JPH09171084A - Method and device for weather detection - Google Patents

Method and device for weather detection

Info

Publication number
JPH09171084A
JPH09171084A JP33307595A JP33307595A JPH09171084A JP H09171084 A JPH09171084 A JP H09171084A JP 33307595 A JP33307595 A JP 33307595A JP 33307595 A JP33307595 A JP 33307595A JP H09171084 A JPH09171084 A JP H09171084A
Authority
JP
Japan
Prior art keywords
detector
insulator
detectors
pair
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33307595A
Other languages
Japanese (ja)
Inventor
Noriyoshi Sugawara
宣義 菅原
Takaaki Watabe
孝昭 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP33307595A priority Critical patent/JPH09171084A/en
Publication of JPH09171084A publication Critical patent/JPH09171084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable surely discriminating between raining state and snowing state from the beginning of snowfall by heating an insulator of one pair of detectors close to each other to a specific temperature higher than the ice point and cooling an insulator of the other pair of detectors to a specific temperature lower than the ice point and comparing the two measured resistance values. SOLUTION: A heater 3c is arranged at the lower part of an insulation base of the first detector 3 and by sending electric current to this, the insulation base is heated to a specific temperature higher than the ice point. A thermoelectric cooling element 4c is arranged at the lower part of an insulation base of the other second detector 4 and by sending electric current to this, the insulation base is cooled to a specific temperature lower than the ice point. The electric currents flowing between both pairs of electrodes of the detectors are taken out as measured resistance values by way of a converter 5b, both of which are supplied to a processor 5c to compare. By this, whether the weather is state of no rain and no snow, raining state, snowing state or in the state rain or snow stopped to fall, can be exactly discriminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】この発明は天候が、降雨状態
であるか、降雪状態であるか、雨、雪の何れも降ってい
ない状態であるかを検知するための方法およびその装置
に関し、例えばロードヒーティング装置の運転制御用、
山間部高速道路等の道路情報、あるいは山間部架空送電
線路の保守管理などに有用な天候検知方法およびその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting whether the weather is raining, snowing, or neither rain nor snow, for example, For operation control of load heating device,
The present invention relates to a weather detection method and device useful for road information of mountainous highways and maintenance of mountain overhead power transmission lines.

【従来の技術】従来、降雨・降雪などの天候情報を自動
検知する方法としては、大きく分けて2方式あり、1つ
は電極間抵抗の変動を利用する電極式、もう1つは光の
放射・反射を利用する光学式である。図3は上記電極式
の天候検知装置の一例を示している。この装置は、一対
の櫛型形状を呈する電極30b、30bをエポキシ樹脂
等の絶縁材30aで対間絶縁した電極部20と、外気温
センサー6と、制御部7とで構成されている。そして前
記電極部20を屋外に設置し、電極部20への水分の付
着の有無を電極30b、30b間の電気抵抗の変化によ
り知見し、外気温センサー6による温度情報を加味して
雨か雪かを判別するものである。また、図4は上記した
光学式の天候検知装置の一例を示している。この装置
は、赤外線ビームなどの光を発する放射部8aと、その
反射光を受光する受光部8bとを備えるプローブ部8
と、制御部9とから構成されている。そして前記プロー
ブ部8を屋外に設置し、放射部8aから発せられた光
が、雨又は雪の存在により反射されて受光部8bで検知
されるか否か、即ち反射光の有無とさらには反射光の強
弱等をも加味して、雨か雪かを判別するものである。
2. Description of the Related Art Conventionally, there are roughly two methods for automatically detecting weather information such as rainfall and snowfall. One is an electrode method that uses fluctuations in resistance between electrodes, and the other is radiation of light. -It is an optical system that uses reflection. FIG. 3 shows an example of the electrode type weather detecting device. This device is composed of a pair of comb-shaped electrodes 30b, 30b, an electrode section 20 in which pair insulation is performed with an insulating material 30a such as epoxy resin, an outside air temperature sensor 6, and a control section 7. Then, the electrode unit 20 is installed outdoors, and whether or not water adheres to the electrode unit 20 is detected by a change in electric resistance between the electrodes 30b and 30b, and rain or snow is taken into consideration by taking temperature information from the outside air temperature sensor 6 into consideration. It is to determine whether or not. Further, FIG. 4 shows an example of the above-mentioned optical weather detection device. This apparatus includes a probe unit 8 including a radiation unit 8a that emits light such as an infrared beam and a light receiving unit 8b that receives the reflected light.
And a control unit 9. Then, the probe unit 8 is installed outdoors, and whether or not the light emitted from the radiation unit 8a is reflected by the presence of rain or snow and detected by the light receiving unit 8b, that is, the presence or absence of reflected light and further reflection It also decides whether it is rain or snow, taking into consideration the intensity of light.

【発明が解決しようとする課題】しかしながら上述の電
極式にあっては、降雨状態か、降雪状態かを余り正確に
検知できない場合がある。即ち、電極部30が濡れたか
否かと外気温センサ6の温度情報とで降雨と降雪を判別
するのであるが、その時々の気象状況や地域差により降
雪状態となる外気温度は相違するため、降雨か降雪かを
誤判断してしまうのである。また、上述の光学式は、光
の発受光機構を採用しているため基本的に高価となって
しまうという欠点があり、さらに光の反射を利用してい
るためゴミ等の浮游物にも反応するなどして誤動作する
という欠点がある。
However, in the above-mentioned electrode type, there are cases in which it is not possible to detect the rainfall state or the snowfall state very accurately. That is, whether the electrode unit 30 is wet or not and the temperature information of the outside air temperature sensor 6 are used to determine whether the rainfall is snowing or not. It makes a wrong decision whether it is snow or snow. Further, the above-mentioned optical system has a drawback that it basically becomes expensive because it employs a light emitting and receiving mechanism for light, and it also reacts to floating objects such as dust because it uses reflection of light. There is a drawback that it malfunctions by doing.

【発明の目的】この発明は上記の問題点に鑑みてなされ
たものであり、降雪開始当初から降雪状態であることを
確実に検知することができ、しかも降雨状態か降雪状態
かの判別が正確に行え、さらに雨も雪も降っていない状
態かの判定をも行うことができる天候検知方法およびそ
の装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and can reliably detect a snowfall state from the beginning of snowfall, and can accurately determine whether it is raining or snowing. It is an object of the present invention to provide a weather detection method and an apparatus therefor capable of performing the above-mentioned operation and determining whether it is not raining or snowing.

【課題を解決するための手段】請求項1の天候検知方法
は、一部が上部に露出する電極対およびその対間絶縁体
を有する2つの検出子を互いに近接させて配置してお
き、一方の検出子の対間絶縁体を氷点よりも高い所定温
度に加温するとともに、他方の検出子の対間絶縁体を氷
点以下の所定温度に冷却し、両検出子の電極間抵抗を測
定し、両測定抵抗値を対比することにより天候を検知す
る方法である。請求項2の天候検知装置は、一部が上部
に露出する電極対およびその対間絶縁体を有し、かつ該
対間絶縁体を氷点よりも高い所定温度に加温する加温手
段を有する第1の検出子と、地表面上に一部が露出する
電極対およびその対間絶縁体を有し、かつ該対間絶縁体
を氷点以下の所定温度に冷却する冷却手段を有する第2
の検出子と、両検出子の電極間抵抗を測定し、両測定抵
抗値を対比することにより天候を検知する処理手段とを
有している。
According to another aspect of the present invention, there is provided a weather detecting method in which two detectors each having an electrode pair partially exposed at an upper portion and an insulator between the electrodes are arranged close to each other. In addition to heating the inter-insulator of the detector to a specified temperature higher than the freezing point, cool the inter-insulator of the other detector to a specified temperature below the freezing point and measure the resistance between the electrodes of both detectors. This is a method of detecting the weather by comparing both measured resistance values. The weather detection device according to claim 2 has an electrode pair, a part of which is exposed at the upper part, and an inter-pair insulator thereof, and a heating means for heating the inter-pair insulator to a predetermined temperature higher than the freezing point. A second detector having a first detector, an electrode pair partially exposed on the ground surface, and an insulator between the electrodes, and a cooling means for cooling the insulator between the electrodes to a predetermined temperature below freezing point.
And a processing means for measuring the resistance between the electrodes of both detectors and comparing the measured resistance values to detect the weather.

【作用】請求項1の天候検知方法であれば、一部が上部
に露出する電極対およびその対間絶縁体を有する2つの
検出子を互いに近接させて配置しておき、一方の検出子
の対間絶縁体を氷点よりも高い所定温度に加温するとと
もに、他方の検出子の対間絶縁体を氷点以下の所定温度
に冷却し、両検出子の電極間抵抗を測定し、両測定抵抗
値を対比することにより路面状態を検知するのであるか
ら、降雪開始当初において他方の検出子の対間絶縁体上
の雪が溶けることを防止し、一方の検出子の対間絶縁体
上の雪を溶かすので、両検出子による測定抵抗値に基づ
いて降雪状態であることを殆ど時間遅れなく正確に検知
することができる。また、降雨時には、他方の検出子の
対間絶縁体上を雨水が流動しているので、この雨水は凍
結しない。もちろん、一方の検出子の対間絶縁体上の雨
水は凍結のおそれが全くない。したがって、両検出子に
よる測定抵抗値に基づいて降雨状態であることを正確に
検知することができる。さらに、雨も雪も降っていない
時には両検出子の対間絶縁体上に水分が存在しないので
あるから、両検出子による測定抵抗値に基づいて雨も雪
も降っていない状態であることを正確に検知することが
できる。この結果、降雨、降雪を早期に正確に検知する
ことができ、ロードヒーティングの省エネルギー制御に
有効であるとともに、降雪時の融雪を早期に開始させる
ことができる。請求項2の天候検知装置であれば、第1
の検出子の対間絶縁体を加温手段により氷点よりも高い
所定温度に加温し、第2の検出子の対間絶縁体を冷却手
段により氷点以下の所定温度に冷却する。そして、処理
手段によって、両検出子の電極間抵抗を測定し、両測定
抵抗値を対比することにより天候を検知することができ
る。したがって、降雪開始当初において他方の検出子の
対間絶縁体上の雪が溶けることを防止し、一方の検出子
の対間絶縁体上の雪を溶かすので、両検出子による測定
抵抗値に基づいて降雪状態であることを殆ど時間遅れな
く正確に検知することができる。また、降雨時には、他
方の検出子の対間絶縁体上を雨水が流動しているので、
この雨水は凍結しない。もちろん、一方の検出子の対間
絶縁体上の雨水は凍結のおそれが全くない。したがっ
て、両検出子による測定抵抗値に基づいて降雨状態であ
ることを正確に検知することができる。さらに、雨も雪
も降っていない時には両検出子の対間絶縁体上に水分が
存在しないのであるから、両検出子による測定抵抗値に
基づいて雨も雪も降っていない状態であることを正確に
検知することができる。この結果、降雨、降雪を早期に
正確に検知することができ、ロードヒーティングの省エ
ネルギー制御に有効であるとともに、降雪時の融雪を早
期に開始させることができる。
According to the method of detecting the weather of the first aspect, two detectors each having an electrode pair partially exposed on the upper side and an insulator between the pair are arranged close to each other, and one of the detectors is The pair insulation is heated to a predetermined temperature higher than the freezing point, and the pair insulation of the other detector is cooled to a predetermined temperature below the freezing point, and the resistance between the electrodes of both detectors is measured. Since the road surface condition is detected by comparing the values, the snow on the inter-insulator of the other detector is prevented from melting at the beginning of snowfall, and the snow on the inter-insulator of one detector is prevented. Since it melts, it can be accurately detected with almost no time delay that the snowfall state is present based on the resistance values measured by both detectors. Further, at the time of rainfall, the rainwater does not freeze because it flows on the pair of insulators of the other detector. Of course, there is no risk of freezing rainwater on the pair of insulators of one detector. Therefore, it is possible to accurately detect the rainfall state based on the resistance values measured by the two detectors. Furthermore, when there is neither rain nor snow, there is no water on the inter-insulator of both detectors, so it is possible to confirm that neither rain nor snow is present based on the resistance value measured by both detectors. It can be detected accurately. As a result, rainfall and snowfall can be detected accurately at an early stage, which is effective for energy-saving control of road heating, and snowmelt at the time of snowfall can be started early. If the weather detection device according to claim 2, the first
The pair-wise insulator of the detector is heated to a predetermined temperature higher than the freezing point by the heating means, and the pair-wise insulator of the second detector is cooled to the predetermined temperature below the freezing point by the cooling means. Then, the processing means measures the inter-electrode resistance of both detectors and compares the measured resistance values to detect the weather. Therefore, at the beginning of snowfall, the snow on the pair of insulators of the other detector is prevented from melting, and the snow on the pair of insulators of one detector is melted. It is possible to accurately detect a snowfall state with almost no time delay. In addition, at the time of rainfall, rainwater is flowing on the paired insulator of the other detector,
This rainwater does not freeze. Of course, there is no risk of freezing rainwater on the pair of insulators of one detector. Therefore, it is possible to accurately detect the rainfall state based on the resistance values measured by the two detectors. Furthermore, when there is neither rain nor snow, there is no water on the inter-insulator of both detectors, so it is possible to confirm that neither rain nor snow is present based on the resistance value measured by both detectors. It can be detected accurately. As a result, rainfall and snowfall can be detected accurately at an early stage, which is effective for energy-saving control of road heating, and snowmelt at the time of snowfall can be started early.

【発明の実施の形態】以下、添付図面によってこの発明
の実施の態様を詳細に説明する。図1はこの発明の天候
検知装置の一実施態様を示す概略縦断面図、図2は平面
図である。この天候検知装置は、路面上などに図示しな
い支柱部材を介して配置される山形のカバー部材2の各
傾斜面に第1検出子3と第2検出子4とを配置してあ
る。前記第1検出子3は、エポキシ樹脂などからなる絶
縁基板3a上に、櫛歯状など適宜形状の1対の電極3
b,3bを所定距離だけ離して対向配置するように形成
してあるとともに、絶縁基板3aの下部に平板状など適
宜形状のヒータ3cを配置し、ヒータ電源3dによって
ヒータ3cに通電することにより、少なくとも電極3
b,3b間の絶縁基板3aを氷点よりも高い所定温度、
例えば+5℃〜+10℃、に加温することができる。前
記第2検出子4は、エポキシ樹脂などからなる絶縁基板
4a上に、櫛歯状など適宜形状の1対の電極4b,4b
を所定距離だけ離して対向配置するように形成してある
とともに、絶縁基板4aの下部に平板状など適宜形状の
熱電子冷却素子(例えば、ペルチェ効果素子モジュー
ル)4cを配置し、冷却素子電源4dによって熱電子冷
却素子4cに通電することにより、少なくとも電極4
b,4b間の絶縁基板4aを氷点以下の所定温度、例え
ば0℃〜−5℃、に冷却することができる。そして、熱
電子冷却素子4cの下面に接するようにスタックフィン
などの放熱器4eを配置してある。また、交流電源5a
からの交流電圧を変換器5bを介して両電極対3b,3
b,4b,4b間に印加し、両電極対3b,3b,4
b,4b間に流れる電流を変換器5bを介して測定抵抗
値として取り出し、両測定抵抗値を処理部5cに供給す
ることにより、天候が雨も雪も降っていない状態か、降
雨状態か、降雪状態か、雨または雪が降り止んでいる状
態かを示す信号を出力する。具体的には、両測定抵抗値
がMΩオーダーである場合に雨も雪も降っていない状態
であることを示す信号を出力し、両測定抵抗値がKΩオ
ーダーである場合に降雨状態であることを示す信号を出
力し、第1検出子3による測定抵抗値がKΩオーダーで
あり、第2検出子4による測定抵抗値がMΩオーダーで
ある場合に降雪状態であることを示す信号を出力し、第
1検出子3による測定抵抗値がMΩオーダーであり、第
2検出子4による測定抵抗値がKΩオーダーである場合
に雨または雪が降り止んでいる状態であることを示す信
号を出力する。また、KΩオーダーかMΩオーダーかの
判定は、例えば、測定抵抗値が200KΩ以下か否かに
基づいて簡単に達成することができる。したがって、交
流電源5a、変換器5bおよび処理部5cによって処理
手段が構成されることになる。第1検出子3の電極3
b,3b間の対間絶縁体(絶縁基板3aの該当部分)を
氷点よりも高い所定温度に加温し、第2検出子4の電極
4b,4b間の対間絶縁体(絶縁基板4aの該当部分)
を氷点以下の所定温度に冷却し、この状態において両検
出子3,4の電極3b,3b,4b,4b間に交流電源
5aおよび変換器5bによって交流電圧を印加し、電極
3b,3b,4b,4b間の抵抗値を変換器5bを通し
て出力し、処理部5cに供給する。したがって、天候が
雨も雪も降っていない状態である場合には、両検出子
3,4の電極3b,3b,4b,4b間も乾燥状態であ
り、測定抵抗値が共にMΩオーダーになる。降雨状態で
ある場合には、両検出子3,4の電極3b,3b,4
b,4b間に水分が存在する状態であり、測定抵抗値が
共にKΩオーダーになる。降雪状態である場合には、第
1検出子3の電極3b,3b間に水分が存在するので測
定抵抗値がKΩオーダーになり、第2検出子4の電極4
b,4b間には雪が溶けることなく存在しているので測
定抵抗値がMΩオーダーになる。雨または雪が降り止ん
でいる場合には、第1検出子3の電極3b,3b間が乾
燥状態になるので測定抵抗値がMΩオーダーになり、第
2検出子4の電極4b,4b間には水分が存在するので
測定抵抗値がKΩオーダーになる。したがって、処理部
5cにおいて、両検出子3,4による測定抵抗値がMΩ
オーダーであるかKΩオーダーであるかを判定して該当
する信号を出力することができる。この結果、降雨か降
雪か、晴天かを正確に判別でき、例えばロードヒーティ
ングシステムを必要な場合にのみ動作させることがで
き、省エネルギーおよび効果的な路面の加温を達成する
ことができる。特に、降雪状態の検出に当っては、第2
検出子4において当初から雪の存在を溶けるおそれなく
許容するので、降雪状態に対応する測定抵抗値を得るこ
とができ、降雪開始後、迅速に降雪状態であることを検
出することができる。この結果、ロードヒーティングシ
ステムによる路面の加温を降雪開始当初から行わせるこ
とができ、ロードヒーティングシステムによる融雪を効
果的に行わせることができる。また、山間部高速道路な
どに正確な降雪情報を提供でき、さらに山間部架空送電
線路への着雪状態の推定等が可能となる。上述した天候
検知装置の検知情報をさらに向上させるため、第2検出
子4に内蔵されている熱電子冷却素子(ペルチェ素子モ
ジュール)4cへの給電極性を反転させ得る極性変換リ
レー40を、冷却素子電源4dの回路中に設けることが
好ましい。極性反転により、冷却面を加熱面に切換える
ことができるので、第2検出子4の表面を速やかに乾燥
させた場合に有利となる。例えば、降雪が終わった場
合、第1検出子3の電極3b、3b間はヒータ3cによ
り速やかに乾燥状態とされるのであるが、第2検出子4
の電極4b、4b間は冷却面とされているため高速乾燥
できない。電極4b、4b間が濡れていると次の降雪の
検知が正確にできないことがある。そこで第1検出子3
で降雪終了を検知したとき、処理部5cから信号を発し
て極性変換リレー40を動作させ、冷却素子4cの冷却
面を加熱面に反転させて第2検出子4の電極4b、4b
間を速やかに乾燥させ、次の降雪に備えるようにするの
である。電極4b、4b間の乾燥化が終わったら(電極
間抵抗で知見できる)、再びリレー40を動作させて極
性を元に戻し、電極4b、4b間を氷点以下の所定温度
に復帰させておくものである。なお、以上には、カバー
部材2を支柱部材により地表面から浮かせた状態で配置
した場合について説明したが、カバー部材2を地表面に
直接配置してもよいことはもちろんである。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic vertical sectional view showing an embodiment of the weather detecting device of the present invention, and FIG. 2 is a plan view. In this weather detecting device, a first detector 3 and a second detector 4 are arranged on each inclined surface of a mountain-shaped cover member 2 which is arranged on a road surface or the like via a pillar member (not shown). The first detector 3 includes a pair of electrodes 3 having an appropriate shape such as a comb tooth on an insulating substrate 3a made of epoxy resin or the like.
b and 3b are formed so as to face each other with a predetermined distance therebetween, and a heater 3c having an appropriate shape such as a flat plate is arranged below the insulating substrate 3a, and the heater 3c is energized by a heater power source 3d. At least electrode 3
a predetermined temperature higher than the freezing point of the insulating substrate 3a between b and 3b,
For example, it can be heated to + 5 ° C to + 10 ° C. The second detector 4 is provided with a pair of electrodes 4b, 4b having an appropriate shape such as a comb tooth on an insulating substrate 4a made of epoxy resin or the like.
Are arranged to face each other at a predetermined distance, and a thermoelectric cooling element (for example, a Peltier effect element module) 4c having an appropriate shape such as a flat plate is arranged below the insulating substrate 4a, and a cooling element power source 4d is provided. By energizing the thermoelectric cooling element 4c by means of at least the electrode 4
The insulating substrate 4a between b and 4b can be cooled to a predetermined temperature below the freezing point, for example, 0 ° C to -5 ° C. Further, a radiator 4e such as a stack fin is arranged so as to contact the lower surface of the thermoelectric cooling element 4c. Also, AC power supply 5a
AC voltage from the pair of electrodes 3b, 3 via the converter 5b
b, 4b, 4b applied to both electrode pairs 3b, 3b, 4
By extracting the current flowing between b and 4b as a measured resistance value via the converter 5b and supplying both measured resistance values to the processing unit 5c, it is determined whether the weather is not raining or snowing, or a raining state. It outputs a signal indicating whether it is snowing, or when it is raining or snow has stopped. Specifically, when both measured resistance values are in the order of MΩ, a signal indicating that neither rain nor snow is falling is output, and when both measured resistance values are in the order of KΩ, it is in the rainy state. And outputs a signal indicating that the snow is falling when the resistance measured by the first detector 3 is in the order of KΩ and the resistance measured by the second detector 4 is in the order of MΩ, When the resistance value measured by the first detector 3 is in the order of MΩ and the resistance value measured by the second detector 4 is in the order of KΩ, a signal indicating that rain or snow has stopped is output. The determination of KΩ order or MΩ order can be easily achieved based on, for example, whether the measured resistance value is 200 KΩ or less. Therefore, the AC power supply 5a, the converter 5b, and the processing unit 5c constitute a processing means. Electrode 3 of first detector 3
The pair of insulators (corresponding part of the insulating substrate 3a) between b and 3b are heated to a predetermined temperature higher than the freezing point, and the pair of insulators (electrodes of the insulating substrate 4a) between the electrodes 4b and 4b of the second detector 4 are heated. (Applicable part)
Is cooled to a predetermined temperature below the freezing point, and in this state, an AC voltage is applied between the electrodes 3b, 3b, 4b, 4b of the two detectors 3, 4 by the AC power source 5a and the converter 5b to generate the electrodes 3b, 3b, 4b. , 4b is output through the converter 5b and supplied to the processing unit 5c. Therefore, when the weather is neither rain nor snow, the electrodes 3b, 3b, 4b, 4b of both detectors 3, 4 are also in a dry state, and the measured resistance values are both on the order of MΩ. When it is raining, the electrodes 3b, 3b, 4 of both detectors 3, 4 are
Water is present between b and 4b, and the measured resistance values are both on the order of KΩ. In the case of a snowfall, since the water is present between the electrodes 3b and 3b of the first detector 3, the measured resistance value is on the order of KΩ and the electrode 4 of the second detector 4
Since snow does not melt between b and 4b, the measured resistance value is on the order of MΩ. When the rain or snow has stopped, the electrodes 3b and 3b of the first detector 3 are in a dry state, so that the measured resistance value is on the order of MΩ, and the electrodes 4b and 4b of the second detector 4 are connected to each other. Since water is present, the measured resistance value is on the order of KΩ. Therefore, in the processing unit 5c, the resistance value measured by both detectors 3 and 4 is MΩ.
It is possible to determine whether it is the order or the KΩ order and output the corresponding signal. As a result, it can be accurately discriminated whether it is rainfall, snowfall, or fine weather. For example, the road heating system can be operated only when necessary, and energy saving and effective road surface heating can be achieved. Especially when detecting snowfall,
Since the presence of snow is allowed from the beginning in the detector 4 without fear of melting, it is possible to obtain a measured resistance value corresponding to the snowfall state, and it is possible to quickly detect the snowfall state after the start of snowfall. As a result, the road heating system can heat the road surface from the beginning of snowfall, and the road heating system can effectively melt snow. In addition, accurate snowfall information can be provided to mountainous highways and the like, and it becomes possible to estimate the snow accretion state on the mountainous overhead power transmission line. In order to further improve the detection information of the weather detection device described above, the polarity conversion relay 40 that can reverse the power supply polarity to the thermoelectric cooling element (Peltier element module) 4c built in the second detector 4 is provided as a cooling element. It is preferably provided in the circuit of the power supply 4d. By reversing the polarity, the cooling surface can be switched to the heating surface, which is advantageous when the surface of the second detector 4 is quickly dried. For example, when snowing is over, the space between the electrodes 3b, 3b of the first detector 3 is quickly dried by the heater 3c, but the second detector 4
Since the electrodes 4b and 4b are cooled surfaces, high speed drying cannot be performed. If the electrodes 4b, 4b are wet, the next snowfall may not be accurately detected. Therefore, the first detector 3
When the end of snowfall is detected by the processing unit 5c, a signal is issued from the processing unit 5c to operate the polarity conversion relay 40, the cooling surface of the cooling element 4c is inverted to the heating surface, and the electrodes 4b and 4b of the second detector 4 are activated.
The spaces are quickly dried to prepare for the next snowfall. After the drying between the electrodes 4b, 4b is completed (which can be found from the resistance between the electrodes), the relay 40 is operated again to restore the polarity to restore the temperature between the electrodes 4b, 4b to a predetermined temperature below the freezing point. Is. In addition, although the case where the cover member 2 is arranged in a state of being floated from the ground surface by the pillar member has been described above, it goes without saying that the cover member 2 may be directly arranged on the ground surface.

【発明の効果】請求項1の発明は、降雪開始当初におい
て他方の検出子の対間絶縁体上の雪が溶けることを防止
し、一方の検出子の対間絶縁体上の雪を溶かすことによ
り、両検出子による測定抵抗値に基づいて降雪状態であ
ることを殆ど時間遅れなく正確に検知することができる
ほか、降雨状態か雨も雪も降っていない状態かをも正確
に検知することができるという特有の効果を奏する。請
求項2の発明は、降雪開始当初において他方の検出子の
対間絶縁体上の雪が溶けることを防止し、一方の検出子
の対間絶縁体上の雪を溶かすことにより、両検出子によ
る測定抵抗値に基づいて降雪状態であることを殆ど時間
遅れなく正確に検知することができるほか、降雨状態か
雨も雪も降っていない状態かをも正確に検知することが
できるという特有の効果を奏する。
According to the invention of claim 1, it is possible to prevent the snow on the paired insulator of the other detector from melting at the beginning of snowfall, and to melt the snow on the paired insulator of one of the detectors. In addition to being able to accurately detect a snowfall state based on the resistance values measured by both detectors with almost no time delay, it is also possible to accurately detect whether it is raining or not raining or snowing. It has the unique effect of being able to do it. The invention of claim 2 prevents the snow on the pair of insulators of the other detector from melting at the beginning of snowfall, and melts the snow on the pair of insulators of one of the detectors, so that both detectors The unique effect of being able to accurately detect that it is snowing based on the measured resistance value with almost no time delay, and also to accurately detect whether it is raining or not raining or snowing. Play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の天候検知装置の一実施態様を示す概
略縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an embodiment of a weather detection device of the present invention.

【図2】同上平面図である。FIG. 2 is a plan view of the same.

【図3】電極式の天候検知装置の一例を示す概略図であ
る。
FIG. 3 is a schematic view showing an example of an electrode type weather detection device.

【図4】光学式の天候検知装置の一例を示す概略図であ
る。
FIG. 4 is a schematic view showing an example of an optical weather detection device.

【符号の説明】[Explanation of symbols]

3 第1検出子 4 第2検出子 3a,4a 絶縁基板 3b,4b 電極 3c ヒータ 4c 熱電子冷却素子 5a 交流電源 5b 変換器 5c 処理部 3 1st detector 4 2nd detector 3a, 4a Insulation board 3b, 4b Electrode 3c Heater 4c Thermoelectric cooling element 5a AC power supply 5b Converter 5c Processing part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一部が上部に露出する電極対(3b)
(3b)(4b)(4b)およびその対間絶縁体(3
a)(4a)を有する2つの検出子(3)(4)を互い
に近接させて配置しておき、一方の検出子(3)の対間
絶縁体(3a)を氷点よりも高い所定温度に加温すると
ともに、他方の検出子(4)の対間絶縁体(4a)を氷
点以下の所定温度に冷却し、両検出子(3)(4)の電
極間抵抗を測定し、両測定抵抗値を対比することにより
天候を検知することを特徴とする天候検知方法。
1. An electrode pair (3b), a part of which is exposed at the top.
(3b) (4b) (4b) and its pair insulator (3
a) Two detectors (3) and (4) having (4a) are arranged in close proximity to each other, and the pair insulator (3a) of one of the detectors (3) is heated to a predetermined temperature higher than the freezing point. While heating, the paired insulator (4a) of the other detector (4) is cooled to a predetermined temperature below the freezing point, the interelectrode resistance of both detectors (3) and (4) is measured, and both measured resistances are measured. A weather detection method characterized by detecting the weather by comparing values.
【請求項2】 一部が上部に露出する電極対(3b)
(3b)およびその対間絶縁体(3a)を有し、かつ該
対間絶縁体(3a)を氷点よりも高い所定温度に加温す
る加温手段(3c)を有する第1の検出子(3)と、一
部が上部に露出する電極対(4b)(4b)およびその
対間絶縁体(4a)を有し、かつ該対間絶縁体(4a)
を氷点以下の所定温度に冷却する冷却手段(4c)を有
する第2の検出子(4)と、両検出子(3)(4)の電
極間抵抗を測定し、両測定抵抗値を対比することにより
天候を検知する処理手段(5a)(5b)(5c)とを
有していることを特徴とする天候検知装置。
2. An electrode pair (3b), a part of which is exposed at the top.
A first detector (3b) and its paired insulator (3a), and a heating means (3c) for heating the paired insulator (3a) to a predetermined temperature higher than the freezing point (3c). 3) and a pair of electrodes (4b) (4b) partially exposed at the top and an insulator (4a) between the electrodes, and the insulator (4a) between the electrodes.
The inter-electrode resistances of the second detector (4) and the second detector (3) (4) having a cooling means (4c) for cooling the above to a predetermined temperature below freezing point are measured, and both measured resistance values are compared. A weather detecting device comprising processing means (5a) (5b) (5c) for detecting the weather accordingly.
JP33307595A 1995-12-21 1995-12-21 Method and device for weather detection Pending JPH09171084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33307595A JPH09171084A (en) 1995-12-21 1995-12-21 Method and device for weather detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33307595A JPH09171084A (en) 1995-12-21 1995-12-21 Method and device for weather detection

Publications (1)

Publication Number Publication Date
JPH09171084A true JPH09171084A (en) 1997-06-30

Family

ID=18261991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33307595A Pending JPH09171084A (en) 1995-12-21 1995-12-21 Method and device for weather detection

Country Status (1)

Country Link
JP (1) JPH09171084A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020369A1 (en) * 1999-09-13 2001-03-22 University Corporation For Atmospheric Research Hot plate precipitation measuring system
JP2008298479A (en) * 2007-05-29 2008-12-11 Tokyo Electric Power Co Inc:The Snow sensor
CN100449331C (en) * 2004-05-12 2009-01-07 浙江大学 Grid shaped highly sensitive detector for rain and snow
JP2015524567A (en) * 2012-08-09 2015-08-24 ハロルド ラッセル ベアード Rain intensity sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020369A1 (en) * 1999-09-13 2001-03-22 University Corporation For Atmospheric Research Hot plate precipitation measuring system
US6546353B1 (en) 1999-09-13 2003-04-08 University Corporation For Atmospheric Research Hot plate precipitation measuring system
US6675100B1 (en) 1999-09-13 2004-01-06 University Corporation For Atmospheric Research Hot plate precipitation measuring system
US6708133B1 (en) 1999-09-13 2004-03-16 University Corporation For Atmospheric Research Hot plate precipitation measuring system
US6711521B1 (en) 1999-09-13 2004-03-23 University Corporation For Atmospheric Research Hot plate precipitation measuring system
US6714869B1 (en) 1999-09-13 2004-03-30 University Corporation For Atmospheric Research Hot plate precipitation measuring system
US6751571B1 (en) 1999-09-13 2004-06-15 University Corporation For Atmospheric Research Hot plate precipitation measuring system
CN100449331C (en) * 2004-05-12 2009-01-07 浙江大学 Grid shaped highly sensitive detector for rain and snow
JP2008298479A (en) * 2007-05-29 2008-12-11 Tokyo Electric Power Co Inc:The Snow sensor
JP2015524567A (en) * 2012-08-09 2015-08-24 ハロルド ラッセル ベアード Rain intensity sensor

Similar Documents

Publication Publication Date Title
NO143827B (en) DEVICE FOR AA MAKING A PRIOR WARNING SIGNAL AT THE DANGER OF ISSUING ON A DRIVE ROAD
EP0394256A1 (en) Ice detector circuit.
JPH09171084A (en) Method and device for weather detection
JP4028350B2 (en) Snowfall detection device
KR101792709B1 (en) Ground temperature sensor, snow melting system with the same and the control method thereof
JP2700827B2 (en) Road surface temperature distribution measurement device
JPH02253188A (en) Method for detecting fallen snow state
US6972395B2 (en) Apparatus and method for tracking the melting of frozen precipitation
JPH07111042B2 (en) Road heating control method
JPH02236307A (en) Snow melt controller
JP2000013656A (en) Camera case device
JP2742606B2 (en) Road heating control method
JP3044540B2 (en) Snow and ice detection method for prevention of snow melting and freezing on roofs, roads, etc.
JPS60179648A (en) Snow detector
JP3442114B2 (en) Road heating control device
JP2582670B2 (en) Road heating device control method
JPH0648454Y2 (en) Road condition detector
JPH10160596A (en) Detecting method for freezing of road surface
JPH0643260A (en) Snow fall intensity meter
JP2607695B2 (en) Automatic snow melting equipment
JPH03120494A (en) Road surface state detecting method
JPH0742126A (en) Temperature control method for snow melting facility
JP3488562B2 (en) How to prevent cavitation of road surface moisture sensor
JPH03295455A (en) Method and device for detecting freezing of road surface
JP2003057124A (en) Method for detecting road surface temperature