JPH09167587A - Scanning electron microscope - Google Patents

Scanning electron microscope

Info

Publication number
JPH09167587A
JPH09167587A JP32914495A JP32914495A JPH09167587A JP H09167587 A JPH09167587 A JP H09167587A JP 32914495 A JP32914495 A JP 32914495A JP 32914495 A JP32914495 A JP 32914495A JP H09167587 A JPH09167587 A JP H09167587A
Authority
JP
Japan
Prior art keywords
deflection
deflector
sample
magnetic field
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32914495A
Other languages
Japanese (ja)
Inventor
Hiroko Iwabuchi
裕子 岩淵
Mitsugi Sato
佐藤  貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32914495A priority Critical patent/JPH09167587A/en
Publication of JPH09167587A publication Critical patent/JPH09167587A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low-magnification image with its small distortion by means of an object lens with its short focus distance. SOLUTION: This microscope is provided with deflectors 7a and 7b made of their upper and lower two stages spaced in a light-axis direction to scan a primary electron beam 2 two-dimensionally on a sample 8 and arranged, a secondary signal 14 generated from the sample is detected, and a sample image is obtained in a CRT12. When the two-dimensional deflection position of the primary electron beam on the sample is (X, Y), a deflection magnetic field BxU<pper> in an X direction and a deflection magnetic field BxU<pper> in a Y direction which are generated by means of a deflector 7a at the upper stage and a deflection magnetic field BxL<ower> in an X direction and a deflection magnetic field ByL<ower> in a Y direction which are generated by a deflector 7b at the lower stage are set as follows assuming the constants to be Ku, Kt, and θ: BxU<pper> =KuX, ByU<pper> =KuY, BxL<ower> =Kt (Xcos θ-Ysin θ), ByL<ower> =Kt (Ycos θ+Xsin θ).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一次電子線照射に
よって試料から発生される二次電子を検出して試料の走
査像を得る走査電子顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning electron microscope for detecting a secondary electron generated from a sample by irradiating a primary electron beam to obtain a scanned image of the sample.

【0002】[0002]

【従来の技術】走査電子顕微鏡においては、対物レンズ
よりも電子源側に配置した偏向器によって一次電子線を
試料上で二次元走査したり、一次電子線の位置を試料上
で移動させることが行われる。このとき、偏向器によっ
て偏向された一次電子線の軌道が対物レンズのレンズ主
面近傍からはずれると、レンズ収差が発生して、ビーム
が広がったり、試料上でのビーム位置が所望の位置から
ずれたりするため、偏向器を光軸に沿って上下二段設け
て、振り戻し偏向方式により、偏向支点(二段偏向器で
振り戻された電子の軌道が再び光軸と交わる点)が対物
レンズの主面近傍になるようにしている。このとき、偏
向支点が一次電子線の偏向量によらず定点となるよう
に、二段の偏向器で発生するX方向及びY方向の偏向磁
界は、上下偏向器でそれぞれ一致するようにX方向及び
Y方向の偏向コイルを配置している。
2. Description of the Related Art In a scanning electron microscope, a primary electron beam can be two-dimensionally scanned on a sample or a position of the primary electron beam can be moved on the sample by a deflector arranged closer to an electron source than an objective lens. Done. At this time, if the trajectory of the primary electron beam deflected by the deflector deviates from the vicinity of the lens main surface of the objective lens, lens aberration occurs, the beam spreads, and the beam position on the sample deviates from the desired position. For this reason, the deflector is provided in two stages above and below the optical axis, and the deflection fulcrum (the point at which the trajectory of the electron swung back by the two-stage deflector intersects the optical axis again) is provided by the swing-back deflection method. It is arranged so that it is close to the main surface of. At this time, the X-direction and Y-direction deflection magnetic fields generated by the two-stage deflectors are aligned in the X-direction so that the deflection fulcrum is a fixed point regardless of the deflection amount of the primary electron beam. And Y-direction deflection coils are arranged.

【0003】[0003]

【発明が解決しようとする課題】一般に、高分解能な像
を得るためには、対物レンズの焦点距離を短くする必要
がある。すると偏向支点と試料との距離が短くなるた
め、試料上の広い領域にわたってビームを偏向しようと
すると、レンズの収差が大きくなって、像がぼけたり、
歪が発生する欠点があった。このため、特に高分解能が
得られる走査電子顕微鏡ほど、歪のない低倍率像の実現
が困難になり、観察視野を見つけるのが困難になる問題
があった。
Generally, in order to obtain a high resolution image, it is necessary to shorten the focal length of the objective lens. Then, the distance between the deflection fulcrum and the sample becomes short, so when trying to deflect the beam over a wide area on the sample, the aberration of the lens becomes large and the image becomes blurred,
There was a drawback that distortion occurred. Therefore, there is a problem that it becomes more difficult to realize a low-magnification image without distortion and it is difficult to find an observation field of view as much as a scanning electron microscope that can obtain a high resolution.

【0004】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、焦点距離が短くても歪の少
ない低倍率像を得ることのできる走査電子顕微鏡を提供
することを目的とする。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a scanning electron microscope capable of obtaining a low-magnification image with less distortion even with a short focal length. And

【0005】[0005]

【課題を解決するための手段】本発明者らは、高分解能
が得られる走査電子顕微鏡で低倍率の像が歪む原因につ
いて検討する過程で、上段と下段の偏向器の偏向磁界を
互いに適切な角度だけ回転させれば、対物レンズの焦点
距離が短くても歪の小さな低倍率像が得られることを見
出した。
In the process of examining the cause of distortion of low-magnification images in a scanning electron microscope capable of obtaining high resolution, the present inventors set the deflection magnetic fields of the upper and lower deflectors appropriately to each other. It was found that by rotating the lens by an angle, a low-magnification image with small distortion can be obtained even if the focal length of the objective lens is short.

【0006】本発明はこのような知見に基づいてなされ
たもので、上段の偏向器の直交偏向座標軸と下段の偏向
器の直交偏向座標軸を光軸の回りに所定角度だけ相対的
に回転させたことを特徴とする。ここで、偏向器の直交
偏向座標軸とは、一次電子線を試料上で二次元的に走査
するためのX及びY方向の走査信号に対応して、偏向器
上で偏向される一次電子線の偏向方向を定める直交座標
軸を指す。なお、一次電子線の偏向方向は、偏向器で発
生する偏向磁界と光軸に対して直交する方向となる。
The present invention has been made based on such knowledge, and the orthogonal deflection coordinate axis of the upper deflector and the orthogonal deflection coordinate axis of the lower deflector are relatively rotated about the optical axis by a predetermined angle. It is characterized by Here, the orthogonal deflection coordinate axis of the deflector means the primary electron beam deflected on the deflector in correspondence with the scanning signals in the X and Y directions for two-dimensionally scanning the primary electron beam on the sample. It refers to the Cartesian coordinate axis that determines the deflection direction. The deflection direction of the primary electron beam is a direction orthogonal to the deflection magnetic field generated by the deflector and the optical axis.

【0007】上段の偏向器の直交偏向座標軸と下段の偏
向器の直交偏向座標軸の相対回転は、上段の偏向器と下
段の偏向器のコイル巻線スロットの位置を光軸の回りに
相対的に回転する等して上段の偏向器のコイルと下段の
偏向器の対応するコイルを光軸の回りに相対的に回転し
て配置することにより、若しくはコイルの配置は変えず
に上段の偏向器と下段の偏向器のコイルに流す偏向電流
を制御することにより、あるいはその両者を組み合わせ
ることにより、試料上での一次電子線の二次元偏向位置
を(X,Y)とするとき、上段の偏向器で発生するX方
向の偏向磁界BxUpper及びY方向の偏向磁界B
Upper、下段の偏向器で発生するX方向の偏向磁界B
Lower及びY方向の偏向磁界ByLowerが、kU,kL
びθを定数として次の関係を満たすようにすることによ
り実現される。
The relative rotation of the orthogonal deflection coordinate axis of the upper deflector and the orthogonal deflection coordinate axis of the lower deflector is such that the positions of the coil winding slots of the upper deflector and the lower deflector are relative to each other around the optical axis. By rotating the coil of the upper deflector and the corresponding coil of the lower deflector by rotating relative to each other around the optical axis, or by arranging the coils without changing the coil arrangement, When the two-dimensional deflection position of the primary electron beam on the sample is set to (X, Y) by controlling the deflection current flowing in the coil of the lower deflector, or by combining the two, the upper deflector X-direction deflection magnetic field Bx Upper and Y-direction deflection magnetic field B
y Upper , the deflection magnetic field B in the X direction generated by the lower deflector
x Lower and Y direction deflection magnetic field By Lower are realized by making the following relationships with k U , k L and θ as constants.

【0008】BxUpper=kUX ByUpper=kUY BxLower=kL(Xcosθ−Ysinθ) ByLower=kL(Ycosθ+Xsinθ) 本発明によると、高分解能走査電子顕微鏡においても歪
の小さい低倍率像を得ることができるため、視野捜しに
極めて有効である。
Bx Upper = k U X By Upper = k U Y Bx Lower = k L (Xcos θ-Y sin θ) By Lower = k L (Y cos θ + X sin θ) According to the present invention, even in a high resolution scanning electron microscope, a low magnification with a small distortion is obtained. Since it is possible to obtain an image, it is extremely effective for searching the field of view.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して本発明を詳
細に説明する。図1は、本発明の一つの実施の形態によ
る走査電子顕微鏡の概略構成図である。陰極1と引出し
電極3の間に印加される電圧V1により陰極1から放出
された一次電子線2は、陰極1と加速電極4の間に印加
される印加電圧Vaccで加速される。一次電子線2
は、レンズ制御電源13で制御された集束レンズ5及び
対物レンズ6により細く絞られて試料8上に照射され、
上段の偏向器7a及び下段の偏向器7bからなる上下二
段の偏向器によって試料上を二次元的に走査される。1
0は絞りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a scanning electron microscope according to an embodiment of the present invention. The primary electron beam 2 emitted from the cathode 1 by the voltage V1 applied between the cathode 1 and the extraction electrode 3 is accelerated by the applied voltage Vacc applied between the cathode 1 and the acceleration electrode 4. Primary electron beam 2
Is focused on by the focusing lens 5 and the objective lens 6 controlled by the lens control power source 13 and irradiated onto the sample 8.
The sample is two-dimensionally scanned by upper and lower two-stage deflectors including an upper-stage deflector 7a and a lower-stage deflector 7b. 1
0 is an aperture.

【0010】偏向器7a及び7bの偏向信号は、観察倍
率に応じて偏向制御部11により制御される。一次電子
線2の照射によって試料8から発生する二次電子等の二
次信号14は、二次信号検出器9によって検出される。
二次信号検出器9の出力を、偏向制御部11からの偏向
信号を走査信号とするCRT等の像表示装置12の輝度
変調信号とすることで、像表示装置12に試料の拡大像
が表示される。
The deflection signals of the deflectors 7a and 7b are controlled by the deflection controller 11 according to the observation magnification. The secondary signal 14 such as secondary electrons generated from the sample 8 by the irradiation of the primary electron beam 2 is detected by the secondary signal detector 9.
By using the output of the secondary signal detector 9 as a brightness modulation signal of the image display device 12 such as a CRT that uses the deflection signal from the deflection control unit 11 as a scanning signal, a magnified image of the sample is displayed on the image display device 12. To be done.

【0011】図2は、上段の偏向器7aと下段の偏向器
7bからなる二段の偏向器の例を示す。この二段の偏向
器は、一次電子線が通過できるように中心が中空になっ
た円筒部材21に上下の巻枠22,23を固定し、各巻
枠22,23に導線を巻回して偏向コイルを形成したも
のである。上段の巻枠22は、図の例では8箇所の巻線
スロット25を有し、この巻線スロット25に導線を巻
回することで、X方向の偏向磁界BxUpper発生用のコ
イル31a,31b、及びY方向の偏向磁界ByUpper
発生用のコイル32a,32bを形成する。同様に、下
段の巻枠23は、図の例では8箇所に巻線スロット26
を有し、この巻線スロット26に導線を巻回すること
で、X方向の偏向磁界BxLower発生用のコイル33
a,33b、及びY方向の偏向磁界ByLower発生用の
コイル34a,34bを形成する。なお、巻線スロット
25,26の数は、X方向の偏向磁界及びY方向の偏向
磁界を発生するコイルを巻回できればよいのであって、
8本に限られるものではない。
FIG. 2 shows an example of a two-stage deflector consisting of an upper deflector 7a and a lower deflector 7b. In this two-stage deflector, upper and lower winding frames 22 and 23 are fixed to a cylindrical member 21 having a hollow center so that a primary electron beam can pass, and a winding wire is wound around each winding frame 22 and 23 to deflect the deflection coil. Is formed. In the illustrated example, the upper winding frame 22 has eight winding slots 25. By winding a conductive wire around the winding slots 25, the coils 31a and 31b for generating the deflection magnetic field Bx Upper in the X direction are formed. , And Y-direction deflection magnetic field By Upper
The generating coils 32a and 32b are formed. Similarly, the lower winding frame 23 has winding slots 26 at eight locations in the illustrated example.
By winding a conducting wire around the winding slot 26, the coil 33 for generating the deflection magnetic field Bx Lower in the X direction is provided.
a, 33b and coils 34a, 34b for generating the Y direction deflection magnetic field By Lower are formed. The number of the winding slots 25 and 26 need only be such that a coil generating a deflection magnetic field in the X direction and a deflection magnetic field in the Y direction can be wound.
The number is not limited to eight.

【0012】ここで、図3に示すように、上段偏向器7
aを構成する巻枠22と、下段偏向器7bを構成する巻
枠23は光軸を軸としてθだけ相対的に回転しており、
偏向制御部11からの信号(X,Y)により、偏向器7
aは下式で表されるX方向の偏向磁界BxUpper及びY
方向の偏向磁界ByUpperを発生し、偏向器7bは下式
で表されるX方向の偏向磁界BxLower及びY方向の偏
向磁界ByLowerをそれぞれ発生する。ここで、kU及び
Lは偏向器の形状や配置で決まる定数である。また回
転角θは、予め実験により低倍率像の歪やぼけが最小に
なるように決められている。
Here, as shown in FIG. 3, the upper deflector 7
The winding frame 22 forming a and the winding frame 23 forming the lower deflector 7b are relatively rotated by θ with respect to the optical axis.
The deflector 7 is driven by the signal (X, Y) from the deflection controller 11.
a is a deflection magnetic field Bx Upper and Y in the X direction expressed by the following equation.
A deflection magnetic field By Upper in the direction is generated, and the deflector 7b generates a deflection magnetic field Bx Lower in the X direction and a deflection magnetic field By Lower in the Y direction, which are represented by the following equations. Here, k U and k L are constants determined by the shape and arrangement of the deflector. Further, the rotation angle θ is previously determined by experiments so that distortion and blurring of the low-magnification image are minimized.

【0013】BxUpper=kUX ByUpper=kUY BxLower=kL(Xcosθ−Ysinθ) ByLower=kL(Ycosθ+Xsinθ) なお、下段の偏向器7bの発生磁界のX、Y方向を基準
にとれば、上式は以下のように表すことができること
は、明らかである。
Bx Upper = k U X By Upper = k U Y Bx Lower = k L (Xcosθ-Ysinθ) By Lower = k L (Ycosθ + Xsinθ) The X and Y directions of the magnetic field generated by the lower deflector 7b are used as a reference. Obviously, the above equation can be expressed as follows.

【0014】BxUpper=kU(Xcosθ−Ysinθ) ByUpper=kU(Ycosθ+Xsinθ) BxLower=kLX ByLower=kLY 図4は、従来の二段偏向器を用いて、対物レンズの焦点
距離が約2mmと極めて短い条件で撮影した縦横直交す
る銅メッシュの走査電子顕微鏡写真である(表示視野
は、縦:約65μm、横:約75μmである)。像の周
辺に歪やぼけが発生しているのが見て取れる。図5は、
本発明に従い図3の角度θを2゜として上段の偏向器と
下段の偏向器の偏向磁界を相対的に回転させたときの、
同じ銅メッシュに対する走査電子顕微鏡写真である。図
5の表示視野は図4と同一であるにもかかわらず、図4
に見られる像周辺の歪やぼけが完全になくなっている。
なお、この上下の偏向器の偏向磁界の回転が高倍率での
観察に悪影響を及ぼすことはない。
Bx Upper = k U (Xcos θ-Ysin θ) By Upper = k U (Ycos θ + Xsin θ) Bx Lower = k L X By Lower = k L Y FIG. It is a scanning electron microscope photograph of a copper mesh that is vertically and horizontally orthogonal to each other and is taken under an extremely short focal length of about 2 mm (display field is about 65 μm in length and about 75 μm in width). Distortion and blurring can be seen around the image. FIG.
According to the present invention, when the angle θ of FIG. 3 is set to 2 ° and the deflection magnetic fields of the upper deflector and the lower deflector are relatively rotated,
It is a scanning electron micrograph for the same copper mesh. Although the display field of view of FIG. 5 is the same as that of FIG.
Distortion and blurring around the image seen in are completely eliminated.
The rotation of the deflection magnetic fields of the upper and lower deflectors does not adversely affect observation at high magnification.

【0015】図6により、上段の偏向器の偏向磁界と下
段の偏向器の偏向磁界を互いに回転させる他の方法につ
いて説明する。この方法は、上段の偏向器7aと下段の
偏向器7bで対応する偏向コイルの光軸の回りの角度位
置は各々一致しているが、一次電子線を偏向するための
励磁電流の制御方法に特徴がある。試料上での一次電子
線の二次元偏向位置を(X,Y)とするとき、上段の偏
向器7aのX方向の偏向電流IxUpper及びY方向の偏
向電流IyUpperは、偏向量信号X,Yを増幅率dUの増
幅器41,42で増幅して次のように設定される。
Another method of rotating the deflecting magnetic field of the upper deflector and the deflecting magnetic field of the lower deflector will be described with reference to FIG. In this method, the angular positions around the optical axis of the corresponding deflection coils in the upper deflector 7a and the lower deflector 7b are the same, but the excitation current control method for deflecting the primary electron beam is different. There are features. When the two-dimensional deflection position of the primary electron beam on the sample is (X, Y), the deflection current Ix Upper in the X direction and the deflection current Iy Upper in the Y direction of the upper deflector 7a are the deflection amount signals X, The Y is amplified by the amplifiers 41 and 42 having the amplification factor d U and set as follows.

【0016】IxUpper=dUX IyUpper=dUY 一方、下段の偏向器7bのX方向の偏向電流IxLower
及びY方向の偏向電流IyLowerは、偏向量信号X,Y
に係数器43,44,45,46でcosθやsinθを乗算
し、それを加算増幅器47,48に入力して加算するこ
とで、次の関係式を満たすように設定される。
Ix Upper = d U X Iy Upper = d U Y On the other hand, the deflection current Ix Lower of the lower deflector 7b in the X direction
And the deflection currents Iy Lower in the Y direction are the deflection amount signals X and Y.
Are multiplied by cos θ and sin θ in coefficient units 43, 44, 45 and 46, and are input to the addition amplifiers 47 and 48 to be added, whereby the following relational expressions are satisfied.

【0017】IxLower=dL(Xcosθ−Ysinθ) IyLower=dL(Ycosθ+Xsinθ) ここで、dU及びdLは偏向器の形状や配置で決まる定数
である。また回転角θは、予め実験により低倍率像の歪
やぼけが最小になるように決められる。偏向電流は、次
のように制御しても同様の効果が得られる。
Ix Lower = d L (Xcos θ−Y sin θ) Iy Lower = d L (Y cos θ + X sin θ) where d U and d L are constants determined by the shape and arrangement of the deflector. The rotation angle θ is determined in advance by experiments so that distortion and blurring of the low-magnification image are minimized. The same effect can be obtained by controlling the deflection current as follows.

【0018】IxUpper=dU(Xcosθ−Ysinθ) IyUpper=dU(Ycosθ+Xsinθ) IxLower=dLX IyLower=dLY 図7及び図8により、上段の偏向器の直交偏向座標軸と
下段の偏向器の直交偏向座標軸を互いにθだけ回転させ
る他の方法について説明する。この方法では、図7に示
すように、上段の偏向器7aと下段の偏向器7bで対応
する偏向コイル51a,51bと53a,53b、及び
52a,52bと54a,54bの光軸の回りの角度位
置は各々一致しているが、下段の偏向器7bの巻枠23
の巻線スロットには、X方向の偏向磁界発生用コイル5
3a,53b、Y方向の偏向磁界発生用コイルの他に、
下段の偏向器の直交偏向座標軸をθだけ回転させるため
の補助コイル57a,57b及び58a,58bが重ね
て巻かれている。
Ix Upper = d U (Xcos θ-Y sin θ) Iy Upper = d U (Y cos θ + X sin θ) Ix Lower = d L X Iy Lower = d L Y The orthogonal deflection coordinate axes of the deflector in the upper stage and the lower stage in FIG. 7 and FIG. Another method of rotating the orthogonal deflection coordinate axes of the deflector of FIG. In this method, as shown in FIG. 7, the angles around the optical axes of the deflection coils 51a, 51b and 53a, 53b corresponding to the upper deflector 7a and the lower deflector 7b, and 52a, 52b and 54a, 54b, respectively. The positions are the same, but the winding frame 23 of the lower deflector 7b
In the winding slot of the
3a, 53b, in addition to the Y-direction deflection magnetic field generating coil,
Auxiliary coils 57a, 57b and 58a, 58b for rotating the orthogonal deflection coordinate axis of the lower deflector by θ are wound in layers.

【0019】図8は、下段の偏向器7bのY方向の偏向
磁界発生用コイルと補助の接続関係を示す。図8に示す
ように、Y方向の偏向磁界発生用コイル54a,54b
とX方向の補助コイルコイル57a,57bは直列に接
続されており、補助コイル57a,57bにはインピー
ダンスZが並列に接続されている。従って、Y方向の偏
向磁界発生用コイル54a,54bY偏向の偏向電流I
yが流れるが、X方向の補助コイル57a,57bには
偏向電流Ixcが流れ、残りの電流はインピーダンスZ
に分流される。
FIG. 8 shows the auxiliary connection relationship between the Y-direction deflection magnetic field generating coil of the lower deflector 7b. As shown in FIG. 8, Y-direction deflection magnetic field generating coils 54a and 54b
And the auxiliary coil coils 57a and 57b in the X direction are connected in series, and the impedance Z is connected in parallel to the auxiliary coils 57a and 57b. Therefore, the deflection current I for Y-direction deflection magnetic field generating coils 54a and 54b Y deflection
Although y flows, the deflection current Ixc flows through the auxiliary coils 57a and 57b in the X direction, and the remaining current is impedance Z.
Shunted.

【0020】Y方向の偏向コイル54a,54bで発生
する磁界をBy、X方向の補助コイル57a,57bで
発生する磁界をBxcとすると、Y方向の偏向電流Iy
で発生する偏向磁界By’はByとBxcとの合成磁界
となるため、補助コイル57a,57bを用いないとき
のY方向の偏向磁界に対してBy’は次式で表される角
度θだけ光軸の回りに回転する。
When the magnetic field generated by the Y-direction deflection coils 54a and 54b is By and the magnetic field generated by the X-direction auxiliary coils 57a and 57b is Bxc, the Y-direction deflection current Iy is given.
Since the deflection magnetic field By ′ generated in step S1 is a combined magnetic field of By and Bxc, by the deflection magnetic field in the Y direction when the auxiliary coils 57a and 57b are not used, By ′ is the angle θ represented by the following equation. Rotate around an axis.

【0021】 θ=tan-1(|Bxc|/|By|)=(Nxc・Ixc)/(Ny・Iy) =(Nxc/Ny)・{Z/(Zxc+Z)} ここで、Zxcは補正コイル57a,57bのインピー
ダンスを表し、Ny及びNxcはそれぞれY方向の偏向
コイル54a,54b及び補助コイル57a,57bの
コイル巻数を表す。すなわち、補助コイルの巻数Nxc
とインピーダンスZxcを適切に選択することにより、
Y方向の偏向磁界を予め実験で求めた角度θだけ回転さ
せることができる。
Θ = tan −1 (| Bxc | / | By |) = (Nxc · Ixc) / (Ny · Iy) = (Nxc / Ny) · {Z / (Zxc + Z)} where Zxc is a correction coil 57a and 57b, and Ny and Nxc represent the number of coil turns of the Y-direction deflection coils 54a and 54b and the auxiliary coils 57a and 57b, respectively. That is, the number of turns of the auxiliary coil Nxc
And the impedance Zxc are selected appropriately,
The deflection magnetic field in the Y direction can be rotated by the angle θ obtained in advance by an experiment.

【0022】ここではY方向の偏向磁界をθだけ回転さ
せる方法について説明したが、X方向の偏向磁界も、Y
方向の偏向磁界発生用コイル54a,54bに重ねて巻
いた補助コイル58a,58bを用いて全く同様にして
回転させることができる。
Although the method of rotating the deflection magnetic field in the Y direction by θ is explained here, the deflection magnetic field in the X direction is also changed to Y.
Auxiliary coils 58a and 58b, which are wound on the direction-deflecting magnetic field generating coils 54a and 54b, can be rotated in exactly the same manner.

【0023】[0023]

【発明の効果】本発明によれば、高分解能化を図るため
に対物レンズの焦点距離を短くした場合でも、歪の小さ
い低倍率像が得られる。
According to the present invention, a low-magnification image with small distortion can be obtained even when the focal length of the objective lens is shortened in order to achieve high resolution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】走査電子顕微鏡の概略構成図。FIG. 1 is a schematic configuration diagram of a scanning electron microscope.

【図2】偏向器の一例を示す略図。FIG. 2 is a schematic diagram showing an example of a deflector.

【図3】上段の偏向器と下段の偏向器の関係を説明する
図。
FIG. 3 is a diagram illustrating a relationship between an upper deflector and a lower deflector.

【図4】従来の走査電子顕微鏡による低倍率像。FIG. 4 is a low-magnification image obtained by a conventional scanning electron microscope.

【図5】本発明の走査電子顕微鏡による低倍率像。FIG. 5 is a low-magnification image obtained by the scanning electron microscope of the present invention.

【図6】偏向電流の制御ブロック図。FIG. 6 is a control block diagram of a deflection current.

【図7】上段の偏向器と下段の偏向器の関係を説明する
図。
FIG. 7 is a diagram illustrating a relationship between an upper deflector and a lower deflector.

【図8】コイルの結線説明図。FIG. 8 is an explanatory view of coil wiring.

【符号の説明】[Explanation of symbols]

1:陰極、2:電子線、3:引出し電極、4:加速電
極、5:集束レンズ、6:対物レンズ、7a:偏向器、
7b:偏向器、8:試料、9:二次電子検出器、10:
絞り、11:偏向制御回路、12:像表示装置、13:
レンズ制御電源、14:二次信号、21:円筒部材:2
2:上段の巻枠、23:下段の巻枠、25,26:巻線
スロット、31a,31b:X方向の偏向磁界発生用コ
イル、32a,32b:Y方向の偏向磁界発生用コイ
ル、33a,33b:X方向の磁界発生用コイル、34
a,34b:Y方向の磁界発生用コイル、41,42:
増幅器、43〜46:係数器、47,48:加算増幅
器、51a,51b:X方向の偏向磁界発生用コイル、
52a,52b:Y方向の偏向磁界発生用コイル、53
a,53b:X方向の磁界発生用コイル、54a,54
b:Y方向の磁界発生用コイル、57a,57b:X方
向の補助コイル、58a,58b:Y方向の補助コイル
1: cathode, 2: electron beam, 3: extraction electrode, 4: acceleration electrode, 5: focusing lens, 6: objective lens, 7a: deflector,
7b: deflector, 8: sample, 9: secondary electron detector, 10:
Aperture, 11: Deflection control circuit, 12: Image display device, 13:
Lens control power supply, 14: secondary signal, 21: cylindrical member: 2
2: upper winding frame, 23: lower winding frame, 25, 26: winding slots, 31a, 31b: X direction deflection magnetic field generating coil, 32a, 32b: Y direction deflection magnetic field generating coil, 33a, 33b: X-direction magnetic field generating coil, 34
a, 34b: Y direction magnetic field generating coils, 41, 42:
Amplifiers 43 to 46: Coefficient multipliers, 47 and 48: Summing amplifiers 51a and 51b: X direction deflection magnetic field generating coils,
52a and 52b: coils for generating a deflection magnetic field in the Y direction, 53
a, 53b: X-direction magnetic field generating coils, 54a, 54
b: Y-direction magnetic field generating coil, 57a, 57b: X-direction auxiliary coil, 58a, 58b: Y-direction auxiliary coil

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一次電子線を試料上で二次元的に走査
し、試料から発生する二次信号を検出して試料像を得る
走査電子顕微鏡において、 一次電子線を試料上で二次元的に走査するための手段と
して光軸方向に離間して配置された上下二段の偏向器を
備え、上段の偏向器の直交偏向座標軸と下段の偏向器の
直交偏向座標軸を光軸の回りに所定角度だけ相対的に回
転させたことを特徴とする走査電子顕微鏡。
1. A scanning electron microscope that two-dimensionally scans a primary electron beam on a sample and detects a secondary signal generated from the sample to obtain an image of the sample. As a means for scanning, it is provided with upper and lower two-stage deflectors which are arranged apart from each other in the optical axis direction, and the orthogonal deflection coordinate axis of the upper deflector and the orthogonal deflection coordinate axis of the lower deflector are set at a predetermined angle around the optical axis. A scanning electron microscope characterized by being rotated relatively only.
【請求項2】 一次電子線を試料上で二次元的に走査
し、試料から発生する二次信号を検出して試料像を得る
走査電子顕微鏡において、 一次電子線を試料上で二次元的に走査するための手段と
して光軸方向に離間して配置された上下二段からなる偏
向器を備え、試料上での一次電子線の二次元偏向位置を
(X,Y)とするとき、上段の偏向器で発生するX方向
の偏向磁界BxUpper及びY方向の偏向磁界ByUpper
下段の偏向器で発生するX方向の偏向磁界BxLower
びY方向の偏向磁界ByLowerは、kU,kL及びθを定
数として次の関係を満たすことを特徴とする走査電子顕
微鏡。 BxUpper=kUX ByUpper=kUY BxLower=kL(Xcosθ−Ysinθ) ByLower=kL(Ycosθ+Xsinθ)
2. A scanning electron microscope that two-dimensionally scans a primary electron beam on a sample and detects a secondary signal generated from the sample to obtain a sample image. As a means for scanning, a deflector having two upper and lower stages arranged apart from each other in the optical axis direction is provided, and when the two-dimensional deflection position of the primary electron beam on the sample is (X, Y), A deflection magnetic field Bx Upper in the X direction and a deflection magnetic field By Upper in the Y direction generated by the deflector;
A scanning electron microscope characterized in that a deflection magnetic field Bx Lower in the X direction and a deflection magnetic field By Lower in the Y direction generated in the lower deflector satisfy the following relationship with k U , k L and θ as constants. Bx Upper = k U X By Upper = k U Y Bx Lower = k L (Xcosθ−Ysinθ) By Lower = k L (Ycosθ + Xsinθ)
【請求項3】 上段の偏向器のコイルと下段の偏向器の
対応するコイルは光軸の回りに角度θだけ相対的に回転
して配置されていることを特徴とする請求項2記載の走
査電子顕微鏡。
3. The scanning according to claim 2, wherein the coils of the upper deflector and the corresponding coils of the lower deflector are arranged so as to be relatively rotated about the optical axis by an angle θ. electronic microscope.
【請求項4】 一次電子線を試料上で二次元的に走査
し、試料から発生する二次信号を検出して試料像を得る
走査電子顕微鏡において、 一次電子線を試料上で二次元的に走査するための手段と
して光軸方向に離間して配置された上下二段からなる偏
向器を備え、試料上での一次電子線の二次元偏向位置を
(X,Y)とするとき、上段の偏向コイルのX方向の偏
向電流IxUppe r及びY方向の偏向電流IyUpper、下段
の偏向コイルのX方向の偏向電流IxLower及びY方向
の偏向電流IyLowerは、hU,hL及びθを定数として
次の関係を満たすことを特徴とする走査電子顕微鏡。 IxUpper=hUX IyUpper=hUY IxLower=hL(Xcosθ−Ysinθ) IyLower=hL(Ycosθ+Xsinθ)
4. A scanning electron microscope that two-dimensionally scans a primary electron beam on a sample and detects a secondary signal generated from the sample to obtain a sample image. As a means for scanning, a deflector having two upper and lower stages arranged apart from each other in the optical axis direction is provided, and when the two-dimensional deflection position of the primary electron beam on the sample is (X, Y), deflection current Ix Uppe r and Y directions of deflection current Iy Upper in the X direction of the deflection coils, the deflection current Iy lower deflection current Ix lower and Y directions of the X direction of the lower deflection coil, h U, h L and θ A scanning electron microscope characterized by satisfying the following relationship as a constant. Ix Upper = h U X Iy Upper = h U Y Ix Lower = h L (Xcosθ-Ysinθ) Iy Lower = h L (Ycosθ + Xsinθ)
JP32914495A 1995-12-18 1995-12-18 Scanning electron microscope Pending JPH09167587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32914495A JPH09167587A (en) 1995-12-18 1995-12-18 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32914495A JPH09167587A (en) 1995-12-18 1995-12-18 Scanning electron microscope

Publications (1)

Publication Number Publication Date
JPH09167587A true JPH09167587A (en) 1997-06-24

Family

ID=18218135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32914495A Pending JPH09167587A (en) 1995-12-18 1995-12-18 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JPH09167587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443695B2 (en) 2013-01-11 2016-09-13 Hitachi High-Technologies Corporation Charged-particle beam device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443695B2 (en) 2013-01-11 2016-09-13 Hitachi High-Technologies Corporation Charged-particle beam device

Similar Documents

Publication Publication Date Title
US6740877B2 (en) Scanning electron microscope and sample observation method using the same
EP0817235B1 (en) A scanning electron microscope
JP2875940B2 (en) Electron beam device equipped with sample height measuring means
US8405045B2 (en) Particle beam device with deflection system
JPH11148905A (en) Electron beam inspection method and apparatus therefor
JP3101114B2 (en) Scanning electron microscope
JP3153391B2 (en) Focused ion beam equipment
JP3953309B2 (en) Scanning electron microscope
JPH08255588A (en) Scanning electron microscope and device similar thereto
JPH09167587A (en) Scanning electron microscope
JP2002150987A (en) Electron microscope and photographing method of transmission electron image in electron microscope
JP2003151484A (en) Scanning type charged particle beam device
JP3136353B2 (en) Secondary electron detector for scanning electron microscope
JP2002184336A (en) Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
JP2001084938A (en) Transmission electron microscope and method for observing image thereof
JP3112548B2 (en) Image signal processing method in charged particle beam device
JP3202857B2 (en) Focusing method and apparatus in charged particle beam apparatus
JP3112541B2 (en) Astigmatism correction method for electron beam device
JP3156428B2 (en) Scanning electron microscope
JP2817072B2 (en) Scanning electron microscope
JP2004146192A (en) Test piece observation method by transmission electron microscope
JPS62184750A (en) Electron beam device
JP2003007238A (en) Beam separator and reflection electron microscope
JPS5811073B2 (en) Sample scanning type sample image display device using particle beam
JP3453247B2 (en) Scanning electron microscope and control method thereof