JPH09171941A - Manufacture of solid electrolytic chip capacitor - Google Patents

Manufacture of solid electrolytic chip capacitor

Info

Publication number
JPH09171941A
JPH09171941A JP33163095A JP33163095A JPH09171941A JP H09171941 A JPH09171941 A JP H09171941A JP 33163095 A JP33163095 A JP 33163095A JP 33163095 A JP33163095 A JP 33163095A JP H09171941 A JPH09171941 A JP H09171941A
Authority
JP
Japan
Prior art keywords
anode
layer
external
lead
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33163095A
Other languages
Japanese (ja)
Other versions
JP2850819B2 (en
Inventor
Yoshihiko Saiki
義彦 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP33163095A priority Critical patent/JP2850819B2/en
Publication of JPH09171941A publication Critical patent/JPH09171941A/en
Application granted granted Critical
Publication of JP2850819B2 publication Critical patent/JP2850819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inexpensive, thin solid electrolytic chip capacitor in which leak current deterioration is suppressed without resin sealing a capacitor element. SOLUTION: An insulating member 3 and an outer anode terminal 4 are formed simultaneously by insert molding on the anode lead 2 lead-out plane of an anode body 1 planted with the anode lead 2. A dielectric film layer 5, a solid electrolytic layer 6, and a cathode metal layer 7 comprising a graphite layer, a silver paste layer and a solder layer are then formed sequentially on the circumferential surface of the anode body 1. Subsequently, the outer anode terminal 4 are anode lead 2 are irradiated, at the contact point thereof, with a laser beam and welded and then the anode lead 2 projecting from the outer anode terminal 4 is cut off by means of a laser beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チップ型固体電解
コンデンサの製造方法に関し、特に外部陽,陰極端子の
形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a chip type solid electrolytic capacitor, and more particularly to a method for forming external positive and negative terminals.

【0002】[0002]

【従来の技術】従来のチップ型固体電解コンデンサは、
図6に示すように、誘電体皮膜層、固体電解質層、陰極
金属層を形成してなるコンデンサ素子11に外部陰極端
子13を銀ペーストからなる導電性接着剤15にて接続
するとともに、コンデンサ素子11より導出した陽極リ
ード12を外部陽極端子14に抵抗溶接によって接続し
た後、素子11と外部陽,陰極端子14,13の一部を
エポキシ系の外装樹脂材16にてモールド成型し、モー
ルド樹脂材16から導出する外部陽,陰極端子14,1
3を折り曲げ成型して製造していた。
2. Description of the Related Art Conventional chip-type solid electrolytic capacitors are:
As shown in FIG. 6, the external cathode terminal 13 is connected to the capacitor element 11 formed with the dielectric film layer, the solid electrolyte layer, and the cathode metal layer by the conductive adhesive 15 made of silver paste, and the capacitor element is formed. After connecting the anode lead 12 derived from 11 to the external anode terminal 14 by resistance welding, the element 11 and a part of the external positive and negative terminals 14 and 13 are molded with an epoxy-based exterior resin material 16 and molded resin. External positive and negative terminals 14, 1 derived from the material 16
3 was bent and molded.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記の従来
のチップ型固体電解コンデンサの製造方法では、コンデ
ンサ素子11をエポキシ系等の樹脂材16で外装するの
で、樹脂材16からの応力を受け、コンデンサの漏れ電
流が増大するという問題があった。また、樹脂厚の分だ
け製品が厚くなり、薄型化の妨げとなっていた。さら
に、外部陰極端子13を高価な銀ペーストからなる導電
性接着剤15で接続するため、コスト高になったり接続
の信頼性に問題があった。
By the way, in the above-mentioned conventional method for manufacturing a chip type solid electrolytic capacitor, since the capacitor element 11 is covered with the resin material 16 such as epoxy resin, the stress from the resin material 16 causes There is a problem that the leakage current of the capacitor increases. In addition, the product becomes thicker by the resin thickness, which hinders the reduction in thickness. Furthermore, since the external cathode terminal 13 is connected by the conductive adhesive 15 made of expensive silver paste, there is a problem in that the cost becomes high and the connection reliability is high.

【0004】本発明のチップ型固体電解コンデンサの製
造方法は、弁作用金属からなる陽極体に植立した弁作用
金属からなる陽極リードを金属帯板に電気的、機械的に
接続する工程と、陽極リード導出面に絶縁部材と外部陽
極端子を形成する工程と、陽極体に周面に誘電体皮膜
層、固体電解質層、外部陰極端子を構成する陰極金属層
を順次形成する工程と、陽極リードと外部陽極端子をレ
ーザ溶接あるいは抵抗溶接により電気的、機械的に接続
した後、陽極リードを切断する工程を含むとともに、前
記絶縁部材と外部陽極端子をインサート成型により同時
に形成することを特徴とする。
A method of manufacturing a chip-type solid electrolytic capacitor of the present invention comprises a step of electrically and mechanically connecting an anode lead made of a valve metal, which is erected on an anode body made of a valve metal, to a metal strip. A step of forming an insulating member and an external anode terminal on the lead-out surface of the anode lead, a step of sequentially forming a dielectric coating layer, a solid electrolyte layer, and a cathode metal layer forming an external cathode terminal on the peripheral surface of the anode body, and an anode lead And an external anode terminal are electrically and mechanically connected by laser welding or resistance welding, and then the anode lead is cut, and the insulating member and the external anode terminal are simultaneously formed by insert molding. .

【0005】本発明の製造方法によれば、陽極体の周面
に形成された陰極金属層が外部陰極端子を構成するの
で、新たに外部陰極端子の取付けが不要になるため、銀
ペースト等の高価な導電性接着剤が不要になるととも
に、接着不良などの問題がなくなるので、接続の信頼性
が向上する。また、外部陰極端子と外部陽極端子を絶縁
する絶縁部材と外部陽極端子がインサート成型により同
時に形成されるため、端子の折り曲げ工程等がなくなり
経済的である。さらに、コンデンサ素子を樹脂外装しな
くてすむので、薄型化が可能になるとともに、樹脂の応
力で素子の誘電体皮膜が損傷し、漏れ電流が増大すると
いう問題もなくなる。
According to the manufacturing method of the present invention, since the cathode metal layer formed on the peripheral surface of the anode body constitutes the external cathode terminal, it becomes unnecessary to newly attach the external cathode terminal. Since an expensive conductive adhesive becomes unnecessary and problems such as poor adhesion are eliminated, the reliability of connection is improved. Further, since the insulating member for insulating the external cathode terminal and the external anode terminal and the external anode terminal are simultaneously formed by insert molding, the step of bending the terminal is eliminated and it is economical. Furthermore, since the capacitor element does not need to be covered with resin, it can be made thin, and the problem that the dielectric film of the element is damaged by the stress of the resin and the leakage current increases is eliminated.

【0006】以下、本発明について、チップ型タンタル
固体電解コンデンサを例にして説明する。図1は、本発
明の製造方法によって得られたチップ型タンタル固体電
解コンデンサの縦断面図である。図において、1はタン
タル金属粒子の焼結体からなる陽極体、2はタンタル金
属線からなる陽極リード、3は耐熱性ポリイミド樹脂か
らなる絶縁部材、4は半田メッキを施した外部陽極端
子、5は五酸化タンタル皮膜からなる誘電体皮膜生層、
6はポリピロールからなる固体電解質層、7はグラファ
イト層,銀ペースト層,半田層からなり外部陰極端子を
構成する陰極金属層である。
The present invention will be described below by taking a chip type tantalum solid electrolytic capacitor as an example. FIG. 1 is a vertical cross-sectional view of a chip type tantalum solid electrolytic capacitor obtained by the manufacturing method of the present invention. In the figure, 1 is an anode body made of a sintered body of tantalum metal particles, 2 is an anode lead made of a tantalum metal wire, 3 is an insulating member made of a heat-resistant polyimide resin, 4 is an external anode terminal plated with solder, 5 Is a dielectric film raw layer consisting of a tantalum pentoxide film,
Reference numeral 6 is a solid electrolyte layer made of polypyrrole, and reference numeral 7 is a cathode metal layer which is composed of a graphite layer, a silver paste layer and a solder layer and constitutes an external cathode terminal.

【0007】以下、上記チップ型タンタル固体電解コン
デンサの製造方法について説明する。粒径がミクロンオ
ーダーのタンタル微粉末をプレス成型した陽極体1に、
タンタル金属線からなる陽極リード2を植立させる。次
に、1500℃以上の温度に設定した真空炉内にて焼結
させた後、図2に示すように金属帯板8に陽極体1を陽
極リード2を介して複数個固着する。次に、金属帯板8
に陽極体1を固着した状態で、インサート成型により陽
極体1の陽極リード2の導出面とその周辺部に、耐熱性
ポリイミドかなる絶縁部材3と表面に半田メッキを施し
た図3に示す断面コの字形の外部陽極端子4を同時形成
する。この際、絶縁部材3の厚みは、陽極対1の厚みと
ほぼ同一にし、陽極対1と絶縁部材3がほぼ同一面上に
なることが望ましい。
A method of manufacturing the above chip type tantalum solid electrolytic capacitor will be described below. Anode body 1 obtained by press-molding tantalum fine powder having a particle size of the order of microns,
The anode lead 2 made of a tantalum metal wire is set up. Next, after sintering in a vacuum furnace set to a temperature of 1500 ° C. or higher, a plurality of anode bodies 1 are fixed to the metal strip plate 8 via anode leads 2 as shown in FIG. Next, the metal strip 8
A cross section shown in FIG. 3 in which the anode body 1 is fixedly attached to the anode body, the insulating member 3 made of heat-resistant polyimide is soldered to the lead-out surface of the anode lead 2 of the anode body 1 and its peripheral portion by insert molding, and the surface thereof. The U-shaped external anode terminal 4 is simultaneously formed. At this time, it is desirable that the thickness of the insulating member 3 be substantially the same as the thickness of the anode pair 1 so that the anode pair 1 and the insulating member 3 are substantially on the same plane.

【0008】次に、金属帯板8に固着した陽極体1を
0.1vol%の燐酸水溶液中に浸漬し、1分間に1V
の昇圧速度にて陽極酸化を行い、厚さ約1,000オン
グストロームの五酸化タンタル皮膜からなる誘電体被膜
層5を形成する。次に、塩化第2鉄の20vol%メタ
ノール溶液に、陽極体1を浸漬し、陽極体1内部に含浸
させた後、温度50℃のオーブンにてメタノールを蒸発
させる。次に、10%のピロールモノマー溶液流に浸漬
し、固体電解質層6となるポリピロール層6を形成す
る。塩化第2鉄とピロールモノマーの浸漬は陽極体1の
内部に約0.1〜0.5ミクロン、陽極体1の外部に5
〜20ミクロンのポリピロール層6が形成されるまで1
0〜20回繰り返し行われる。次に、ポリピロール層6
上にグラファイト層、銀ペースト層を周知の方法で形成
した後、温度220℃の共晶半田浴に陽極体1をディッ
ピングして銀ペースト層上に、半田層を形成する。この
ようにして、グラファイト層、銀ペースト層、半田層の
3層からなり外部陰極端子を構成する陰極金属層7を形
成する。
Next, the anode body 1 adhered to the metal strip plate 8 is immersed in a 0.1 vol% phosphoric acid aqueous solution, and 1 V is applied for 1 minute.
Anodization is performed at a pressure increasing rate of 1 to form a dielectric coating layer 5 made of a tantalum pentoxide coating having a thickness of about 1,000 angstroms. Next, the anode body 1 is immersed in a 20 vol% methanol solution of ferric chloride to impregnate the inside of the anode body 1, and then methanol is evaporated in an oven at a temperature of 50 ° C. Next, the polypyrrole layer 6 which becomes the solid electrolyte layer 6 is formed by immersing in a 10% pyrrole monomer solution flow. Immersion of ferric chloride and pyrrole monomer is about 0.1-0.5 micron inside the anode body 1 and 5 outside the anode body 1.
Until a ~ 20 micron polypyrrole layer 6 is formed 1
It is repeated 0 to 20 times. Next, the polypyrrole layer 6
After forming a graphite layer and a silver paste layer on the above by a known method, the anode body 1 is dipped in a eutectic solder bath at a temperature of 220 ° C. to form a solder layer on the silver paste layer. In this way, the cathode metal layer 7 which is composed of the graphite layer, the silver paste layer and the solder layer and constitutes the external cathode terminal is formed.

【0009】次に図2に示す外部陽極端子4のスリット
部4aと陽極リード2が交差する部位に、レーザ光線を
照射して、外部陽極端子4と陽極リード2を溶接すると
ともに、もう1本のレーザ光線を、外部陽極端子4のス
リット部4aと陽極リード2との交差部より約5〜10
ミクロン離れた部位に照射し、陽極リード2を切断す
る。なお、この外部陽極端子4と陽極リード2の溶接
と、陽極リード2の切断は2本のレーザ光線により同時
に行われる。
Next, a laser beam is applied to a portion where the slit portion 4a of the external anode terminal 4 shown in FIG. 2 intersects with the anode lead 2 so that the external anode terminal 4 and the anode lead 2 are welded and another From the intersection of the slit portion 4a of the external anode terminal 4 and the anode lead 2 by about 5-10
Irradiation is applied to a site separated by a micron, and the anode lead 2 is cut. The welding of the external anode terminal 4 and the anode lead 2 and the cutting of the anode lead 2 are simultaneously performed by two laser beams.

【0010】上記の方法にて作製した定格電圧16V、
静電容量10μFのチップ型タンタル固体電解コンデン
サ100個に電圧16Vを印加し、1分経過後の漏れ電
流不良発生結果を表1に示す。ただし、漏れ電流が1μ
Aを超えるものを不良とした。また、比較のため、従来
技術にて作製したコンデンサについても漏れ電流を測定
した。本発明により得られたコンデンサは、従来品に較
べ漏れ電流不良が明らかに減少していることがわかる。
The rated voltage of 16 V produced by the above method,
A voltage of 16 V is applied to 100 chip type tantalum solid electrolytic capacitors having a capacitance of 10 μF, and a result of occurrence of leakage current failure after 1 minute is shown in Table 1. However, the leakage current is 1μ
Those exceeding A were regarded as defective. For comparison, the leakage current was also measured for the capacitor manufactured by the conventional technique. It can be seen that the capacitor obtained according to the present invention has a reduction in leakage current defects as compared with the conventional product.

【0011】[0011]

【表1】 [Table 1]

【0012】図4は、本発明の第2実施例の縦断面図で
ある。この実施例は図5に示すように、外部陽極端子4
0の端面部に舌片部40aを有する構造にしているの
で、外部陽極端子40の舌片部40aと陽極リード2と
の接続を、高価なレーザ装置ではなく抵抗溶接機にて接
続できる利点がある。
FIG. 4 is a vertical sectional view of the second embodiment of the present invention. In this embodiment, as shown in FIG.
Since the structure has the tongue piece 40a on the end face portion of 0, there is an advantage that the tongue piece 40a of the external anode terminal 40 and the anode lead 2 can be connected by a resistance welding machine instead of an expensive laser device. is there.

【0013】なお、本発明の各実施例において、固体電
解質層として、導電性高分子の一つであるポロピロール
を、ピロールモノマーと酸化剤を接触させることにより
酸化重合して形成したが、従来一般に行われている技術
である硝酸マンガンの熱分解法により二酸化マンガン層
を形成してもよい。ただし、この場合熱分解時の熱によ
り、外部陽極端子の半田メッキが溶融しやすく、表面が
酸化されることがあるので、二酸化マンガン層の形成
後、再度半田メッキを施すのが好ましい。
In each of the examples of the present invention, the solid electrolyte layer was formed by oxidative polymerization of poropyrrole, which is one of conductive polymers, by bringing a pyrrole monomer and an oxidant into contact with each other. You may form a manganese dioxide layer by the thermal decomposition method of manganese nitrate which is the technique currently used. However, in this case, the solder plating of the external anode terminal is likely to be melted by the heat of the thermal decomposition and the surface may be oxidized. Therefore, it is preferable to perform the solder plating again after the formation of the manganese dioxide layer.

【0014】なお、本発明実施例ではチップ型タンタル
固体電解コンデンサを例にして説明したが、チップ型ア
ルミ固体電解コンデンサ等にも適用できることは勿論で
ある。
In the embodiment of the present invention, the chip type tantalum solid electrolytic capacitor has been described as an example, but it goes without saying that it can be applied to a chip type aluminum solid electrolytic capacitor or the like.

【0015】以上説明したように、本発明はコンデンサ
素子に樹脂外装を行わず、陰極体部を外部陰極端子を共
用化したことと、陰極体と外部陽極端子を絶縁する絶縁
部材と外部陽極端子とをインサート成型により同時に形
成したことにより、下記に述べる効果がある。 コンデンサ素子を樹脂外装しないで、チップ型コンデ
ンサが得られるので、樹脂から受ける応力がなくなり、
漏れ電流の劣化が防止できる。 外装樹脂厚の分だけ薄型化が可能となる。 外部陰極端子と、それを取り付ける高価な導電性接着
剤が不要になるので、コスト削減が可能になるだけでな
く接続の信頼性が向上する。 インサート成型により同時に絶縁部材と外部陽極端子
を形成できるので作業工数が短縮できる。
As described above, according to the present invention, the capacitor element is not coated with resin and the cathode body portion is also used as the external cathode terminal, and the insulating member and the external anode terminal for insulating the cathode body and the external anode terminal from each other. The following effects can be obtained by simultaneously forming and by insert molding. Since the chip type capacitor can be obtained without coating the capacitor element with resin, the stress received from the resin is eliminated,
Leakage current deterioration can be prevented. The thickness can be reduced by the thickness of the exterior resin. Since the external cathode terminal and the expensive conductive adhesive for attaching the external cathode terminal are not required, not only the cost can be reduced but also the reliability of the connection is improved. Since the insulating member and the external anode terminal can be simultaneously formed by insert molding, the number of work steps can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明実施例1の製造方法によって作製され
たチップ型固体電解コンデンサの縦断面図
FIG. 1 is a vertical sectional view of a chip-type solid electrolytic capacitor manufactured by a manufacturing method according to a first embodiment of the present invention.

【図2】 同製造方法途中のコンデンサ素子を金属帯板
に固着した状態を示す断面図
FIG. 2 is a cross-sectional view showing a state in which a capacitor element is being fixed to a metal strip plate during the manufacturing method.

【図3】 本発明実施例1に用いた外部陽極端子の斜視
FIG. 3 is a perspective view of an external anode terminal used in Example 1 of the present invention.

【図4】 本発明実施例2の製造方法によって作製され
たチップ型固体電解コンデンサの縦断面図
FIG. 4 is a vertical sectional view of a chip-type solid electrolytic capacitor manufactured by a manufacturing method according to a second embodiment of the present invention.

【図5】 本発明実施例2に用いた外部陽極端子の斜視
FIG. 5 is a perspective view of an external anode terminal used in Example 2 of the present invention.

【図6】 従来の製造方法によって作製されたチップ型
固体電解コンデンサの縦断面図
FIG. 6 is a vertical cross-sectional view of a chip-type solid electrolytic capacitor manufactured by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 陽極体 2 陽極リード 3 絶縁部材 4 外部陽極端子 4a スリット部 5 誘電体皮膜層 6 固体電解質層(ポリピロール層) 7 陰極金属層(外部陰極端子) 8 金属帯板 40 外部陽極端子 40a 舌片部 DESCRIPTION OF SYMBOLS 1 Anode body 2 Anode lead 3 Insulating member 4 External anode terminal 4a Slit part 5 Dielectric film layer 6 Solid electrolyte layer (Polypyrrole layer) 7 Cathode metal layer (External cathode terminal) 8 Metal strip 40 External anode terminal 40a Tongue part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】弁作用金属からなる陽極体に植立した弁作
用金属からなる陽極リードを固設する工程と、陽極リー
ド導出面にインサート成型により絶縁部材と外部陽極端
子とを同時に形成する工程と、陽極体の周面に誘電体皮
膜層、固体電解質層、外部陰極端子を構成する陰極金属
層を順次形成する工程と、陽極リードと外部陽極端子を
電気的、機械的に接続した後陽極リードを切断する工程
とを含むことを特徴とするチップ型固体電解コンデンサ
の製造方法。
1. A step of fixing an anode lead made of a valve action metal erected on an anode body made of a valve action metal, and a step of simultaneously forming an insulating member and an external anode terminal on the lead-out surface of the anode lead by insert molding. And a step of sequentially forming a dielectric coating layer, a solid electrolyte layer, and a cathode metal layer forming an external cathode terminal on the peripheral surface of the anode body, and after electrically and mechanically connecting the anode lead and the external anode terminal to the anode. A method of manufacturing a chip-type solid electrolytic capacitor, which comprises the step of cutting the leads.
【請求項2】陽極リードと外部陽極端子をレーザ溶接に
より接続することを特徴とする請求項1記載のチップ型
固体電解コンデンサの製造方法。
2. The method for producing a chip type solid electrolytic capacitor according to claim 1, wherein the anode lead and the external anode terminal are connected by laser welding.
【請求項3】陽極リードと外部陽極端子を抵抗溶接によ
り接続することを特徴とする請求項1記載のチップ型固
体電解コンデンサの製造方法。
3. The method of manufacturing a chip type solid electrolytic capacitor according to claim 1, wherein the anode lead and the external anode terminal are connected by resistance welding.
JP33163095A 1995-12-20 1995-12-20 Manufacturing method of chip type solid electrolytic capacitor Expired - Lifetime JP2850819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33163095A JP2850819B2 (en) 1995-12-20 1995-12-20 Manufacturing method of chip type solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33163095A JP2850819B2 (en) 1995-12-20 1995-12-20 Manufacturing method of chip type solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH09171941A true JPH09171941A (en) 1997-06-30
JP2850819B2 JP2850819B2 (en) 1999-01-27

Family

ID=18245811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33163095A Expired - Lifetime JP2850819B2 (en) 1995-12-20 1995-12-20 Manufacturing method of chip type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2850819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180260A (en) * 2005-12-28 2007-07-12 Showa Denko Kk Manufacturing method of solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180260A (en) * 2005-12-28 2007-07-12 Showa Denko Kk Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2850819B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
JP4534184B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20090237865A1 (en) Solid electrolytic capacitor and method for manufacturing same
JPH08167540A (en) Solid electrolytic chip capacitor and its manufacture
US5142452A (en) Chip-type solid electrolytic capacitors
KR20040019926A (en) Solid electrolytic capacitor
JP4953090B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2850823B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JPH09171941A (en) Manufacture of solid electrolytic chip capacitor
JP3104245B2 (en) Solid electrolytic capacitors
JPH05234828A (en) Manufacture of solid electrolytic capacitor
JPH04216608A (en) Manufacture of solid electrolytic capacitor
JP3433478B2 (en) Solid electrolytic capacitors
JPH04119623A (en) Solid electrolytic capacitor and manufacture thereof
JP3266205B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0613269A (en) Multilayer solid electrolytic capacitor
JP2006032382A (en) Manufacturing method of solid electrolytic capacitor
JPH04192405A (en) Solid electrolytic capacitor
JPH04360508A (en) Manufacture of solid-state electrolytic capacitor
JPH04354318A (en) Production of chip-shaped solid-state electrolytic capacitor
JPH03116812A (en) Solid electrolytic capacitor
JP2007180386A (en) Solid electrolytic capacitor
JPH07183167A (en) Manufacture of solid electrolytic capacitor
JPH0373511A (en) Chip-type solid electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981013