができ、実用上の効果が大きい。
According to the method of the present invention, it is possible to easily manufacture a slab having few bubbles and non-metallic inclusions in the surface layer portion. Therefore, hot rolling of the slab produced by the method of the present invention, the surface quality of the thin steel sheet produced by cold rolling is improved, the occurrence of defective products due to surface defects is reduced, yield Can be improved. Further, according to the casting dipping nozzle of the present invention, the above-described method can be carried out in a suitable state, and the practical effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のノズルを示す図である。FIG. 1 is a diagram showing a nozzle of the present invention.

【図2】通常の連続鋳造における鋳型内の溶鋼流動を示
す図である。
FIG. 2 is a diagram showing molten steel flow in a mold in normal continuous casting.

【図3】電磁攪拌装置を用いて鋳型壁近傍の溶鋼に下向
きの流れを付与した時の鋳型内の溶鋼流動を示す図であ
る。
FIG. 3 is a diagram showing molten steel flow in a mold when a downward flow is applied to the molten steel near the mold wall using an electromagnetic stirrer.

【図4】鋳型内の溶鋼流速と鋳片表層部の気泡個数との
関係を示す図である。
FIG. 4 is a diagram showing the relationship between the molten steel flow rate in the mold and the number of bubbles in the surface layer of the cast slab.

【図5】鋳型内の溶鋼流速と鋳片表層部の非金属介在物
の個数を示す図である。
FIG. 5 is a diagram showing the flow rate of molten steel in the mold and the number of non-metallic inclusions on the surface layer of the slab.

【図6】本発明の方法を適用した場合の鋳型内の溶鋼流
動を示す図である。
FIG. 6 is a diagram showing molten steel flow in a mold when the method of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 吐出口 2 吐出口上部の壁 3 曲面壁 4 浸漬ノズル 5 鋳型 6 電磁攪拌装置 1 Discharge Port 2 Wall of Upper Discharge Port 3 Curved Wall 4 Immersion Nozzle 5 Mold 6 Electromagnetic Stirrer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢田 郁夫 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ikuo Sawada 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Corporation Technology Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋳型内の凝固シェルの厚みが0mm以上1
0mm以下の範囲で、凝固シェルと溶鋼との界面から20
mm以内の範囲における溶鋼流の鉛直成分を下向きとする
ことを特徴とする鋼の連続鋳造方法。
1. The thickness of the solidified shell in the mold is 0 mm or more 1
20 mm or less from the interface between the solidified shell and molten steel within the range of 0 mm or less
A continuous casting method for steel, wherein the vertical component of the molten steel flow in the range of mm or less is directed downward.
【請求項2】 凝固シェルと溶鋼との界面から20mmの
位置における溶鋼流速の鉛直下向き成分が5cm/s以上5
0cm/s以下であることを特徴とする請求項1記載の鋼の
連続鋳造方法。
2. A vertically downward component of the molten steel flow velocity at a position 20 mm from the interface between the solidified shell and the molten steel is 5 cm / s or more.
The continuous casting method for steel according to claim 1, characterized in that it is 0 cm / s or less.
【請求項3】 吐出口(1)の上部の壁(2)の延長に
半径rの円弧面(3)を有し、吐出口(1)の高さをh
としたとき、r>3hである吐出口部をもつ浸漬ノズル
を用いることを特徴とする請求項1又は2記載の鋼の連
続鋳造方法。
3. An extension of the upper wall (2) of the discharge port (1) has an arc surface (3) of radius r, and the height of the discharge port (1) is h.
In this case, a continuous casting method for steel according to claim 1 or 2, characterized in that an immersion nozzle having a discharge port portion with r> 3h is used.
【請求項4】 吐出口(1)の上部の壁(2)の延長に
半径rの円弧面(3)を有し、吐出口(1)の高さをh
としたとき、r>3hである吐出口部をもつことを特徴
とする鋼の連続鋳造用浸漬ノズル。
4. An extension of the upper wall (2) of the discharge port (1) has an arc surface (3) of radius r, and the height of the discharge port (1) is h.
The immersion nozzle for continuous casting of steel, characterized in that it has a discharge port with r> 3h.
JP34040995A 1995-12-27 1995-12-27 Method for continuously casting steel and immersion nozzle therefor Withdrawn JPH09174208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34040995A JPH09174208A (en) 1995-12-27 1995-12-27 Method for continuously casting steel and immersion nozzle therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34040995A JPH09174208A (en) 1995-12-27 1995-12-27 Method for continuously casting steel and immersion nozzle therefor

Publications (1)

Publication Number Publication Date
JPH09174208A true JPH09174208A (en) 1997-07-08

Family

ID=18336675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34040995A Withdrawn JPH09174208A (en) 1995-12-27 1995-12-27 Method for continuously casting steel and immersion nozzle therefor

Country Status (1)

Country Link
JP (1) JPH09174208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126663A (en) * 2020-02-12 2021-09-02 明智セラミックス株式会社 Immersed nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126663A (en) * 2020-02-12 2021-09-02 明智セラミックス株式会社 Immersed nozzle

Similar Documents

Publication Publication Date Title
US4482003A (en) Method for continuous casting of steel
JPH09174208A (en) Method for continuously casting steel and immersion nozzle therefor
EP0523837A1 (en) Continuous casting method of steel slab
JPH09295109A (en) Method for continuously casting clean molten metal
US4298050A (en) Process for continuous casting of a slightly deoxidized steel slab
EP1251983B1 (en) Apparatus and method for the continuous or semi-continuous casting of aluminium
JPH09192802A (en) Method for continuously casting extra-low carbon steel slab
JP3375862B2 (en) Method for producing ultra-low carbon steel without blowholes
JP3277858B2 (en) Continuous casting method of beam blank
JPH10128506A (en) Immersion nozzle for continuous casting
JP2603402B2 (en) Continuous casting method of defect-free slab using straight immersion nozzle
JP7068628B2 (en) Casting method
JPS6264461A (en) Device for accelerating flotation of inclusion in molten steel
EP0022566B1 (en) Process and apparatus for electromagnetic forming of molten metals or alloys, coolant manifold for electromagnetic casting
US5040594A (en) Side feed tundish apparatus and method for the alloying and rapid solidification of molten materials
GB2103972A (en) Process for high-speed vertical continuous casting of aluminium and alloys thereof
JPH0763820B2 (en) Continuous casting method for slabs for thin steel sheets
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JP2003205349A (en) Method for continuously casting cast slab having little blow hole defect, and produced cast slab
JPH09206896A (en) Electromagnetic stirring device in die, and continuous casting method of steel
JP3538967B2 (en) Continuous casting method
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field
JP3153458B2 (en) Lower plate for slide gate
JPH11320054A (en) Continuous caster and continuous casting method
JP3658365B2 (en) Immersion nozzle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304