JPH0916917A - Magneto-resistive magnetic head and its production - Google Patents

Magneto-resistive magnetic head and its production

Info

Publication number
JPH0916917A
JPH0916917A JP16507695A JP16507695A JPH0916917A JP H0916917 A JPH0916917 A JP H0916917A JP 16507695 A JP16507695 A JP 16507695A JP 16507695 A JP16507695 A JP 16507695A JP H0916917 A JPH0916917 A JP H0916917A
Authority
JP
Japan
Prior art keywords
film
sal
magnetic
nitrogen
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16507695A
Other languages
Japanese (ja)
Inventor
Hisao Kurosawa
久夫 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP16507695A priority Critical patent/JPH0916917A/en
Publication of JPH0916917A publication Critical patent/JPH0916917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE: To improve the reproducing characteristics of an MR head by incorporating gaseous nitrogen into an SAL film to lower a magneto-resistive effect and magnetostrictive effect. CONSTITUTION: The SAL film is formed by using a sputtering method and a sputtering gas contg. nitrogen is used, by which >=Swt.% gaseous nitrogen is included into the SAL film. More specifically, an RF magnetron sputtering device of a load lock type is used and the gaseous nitrogen content in gaseous Ar is controlled within a range of 0 to 20% by changing the nitrogen content in the film while the gaseous pressure is maintained constantly under 0.2Pa. The nitrogen-contg. SAL film exhibits a tendency to lowering of magnetostriction and intrinsic resistance change rate with an increase in the nitrogen content. The magneto-resistive effect of the MR film is lowered to <=1/10 and the nitrogen content to decrease the magnetostriction to <=2×10<-7> is 3wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク装置等に
使用される磁気抵抗効果型磁気ヘッドに関するもので、
横バイアス磁界を発生させる軟磁性膜(Soft Adjacent
Layer以下、SAL膜と略記。)の組成とその製造法に
係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect magnetic head used in a magnetic disk device or the like,
A soft magnetic film that generates a lateral bias magnetic field (Soft Adjacent
Hereinafter, abbreviated as SAL film. ) Composition and its manufacturing method.

【0002】[0002]

【従来の技術】近年、磁気記録技術の進歩は著しく、例
えば家庭用VTRの分野では小型、軽量化のために、ま
た磁気ディスク装置の分野では小型、大容量化のために
記録密度の高密度化が意欲的に進められ、磁気抵抗効果
型磁気ヘッド等の実用化が図られている。
2. Description of the Related Art In recent years, the magnetic recording technology has made remarkable progress. For example, in the field of home VTRs, the recording density is high in order to reduce the size and weight, and in the field of magnetic disk devices to reduce the size and increase the capacity. As a result, the magnetoresistive effect type magnetic head and the like are being put to practical use.

【0003】磁気ディスク装置用磁気ヘッドを一例にと
ると、記録・再生動作を同一ヘッドで行うリング型フェ
ライト磁気ヘッド或いはフォトリソグラフィー技術を応
用した誘導型薄膜磁気ヘッドのタイプから、更に記録動
作を誘導型薄膜磁気ヘッドで行い、再生動作を磁気抵抗
効果型磁気ヘッド(以下、MRヘッドと略記)で行う記
録再生分離型磁気ヘッドに進展しつつある。
Taking a magnetic head for a magnetic disk device as an example, a recording operation is further induced from a ring type ferrite magnetic head in which recording / reproducing operation is performed by the same head or an induction type thin film magnetic head applying photolithography technology. Type thin film magnetic head, and a reproducing operation is being progressed to a recording / reproducing separated type magnetic head in which a reproducing operation is performed by a magnetoresistive effect type magnetic head (hereinafter abbreviated as MR head).

【0004】さて、磁気ディスク装置を小型化するため
には、まず磁気記録媒体である磁気ディスクの外径を小
さくする方法が効果的であるが、磁気記録媒体と磁気ヘ
ッドの相対速度が低下してしまい、従来のリング型フェ
ライト磁気ヘッドおよび誘導型薄膜磁気ヘッドでは、充
分な出力を得ることが困難になるという問題を有してい
る。一方、MRヘッドではその出力は相対速度に依存せ
ず、相対速度に無関係に一定であるという特徴を持って
いる。従って、更なる磁気ディスク装置の小型化要請に
対して、MRヘッドの性能向上は必須課題であると言え
る。
In order to reduce the size of the magnetic disk device, it is effective to reduce the outer diameter of the magnetic disk, which is a magnetic recording medium, but the relative speed between the magnetic recording medium and the magnetic head decreases. The conventional ring type ferrite magnetic head and induction type thin film magnetic head have a problem that it is difficult to obtain a sufficient output. On the other hand, the MR head is characterized in that its output does not depend on the relative speed and is constant regardless of the relative speed. Therefore, it can be said that the improvement of the performance of the MR head is an essential issue in response to the demand for further miniaturization of the magnetic disk device.

【0005】MRヘッドは、磁気抵抗効果素子(以下、
MR素子と略記)が記録媒体からの磁界によってその電
気抵抗値が変化する現象を利用するもので、いわゆる再
生専用ヘッドである。このため記録専用ヘッドとして誘
導型薄膜ヘッドが、MRヘッドと同一位置に通常設けら
れる。MRヘッドでは、記録媒体からの信号磁界の極性
を判定すると同時に大きな再生出力が得られるように、
磁気抵抗応答曲線上の直線領域のほぼ中央にその動作点
を選んでいる。このためにMR素子にバイアス磁界を印
加する必要がある。
An MR head is a magnetoresistive effect element (hereinafter,
The MR element (abbreviated as MR element) utilizes a phenomenon that its electric resistance value is changed by a magnetic field from a recording medium, and is a so-called read-only head. For this reason, an inductive thin film head is usually provided as a recording-only head at the same position as the MR head. In the MR head, the polarity of the signal magnetic field from the recording medium is determined, and at the same time, a large reproduction output is obtained.
The operating point is selected approximately in the center of the linear region on the magnetoresistive response curve. Therefore, it is necessary to apply a bias magnetic field to the MR element.

【0006】バイアス磁界印加方法には、セルフ法、ハ
ード膜法、シャント法、バーバーポール法ならびにソフ
トフィルムバイアス法等が知られているが、ソフトフィ
ルムバイアス法が現在の主流である。これらのバイアス
方法は何れも、MR素子の磁化ベクトルと電流ベクトル
が一定の角度(約45°)になるように横バイアスを印
加している。図5にソフトフィルムバイアス法を適用し
たMRヘッドの概略構成を示す。
As a bias magnetic field applying method, a self method, a hard film method, a shunt method, a barber pole method, a soft film bias method and the like are known, and the soft film bias method is the mainstream at present. In all of these bias methods, a lateral bias is applied so that the magnetization vector and the current vector of the MR element form a constant angle (about 45 °). FIG. 5 shows a schematic configuration of an MR head to which the soft film bias method is applied.

【0007】図5において、基板30上にMRヘッド1
0と誘導型薄膜磁気ヘッド20を搭載した録再分離方式
の磁気ヘッドの概略構成を示したものである。記録時
は、上部にある誘導型薄膜磁気ヘッド20のコイル22
に記録電流を流して、磁気ギャップ26により記録媒体
(図示してない。)に記録する。一方再生時は、下部側
のMRヘッド10のMR素子15によって、情報として
書き込まれている記録磁界を読み取るものである。この
MR素子15部を拡大したものが図6である。即ち、絶
縁層34にSAL膜16,非磁性膜14及びMR膜14
が積層される3層構成である。また、MR膜12の両端
部には電極18が配され、センス電流とバイアス電流が
供給される。
In FIG. 5, the MR head 1 is mounted on the substrate 30.
0 shows a schematic structure of a recording / reproducing separation type magnetic head in which the thin film magnetic head 20 of 0 and the induction type thin film magnetic head 20 is mounted. During recording, the coil 22 of the inductive thin film magnetic head 20 on the upper side
A recording current is applied to the recording medium (not shown) through the magnetic gap 26 for recording. On the other hand, during reproduction, the recording magnetic field written as information is read by the MR element 15 of the lower MR head 10. FIG. 6 is an enlarged view of the MR element 15 part. That is, the SAL film 16, the non-magnetic film 14, and the MR film 14 are formed on the insulating layer 34.
Is a three-layer structure in which is laminated. Further, electrodes 18 are arranged on both ends of the MR film 12 to supply a sense current and a bias current.

【0008】ソフトフィルムバイアス法は、MR素子に
隣接して配置された軟磁性膜との磁気的な結合を利用す
るバイアス法である。電極18から注入されるセンス電
流によってSAL膜16が磁化され、その結果MR素子
の横方向にバイアス磁界が印加されることになる。MR
素子に通流されるセンス電流のうち、MR膜12よりS
AL膜16に多く分流すると、再生出力の低下原因にな
るため、SAL膜16の固有抵抗はMR膜12のそれよ
り大きい程好ましい。また、SAL膜16にはMR膜1
2と同時に記録媒体からの磁界を受けるため、SAL膜
の磁気抵抗効果による固有抵抗の変化率が大きいと、M
R素子の再生出力は低下してしまう。従って、SAL膜
の磁気抵抗効果による固有抵抗変化率は極力小さい程良
い。以上の説明から明らかなように、SAL膜はMR膜
とは正反対の特性を持つことが必要であると共に、磁歪
が低いことが磁気ヘッドの構造から要請される。
The soft film bias method is a bias method utilizing magnetic coupling with a soft magnetic film arranged adjacent to the MR element. The SAL film 16 is magnetized by the sense current injected from the electrode 18, and as a result, a bias magnetic field is applied in the lateral direction of the MR element. MR
Of the sense current flowing through the element, S from the MR film 12
Since a large amount of shunt to the AL film 16 causes a reduction in reproduction output, it is preferable that the specific resistance of the SAL film 16 be larger than that of the MR film 12. The SAL film 16 has the MR film 1
At the same time as 2, the magnetic field from the recording medium is received, and if the rate of change of the specific resistance due to the magnetoresistive effect of the SAL film is large, M
The reproduction output of the R element decreases. Therefore, the smaller the resistivity change rate due to the magnetoresistive effect of the SAL film, the better. As is clear from the above description, the SAL film is required to have the opposite characteristics to the MR film, and the structure of the magnetic head is required to have a low magnetostriction.

【0009】MRヘッドの従来からの特有な課題の一つ
に、バルクハウゼンノイズの低減がある。MRヘッドの
MR膜には通常NiFe膜が用いられるが、このNiF
e膜等の磁性体の磁区構造は、磁気エネルギーが最小と
なるように還流型の多磁区状態となっている。記録媒体
からの磁界が印加されると、磁区は回転を始め磁壁移動
が進行するが、膜中の不純物や欠陥によって磁壁移動が
阻害され、磁気抵抗効果の応答曲線が不連続となり、加
えて履歴現象を示すようになる。これに伴い再生出力波
形が歪み、ノイズの増大原因となる。これらを総称して
バルクハウゼンノイズと呼ぶ。バルクハウゼンノイズは
MR素子のみに関わる問題ではなく、MR素子と同じ磁
性体で構成するSAL膜の影響も大きい。磁区の増加原
因は、保磁力が大きい。膜中欠陥数が多い。磁歪
が大きい。など複数の要因が挙げられる。
One of the problems peculiar to the conventional MR head is the reduction of Barkhausen noise. A NiFe film is usually used as the MR film of the MR head.
The magnetic domain structure of the magnetic substance such as the e-film is in a reflux type multi-domain state so that the magnetic energy is minimized. When a magnetic field from the recording medium is applied, the domain begins to rotate and domain wall movement progresses, but the domain wall movement is impeded by impurities and defects in the film, and the response curve of the magnetoresistance effect becomes discontinuous. It begins to show a phenomenon. As a result, the reproduced output waveform is distorted, which causes an increase in noise. These are collectively called Barkhausen noise. Barkhausen noise is not a problem related only to the MR element, but is also greatly affected by the SAL film made of the same magnetic material as the MR element. The cause of the increase in magnetic domains is a large coercive force. There are many defects in the film. Large magnetostriction. There are several factors.

【0010】[0010]

【発明が解決しようとする課題】SAL膜としてNiF
eが多く用いられた例があるが、MR素子に流されるセ
ンス電流のSAL膜への分流により、MR素子の再生出
力が低下するなど実用性に乏しかった。固有抵抗の増加
と磁気抵抗変化率の低減化のため、NiFeにNb、Z
r等を添加した例も見られるが、磁歪の挙動については
触れられていない(M.M.Chen,et al.:
J.Appl.Phys.69(8),5631(19
91)参照)。
NiF as a SAL film
Although there is an example in which a large amount of e is used, it is poor in practicality such that the reproduction output of the MR element is lowered due to the shunting of the sense current flowing in the MR element to the SAL film. In order to increase the specific resistance and reduce the rate of change in magnetic resistance, NiFe is replaced with Nb, Z
There are some examples in which r and the like are added, but the behavior of magnetostriction is not mentioned (MM Chen, et al .:
J. Appl. Phys. 69 (8), 5631 (19
91)).

【0011】本発明者は、NiFe系合金にNb,Zr
及びCrを0〜6wt%添加した薄膜を各々形成し、固
有抵抗変化率、固有抵抗ならびに磁歪を測定した。その
結果を図7〜9に示す。しかし、何れの添加元素におい
ても添加量の増加させても、良い結果が得られなかっ
た。図7および8にあるように、上記の元素を添加する
と固有抵抗変化率は減少し、固有抵抗を増加させること
は可能であるが、添加元素が増えることに伴って図9に
示すように、磁歪は負から正に大幅に増加することが分
かった。
The present inventor has used Nb and Zr for NiFe alloys.
And thin films each containing 0 to 6 wt% of Cr were formed, and the specific resistance change rate, the specific resistance, and the magnetostriction were measured. The results are shown in FIGS. However, good results were not obtained even if the addition amount of any of the additive elements was increased. As shown in FIGS. 7 and 8, when the above elements are added, the rate of change in specific resistance decreases and the specific resistance can be increased, but as the number of added elements increases, as shown in FIG. It was found that the magnetostriction increased significantly from negative to positive.

【0012】SAL膜の固有抵抗変化率は、一桁以上即
ち、MR素子の1/10以下であれば実用上問題ないこ
とがシミレーションの結果判っていた。図7の結果では
無添加の磁気抵抗変化率が約2.2%であるため、約0.
22%以下が目標値となる。この目標値を満足する添加
量は、Zrで約7wt%,Nbで約6wt%,Crで約
4.5wt%以上であることが分かる。また図9からそ
の時の各々の磁歪は、10,6及び7×10-7以上であ
った。このため、何れの元素を用いても固有抵抗変化率
の目標値を満足しつつ、磁歪をゼロ近傍に制御すること
は困難であることが明らかになった。
As a result of simulation, it has been found that there is no practical problem if the rate of change in specific resistance of the SAL film is one digit or more, that is, 1/10 or less of the MR element. In the result of FIG. 7, since the change rate of the magnetoresistance without addition is about 2.2%, it is about 0.0.
The target value is 22% or less. It can be seen that the addition amount satisfying this target value is about 7 wt% for Zr, about 6 wt% for Nb, and about 4.5 wt% or more for Cr. Further, from FIG. 9, the respective magnetostrictions at that time were 10, 6 and 7 × 10 −7 or more. Therefore, it has been revealed that it is difficult to control the magnetostriction to near zero while satisfying the target value of the specific resistance change rate regardless of which element is used.

【0013】[0013]

【課題を解決するための手段】本発明は、SAL膜をス
パッタリング法を適用して、窒素を含有したスパッタガ
スを用いることにより、SAL膜中に3wt%以上の窒
素ガスを含有させることを特徴としている。
The present invention is characterized by applying a sputtering method to a SAL film and using a sputtering gas containing nitrogen so that the SAL film contains 3 wt% or more of nitrogen gas. I am trying.

【0014】[0014]

【作用】磁歪は、成分組成,結晶構造,結晶配向性或い
は規則・不規則格子等に影響される。本発明者は、結晶
配向性に注目し種々検討した結果、窒素ガスの含有の増
加に伴いNiFeの結晶配向性は(111)面配向から
(200)面配向に変化することが明らかになり、更に
配向の変化に伴って磁歪が低下することを見いだしたも
のである。(図1および3参照)ここで窒素含有量の測
定には、ガス分析計を使用した。
Function: Magnetostriction is affected by the composition of components, crystal structure, crystal orientation, ordered / disordered lattice, and the like. As a result of various studies focusing on the crystal orientation, the present inventor has revealed that the crystal orientation of NiFe changes from the (111) plane orientation to the (200) plane orientation as the content of nitrogen gas increases. Further, they found that the magnetostriction decreased with the change of orientation. (See FIGS. 1 and 3) Here, a gas analyzer was used to measure the nitrogen content.

【0015】膜中の窒素が増えると、磁歪および磁気抵
抗効果の目安である固有抵抗の変化率は低下して望まし
い特性となるが、飽和磁束密度が低くなり窒素の含有量
の上限がある。実用的には2〜10wt%であり、3〜
10wt%が最適範囲である。
When the amount of nitrogen in the film increases, the rate of change of the specific resistance, which is a measure of the magnetostriction and the magnetoresistive effect, decreases, which is a desirable characteristic, but the saturation magnetic flux density decreases and there is an upper limit of the nitrogen content. Practically 2 to 10 wt%, 3 to
10 wt% is the optimum range.

【0016】[0016]

【実施例】成膜装置としては、二種類のスパッタ装置を
用いた。即ち、膜組成を変化させる場合は、バッチ式の
RFマグネトロンスパッタを用いて、直径5インチのN
iFeターゲットのエロージョン部に10mm角のN
b、ZrおよびCrチップを各々配置して成膜を行っ
た。NiFeターゲットは、82.8wt%Ni−ba
lFeを使用した。成膜時のArガス圧力は0.4P
a、投入電力密度は6.3W/cm2である。成膜前の到
達真空度は3×10-5Pa以下とし、基板温度は約10
0℃に保持した。
EXAMPLES Two types of sputtering devices were used as film forming devices. That is, when the film composition is changed, a batch type RF magnetron sputter is used to produce N with a diameter of 5 inches.
10 mm square N in the erosion part of the iFe target
The b, Zr and Cr chips were respectively arranged to form a film. The NiFe target is 82.8 wt% Ni-ba.
1Fe was used. Ar gas pressure during film formation is 0.4P
a, input power density is 6.3 W / cm 2 . The ultimate vacuum before film formation is 3 × 10 −5 Pa or less, and the substrate temperature is about 10
It was kept at 0 ° C.

【0017】一方、窒素を導入して成膜する場合は、ロ
ードロック式のRFマグネトロンスパッタ装置を使用し
て、ターゲットは直径6インチ、組成は78.5Ni−
17.5Fe−4wt%Crを用いた。ガス圧力は、0.
2Pa一定に保持しながら、膜中の窒素量を変化させる
ため、Arガス中の窒素ガス量を0〜20%の範囲で制
御することにした。投入電力密度は3.3W/cm2であ
る。成膜前の到達真空度は2×10-5Pa以下とした。
基板温度は室温である。基板材は、直径3インチの酸化
膜付きSiウエハーである。
On the other hand, when nitrogen is introduced to form a film, a load lock type RF magnetron sputtering apparatus is used, the target has a diameter of 6 inches, and the composition is 78.5Ni-.
17.5Fe-4wt% Cr was used. The gas pressure is 0.
In order to change the amount of nitrogen in the film while keeping it constant at 2 Pa, it was decided to control the amount of nitrogen gas in the Ar gas within the range of 0 to 20%. The applied power density is 3.3 W / cm 2 . The ultimate vacuum before film formation was 2 × 10 −5 Pa or less.
The substrate temperature is room temperature. The substrate material is a 3 inch diameter Si wafer with an oxide film.

【0018】図1に膜中の窒素含有量と磁歪の関係を示
すが、窒素含有量の増加に伴い磁歪は低下傾向を示すこ
とが分かる。図2は窒素含有量と固有抵抗変化率の関係
を示すが、磁歪と同様に窒素含有量の増加に伴い固有抵
抗変化率も低下傾向を示す。図1および2の実験による
確認から明らかな如く、SAL膜中に窒素を含有させれ
ば、相反する磁歪と固有抵抗変化率の特性を同時に低下
させることが可能である。
FIG. 1 shows the relationship between the nitrogen content in the film and the magnetostriction. It can be seen that the magnetostriction tends to decrease as the nitrogen content increases. FIG. 2 shows the relationship between the nitrogen content and the rate of change in specific resistance. Similar to magnetostriction, the rate of change in specific resistance also tends to decrease as the content of nitrogen increases. As is clear from the confirmation by the experiments of FIGS. 1 and 2, if nitrogen is contained in the SAL film, it is possible to simultaneously reduce the contradictory characteristics of magnetostriction and specific resistance change rate.

【0019】また、MR膜の磁気抵抗効果を1/10以
下に下げると共に、磁歪を2×10ー7以下とすることが
できる窒素含有量は、3wt%以上であることが図1お
よび2から明らかである。図3のX線回折結果を参照す
れば、窒素含有によって結晶配向が変化することが分か
る。窒素含有ゼロの場合は、結晶配向が(111)面配
向である。しかし、5wt%の場合(111)面配向が
殆ど消滅し、代わって(200)面配向が僅かながら生
じる。更に、10wt%にすると(200)面配向のみ
になる。
1 and 2 that the nitrogen content that can reduce the magnetoresistive effect of the MR film to 1/10 or less and the magnetostriction to 2 × 10 −7 or less is 3 wt% or more. it is obvious. Referring to the X-ray diffraction result of FIG. 3, it can be seen that the crystal orientation changes depending on the nitrogen content. When the nitrogen content is zero, the crystal orientation is the (111) plane orientation. However, in the case of 5 wt%, the (111) plane orientation almost disappears and, instead, the (200) plane orientation occurs slightly. Further, if it is 10 wt%, only (200) plane orientation is obtained.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
を適用することにより従来技術では相反する特性であっ
たSAL膜の磁歪および固有抵抗変化率の低減を、窒素
を膜中に含有させることにより達成できる。窒素ガスま
たはアルゴン+窒素の混合ガスを含む雰囲気中で、スッ
パタリング法で成膜するため、容易に且つ精度良く制御
できる製造方法である。これはMRヘッドの再生特性向
上につながるものである。
As is apparent from the above description, by applying the present invention, the reduction of the magnetostriction and the specific resistance change rate of the SAL film, which is a contradictory characteristic in the prior art, is contained in the film. Can be achieved by Since the film is formed by the sputtering method in an atmosphere containing nitrogen gas or a mixed gas of argon and nitrogen, the manufacturing method can be easily and accurately controlled. This leads to improvement of reproduction characteristics of the MR head.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による窒素含有量と磁歪の関係を示す。FIG. 1 shows the relationship between nitrogen content and magnetostriction according to the present invention.

【図2】本発明による窒素含有量と固有抵抗変化率の関
係を示す。
FIG. 2 shows the relationship between the nitrogen content and the rate of change in specific resistance according to the present invention.

【図3】NiFe成膜時の窒素含有量とX線回折パタ−
ンの関係である。
Fig. 3 Nitrogen content and X-ray diffraction pattern during NiFe film formation
Relationship.

【図4】窒素含有量と飽和磁束密度の関係である。FIG. 4 is a relationship between nitrogen content and saturation magnetic flux density.

【図5】録再分離型磁気ヘッドの構成を示す。FIG. 5 shows a structure of a recording / reproducing separated magnetic head.

【図6】磁気抵抗効果型磁気ヘッドのMR素子部の拡大
図である。
FIG. 6 is an enlarged view of an MR element portion of a magnetoresistive effect magnetic head.

【図7】各種添加元素の含有量と固有抵抗変化率の関係
を示す。
FIG. 7 shows the relationship between the content of various additive elements and the rate of change in specific resistance.

【図8】各種添加元素の含有量と固有抵抗の関係を示
す。
FIG. 8 shows the relationship between the content of various additive elements and the specific resistance.

【図9】各種添加元素の含有量と磁歪の関係を示す。FIG. 9 shows the relationship between the content of various additive elements and magnetostriction.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板表面に形成された絶縁層上に軟磁性
膜(SAL膜),非磁性膜及び磁気抵抗効果膜(MR
膜)を積層し、前記MR膜の両端部には電極を配し、更
に磁気遮蔽膜および保護膜を有する磁気抵抗効果型磁気
ヘッドにおいて、前記SAL膜中には窒素ガスを含有さ
せて磁気抵抗効果および磁歪効果を低減させたことを特
徴とする磁気抵抗効果型磁気ヘッド。
1. A soft magnetic film (SAL film), a non-magnetic film and a magnetoresistive effect film (MR) on an insulating layer formed on the surface of a substrate.
A magnetoresistive head having a magnetic shielding film and a protective film, wherein the SAL film contains nitrogen gas and the magnetoresistive resistance is increased. A magnetoresistive effect magnetic head characterized by reducing the effect and the magnetostrictive effect.
【請求項2】 請求項1において、前記SAL膜はNi
Fe系合金であると共に、3wt%以上の窒素ガスを含
有することを特徴とする磁気抵抗効果型磁気ヘッド。
2. The SAL film according to claim 1, wherein the SAL film is Ni.
A magnetoresistive effect magnetic head comprising an Fe-based alloy and containing 3 wt% or more of nitrogen gas.
【請求項3】 請求項2において、前記SAL膜の磁気
抵抗効果による固有抵抗変化率は前記MR膜のそれの1
/10以下、または磁歪は3×10ー7以下であることを
特徴とする磁気抵抗効果型磁気ヘッド。
3. The resistivity change rate due to the magnetoresistive effect of the SAL film according to claim 2, which is one of that of the MR film.
/ 10 or less, or a magnetoresistive head, wherein the magnetostriction is 3 × 10 -7 or less.
【請求項4】 請求項2または3において、前記SAL
膜の飽和磁束密度は0.5T(テスラ)以上であることを特
徴とする磁気抵抗型磁気ヘッド。
4. The SAL according to claim 2 or 3,
A magnetoresistive magnetic head characterized in that the saturation magnetic flux density of the film is 0.5 T (tesla) or more.
【請求項5】 請求項1〜4のいずれかにおいて、前記
SAL膜はスパッタリング法を用いて、窒素ガスかまた
はアルゴン+窒素の混合ガスを含む雰囲気中で成膜する
ことを特徴とする磁気抵抗効果型磁気ヘッドの製造方
法。
5. The magnetoresistive device according to claim 1, wherein the SAL film is formed by a sputtering method in an atmosphere containing nitrogen gas or a mixed gas of argon and nitrogen. Method of manufacturing effective magnetic head.
JP16507695A 1995-06-30 1995-06-30 Magneto-resistive magnetic head and its production Pending JPH0916917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16507695A JPH0916917A (en) 1995-06-30 1995-06-30 Magneto-resistive magnetic head and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16507695A JPH0916917A (en) 1995-06-30 1995-06-30 Magneto-resistive magnetic head and its production

Publications (1)

Publication Number Publication Date
JPH0916917A true JPH0916917A (en) 1997-01-17

Family

ID=15805418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16507695A Pending JPH0916917A (en) 1995-06-30 1995-06-30 Magneto-resistive magnetic head and its production

Country Status (1)

Country Link
JP (1) JPH0916917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG106659A1 (en) * 2001-05-31 2004-10-29 Ibm Method of making a spin valve sensor with a free layer structure sputter deposited in a nitrogen atmosphere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG106659A1 (en) * 2001-05-31 2004-10-29 Ibm Method of making a spin valve sensor with a free layer structure sputter deposited in a nitrogen atmosphere

Similar Documents

Publication Publication Date Title
US6172859B1 (en) Magnetoresistive head and magnetic disk apparatus
EP0851411B1 (en) Thin film magnetic head and magnetic recording/reproducing apparatus
JP3388685B2 (en) Magnetic head
US7209326B2 (en) Magnetoresistive head and manufacturing method thereof
JP2007200428A (en) Magnetoresistive magnetic head and its manufacturing method
Su et al. Laminated CoZr amorphous thin‐film recording heads
JPH01124108A (en) Thin-film magnetic head
JPH0916917A (en) Magneto-resistive magnetic head and its production
JP3647306B2 (en) Magnetoresistive element and magnetoresistive memory element
JPH10340431A (en) Magneto-resistance effect type head and magnetic recording/reproducing device
JP3127074B2 (en) Magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JP3232592B2 (en) Magnetic head
JPH0498608A (en) Magnetic head
JPH09138919A (en) Magnetoresistance effect magnetic head and magnetic recording reproducing device
JPH10222814A (en) Magneto-resistive effect type reproducing head
JPH06195645A (en) Magneto-resistance effect type head and magnetic recorder formed by using this head
JPS5987616A (en) Magnetic thin film head
JPH0483313A (en) Soft magnetic thin film and magnetic head
JPH11296820A (en) Magnetic head of magnetoresistance type
JP2000137909A (en) Thin-film magnetic head
JPH1070324A (en) Magnetoresistive sensor with multilayer magnetic thin film layer
JPH0354713A (en) Magneto-resistance effect head
JPH09245318A (en) Magnetoresistive head
JPH11213345A (en) Magneto-resistance effect type magnetic head, its production, and information recording and reproducing device