JPH09167317A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH09167317A
JPH09167317A JP32560695A JP32560695A JPH09167317A JP H09167317 A JPH09167317 A JP H09167317A JP 32560695 A JP32560695 A JP 32560695A JP 32560695 A JP32560695 A JP 32560695A JP H09167317 A JPH09167317 A JP H09167317A
Authority
JP
Japan
Prior art keywords
magnetic
head
shield
magnetic shield
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32560695A
Other languages
Japanese (ja)
Inventor
Mitsuru Odagiri
充 小田切
Kazuo Kobayashi
和雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP32560695A priority Critical patent/JPH09167317A/en
Publication of JPH09167317A publication Critical patent/JPH09167317A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a MR head with little variation in output by providing a magnetresistive element between 2-layered magnetic shields and making the recess width of the tip part of the magnetic shield smaller than the height of the recess. SOLUTION: Height (b) of a recessed part of a magnetic shield A is made larger than the with (a) of the recessed part. In this way, the stress in the direction of the width at the tip part of the magnetic shield A is relieved, and a tensile stress is added in the direction of the height, and a main magnetic domain and a closure magnetic domain are finely formed in the whole magnetic shield. Such a magnetic domain structure becomes a magnetization process of a rotary magnetization main body, and it can easily return to its original magnetic domain structure when an impressed current is switched off.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁気ディスク装置に
用いられる磁気抵抗ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head used in a magnetic disk device.

【0002】[0002]

【従来の技術】小型ディスクに対し, 再生ヘッドとして
2層の磁気シールド間に設けられた磁気抵抗効果(MR)素
子を用いたMRヘッドと, 記録ヘッドとして出力がディス
クの周速に依存しない電磁誘導型磁気ヘッドを用いたMR
/インダクティブ複合型磁気ヘッド (記録再生分離型磁
気ヘッド) が多用されている。
2. Description of the Related Art For a small disk, an MR head using a magnetoresistive effect (MR) element provided between two layers of magnetic shields as a reproducing head, and an electromagnetic head whose output does not depend on the peripheral speed of the disk as a recording head. MR using inductive magnetic head
/ Inductive composite magnetic heads (recording / playback separation type magnetic heads) are widely used.

【0003】この複合型磁気ヘッドにおいて,記録ヘッ
ドはコイルに電流を流すことにより発生した磁束が磁気
コアに導かれ,磁気コアのギャップで磁束が外部に漏れ
て記録媒体に信号を記録している。また,再生用の磁気
抵抗効果素子は外部磁界によりその電気抵抗が変化する
現象を利用したヘッドである。
In this composite magnetic head, a magnetic flux generated by passing a current through a coil is guided to the magnetic core in the recording head, and the magnetic flux leaks to the outside in a gap of the magnetic core to record a signal on a recording medium. . The magnetoresistive effect element for reproduction is a head that utilizes the phenomenon that its electric resistance changes due to an external magnetic field.

【0004】次に,一般的なMR/インダクティブ複合型
の磁気ヘッドの構造を図6に示す。図6(A),(B) はMR/
インダクティブ複合型の磁気ヘッドの従来例の説明図で
ある。
Next, FIG. 6 shows the structure of a general MR / inductive composite type magnetic head. Figure 6 (A) and (B) shows MR /
It is explanatory drawing of the prior art example of an inductive compound type magnetic head.

【0005】図6(A) は断面図, 図6(B) は平面図であ
る。図において, 1は磁気抵抗(MR)素子, 2は下部磁気
シールド, 3は上部磁気シールド(下部磁極), 4は書
き込み用の上図磁極, 5はライトコイル, 101, 102は磁
気抵抗効果素子の端子 (電極), 501, 502 はライトコイ
ルの端子である。
FIG. 6A is a sectional view and FIG. 6B is a plan view. In the figure, 1 is a magnetoresistive (MR) element, 2 is a lower magnetic shield, 3 is an upper magnetic shield (lower magnetic pole), 4 is an upper magnetic pole for writing, 5 is a write coil, 101 and 102 are magnetoresistive effect elements. The terminals (electrodes), 501 and 502 are the terminals of the light coil.

【0006】[0006]

【発明が解決しようとする課題】一般的に, MRヘッドは
記録媒体 (ディスク) の線記録密度を向上するために,
MR素子の両側に磁気シールドが設けられる。MR/インダ
クティブ複合型磁気ヘッドでは,再生ヘッドのMR素子部
と記録ヘッドのギャップ部との距離差により,いわゆる
ヨー角ロスが生じる。このために,図2の模式的断面図
に示されるように,磁気シールドの片側と記録ヘッドの
磁極を兼ねた構造のヘッドが考えられている。
Generally, in order to improve the linear recording density of the recording medium (disk), the MR head is
Magnetic shields are provided on both sides of the MR element. In the MR / inductive combined magnetic head, so-called yaw angle loss occurs due to the difference in distance between the MR element part of the reproducing head and the gap part of the recording head. Therefore, as shown in the schematic cross-sectional view of FIG. 2, a head having a structure in which one side of the magnetic shield and the magnetic pole of the recording head are combined has been considered.

【0007】前記のように, MRヘッドは再生専用ヘッド
であるので, 通常磁気ディスク装置に用いるときには記
録用のインダクティブヘッドと組み合わせてMR/インダ
クティブ複合型の磁気ヘッドとする必要がある。MRヘッ
ドが採用される以前には,一つのインダクティブヘッド
で記録と再生を行っていたために,記録トラックと再生
トラックで位置の差は生じなかった。しかし,複合型の
ヘッドでは再生を行うMR素子部と, 記録を行う記録ギャ
ップ部との間に距離差を生じてしまう。この距離差のた
めに,記録されたトラックと再生されるトラックの間に
位置ずれが生じ, ヨー角ロスと呼ばれるロスにより出力
変動が生じる。
As described above, since the MR head is a read-only head, it is necessary to combine it with a recording inductive head to form an MR / inductive composite type magnetic head when used in a magnetic disk device. Before the MR head was adopted, there was no difference in position between the recording track and the reproducing track because recording and reproducing were performed with a single inductive head. However, in the composite type head, there is a difference in distance between the MR element part for reproduction and the recording gap part for recording. Due to this difference in distance, a positional deviation occurs between the recorded track and the reproduced track, and output fluctuations occur due to a loss called yaw angle loss.

【0008】通常, 磁性材料には磁歪が生じ, 磁歪の正
負(磁歪定数±λ)は磁性膜の生成時にある程度制御す
ることが可能である。図2において,磁気シールドA
は, 通常シールド後部から先端に向かって引張応力 (σ
>0)で,かつ負磁歪(λ<0)になるように生成され
る。このとき,磁化容易軸はスライダ面(磁気感知面)
と平行になり異方性を生じる。
Magnetostriction usually occurs in a magnetic material, and the positive / negative of the magnetostriction (magnetostriction constant ± λ) can be controlled to some extent when a magnetic film is formed. In FIG. 2, the magnetic shield A
Is the tensile stress (σ
> 0) and negative magnetostriction (λ <0). At this time, the axis of easy magnetization is the slider surface (magnetic sensing surface).
Becomes parallel to and causes anisotropy.

【0009】なぜなら,自発磁化と張力σのなす角をθ
とすると弾性磁気異方性のエネルギーEは次式で表せ
(近角著:「強磁性体の物理 下」p140参照) , E=−(3/2) λσ cos 2θ ここで,最も安定な状態であるE=0となるのはθ=π
/2, すなわち自発磁化とσとなす角が90°となるから
である。
Because the angle formed by the spontaneous magnetization and the tension σ is θ
Then, the energy E of elastic magnetic anisotropy can be expressed by the following equation.
(See Chikaku: “Physics of ferromagnets” p140), E = − (3/2) λσ cos 2θ where E = 0, which is the most stable state, is θ = π
/ 2, that is, the angle between spontaneous magnetization and σ is 90 °.

【0010】ここで,シールド先端部が広いと,その形
状効果から幅方向(スライダ面に平行な方向)に応力が
発生しやすい。幅の広い先端部は,幅の小さいときに比
べ,力が分散されてしまい意図した方向に異方性をつけ
難くなり,その結果,先端部に向かって異方性が弱くな
る。
If the tip of the shield is wide, stress tends to occur in the width direction (direction parallel to the slider surface) due to its shape effect. Compared to when the width of the tip is wide, the force is dispersed and it is difficult to give anisotropy in the intended direction. As a result, the anisotropy becomes weaker toward the tip.

【0011】異方性が強いとき,主磁区は(図1,3,
4,5の細長い6角形の磁区)が大きな面積を占め,還
流磁区(シールド内で静磁エネルギーを低く保つよう
に,磁束が表面に突き当たって磁極を作らないように磁
束を還流する磁区で,図1,3,4,5の磁気シールド
の外周に隣接する3角形の磁区)は小さい。このとき
は,主磁区の長手方向に異方性が強く生じており,主磁
区の長手方向に磁化の容易軸がある。
When the anisotropy is strong, the main magnetic domain (Figs. 1, 3,
4, 5 slender hexagonal magnetic domains occupy a large area, and reflux domains (magnetic domains that return magnetic flux so that magnetic flux does not hit the surface and create magnetic poles so as to keep magnetostatic energy low in the shield, The triangular magnetic domains adjacent to the outer circumference of the magnetic shield in FIGS. 1, 3, 4, and 5 are small. At this time, anisotropy is strongly generated in the longitudinal direction of the main magnetic domain, and the easy axis of magnetization is in the longitudinal direction of the main magnetic domain.

【0012】異方性が弱くなると,容易軸,困難軸の差
がなくなってくるので還流磁区の占める面積の割合が増
大する。還流磁区の面積が大きくなると,磁壁移動主体
型の磁化過程となり,磁区構造の再現性が悪く出力が不
安定となる。
When the anisotropy becomes weak, the difference between the easy axis and the hard axis disappears, and the ratio of the area occupied by the reflux magnetic domain increases. When the area of the reflux magnetic domain becomes large, the magnetization process becomes a domain wall motion-dominant type, resulting in poor reproducibility of the magnetic domain structure and unstable output.

【0013】すなわち,従来の磁気シールドの形状で
は,図5(A) に示されるように,シールド先端部の幅が
広いため,先端部だけ引張応力の方向がスライダ面と平
行になりやすく,先端部に向かって磁気異方性が弱ま
る。
That is, in the conventional magnetic shield shape, as shown in FIG. 5 (A), since the width of the shield tip portion is wide, only the tip portion tends to have a tensile stress direction parallel to the slider surface. The magnetic anisotropy weakens toward the part.

【0014】先端部での磁気異方性が弱くなると磁気シ
ールドAの全面積に対する還流磁区の占める面積の割合
が増大し,図5の(B) または(C) のような磁区構造をと
りやすくなり,図5(C) ではスライダ面に垂直に縦割れ
磁壁を生じている。このような磁区構造では,記録時に
ライトコイルに電流が流れると磁壁移動主体の磁化過程
となり,電流を取り去っても元の磁区構造に戻らないと
きがあり,スライダ面近傍に磁荷を生じ,この磁荷の向
きと大きさは記録の度に異なる。このような,磁荷は再
生時にMR素子の磁気バイアス(再生出力を大きくするた
めに再生電圧の波形を線形動作点に設定するために印加
するバイアス磁界)点を変化させ,MRヘッドに大きな出
力変動を起こすことになる。
When the magnetic anisotropy at the tip portion becomes weak, the ratio of the area occupied by the reflux magnetic domain to the total area of the magnetic shield A increases, and the magnetic domain structure shown in FIG. 5B or 5C can be easily obtained. Therefore, in Fig. 5 (C), a vertical cracked domain wall is formed perpendicular to the slider surface. In such a magnetic domain structure, when a current flows through the write coil during recording, the magnetic domain wall moving becomes the main magnetization process, and even if the current is removed, the original magnetic domain structure may not be restored, and a magnetic charge is generated near the slider surface. The direction and size of the magnetic charge differ with each recording. Such a magnetic charge changes the magnetic bias of the MR element (the bias magnetic field applied to set the waveform of the reproduction voltage to the linear operation point to increase the reproduction output) during reproduction, resulting in a large output to the MR head. It will cause fluctuations.

【0015】本発明の目的は出力変動の少ないMRヘッド
を得ることにある。
An object of the present invention is to obtain an MR head with less output fluctuation.

【0016】[0016]

【課題を解決するための手段】上記課題の解決は, 1)2層の磁気シールド間に設けられた磁気抵抗効果素
子を有し,該磁気シールド先端部のリセスの幅が該リセ
スの高さより小さい磁気ヘッド, 2)2層の磁気シールド間に設けられた磁気抵抗効果素
子を有し,該磁気シールドの先端部の幅が該磁気シール
ドの高さより小さい磁気ヘッド,あるいは 3)前記磁気シールドは先端部より内側に向かって幅が
漸増している前記2記載の磁気ヘッドにより達成され
る。
To solve the above problems, 1) a magnetoresistive element is provided between two layers of magnetic shields, and the width of the recess at the tip of the magnetic shield is greater than the height of the recess. A small magnetic head, 2) a magnetic head having a magnetoresistive effect element provided between two layers of magnetic shields, the width of the tip of the magnetic shield being smaller than the height of the magnetic shield, or 3) the magnetic shield This is achieved by the magnetic head as described in 2 above, in which the width gradually increases from the tip to the inside.

【0017】本発明は図1に示すように,磁気シールド
Aのリセス部の高さbをリセス部の幅aより大きくする
ことにより,磁気シールドAの先端部分での幅方向の応
力が開放され,高さ方向に引張応力が加わり, 磁気シー
ルド全体できれいな主磁区及び還流磁区を形成する。こ
のような磁区構造は磁化回転主体の磁化過程となり,印
加電流を除去したときに元の磁区構造に戻りやすくな
る。
According to the present invention, as shown in FIG. 1, by making the height b of the recess portion of the magnetic shield A larger than the width a of the recess portion, the stress in the width direction at the tip portion of the magnetic shield A is released. , A tensile stress is applied in the height direction, and a clean main domain and freewheeling domain are formed in the entire magnetic shield. Such a magnetic domain structure becomes a magnetization process mainly of magnetization rotation, and when the applied current is removed, the original magnetic domain structure is easily returned.

【0018】すなわち,リセス幅またはシールド先端部
の幅が広い形状効果により,その幅方向に応力が生じや
すくなる。従ってその幅を小さくすることにより,組成
から生じるギャップ方向への引張応力だけが作用し,シ
ールド全体で異邦性がつよくなって,明瞭な主磁区・還
流磁区を形成することができる。
That is, due to the shape effect of the recess width or the width of the shield tip portion being wide, stress is easily generated in the width direction. Therefore, by reducing the width, only the tensile stress in the gap direction caused by the composition acts, and the eccentricity is enhanced in the entire shield, so that clear main and return magnetic domains can be formed.

【0019】従って,再生時に有害な磁荷が生じにく
く,MRヘッドの出力変動を抑えることができる。
Therefore, harmful magnetic charges are less likely to occur during reproduction, and the output fluctuation of the MR head can be suppressed.

【0020】[0020]

【発明の実施の形態】次に, 図を用いて本発明の磁気ヘ
ッドを説明する。図3(A),(B) は実施の形態1の説明図
である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a magnetic head of the present invention will be described with reference to the drawings. 3A and 3B are explanatory views of the first embodiment.

【0021】図3(A) はヘッドの構成図, 図3(B) は磁
気シールドAの磁区構造モデルである。図2,図3(A)
において, 1は磁気抵抗(MR)素子, 2は磁気シールド
B, 3は磁気シールドA(下部磁極を兼用), 4は書き
込み用の上部磁極, 5は書き込み用のライトコイルであ
る。
FIG. 3A is a block diagram of the head, and FIG. 3B is a magnetic domain structure model of the magnetic shield A. Figure 2, Figure 3 (A)
1 is a magnetoresistive (MR) element, 2 is a magnetic shield B, 3 is a magnetic shield A (also serves as a lower magnetic pole), 4 is an upper magnetic pole for writing, and 5 is a write coil for writing.

【0022】この例では,NiFeからなる磁気シールドA
は図示のリセス構造をとり,リセス高さbがリセス幅a
より大きくなっており,リセス幅方向の応力を緩和で
き,MRヘッドの出力変動を緩和できる。
In this example, the magnetic shield A made of NiFe is used.
Has the illustrated recess structure, and the recess height b is the recess width a.
Since it is larger, the stress in the recess width direction can be relieved and the output fluctuation of the MR head can be relieved.

【0023】図3(B) において,大きな面積を占める細
長い6角形の磁区が主磁区であり,磁気シールドの外周
に隣接する3角形の磁区が還流磁区でその占有面積の割
合は小さい。このときは,主磁区の長手方向に異方性が
強く生じており,主磁区の長手方向に磁化の容易軸があ
る。
In FIG. 3B, a slender hexagonal magnetic domain occupying a large area is a main magnetic domain, and a triangular magnetic domain adjacent to the outer periphery of the magnetic shield is a return magnetic domain, and its occupied area ratio is small. At this time, anisotropy is strongly generated in the longitudinal direction of the main magnetic domain, and the easy axis of magnetization is in the longitudinal direction of the main magnetic domain.

【0024】図4(A),(B) は実施の形態2の説明図であ
る。図4(A) はヘッドの構成図, 図4(B) は磁気シール
ドAの磁区構造モデルである。
FIGS. 4A and 4B are explanatory views of the second embodiment. FIG. 4A is a block diagram of the head, and FIG. 4B is a magnetic domain structure model of the magnetic shield A.

【0025】図において, 1は磁気抵抗(MR)素子, 2は
磁気シールドB, 3は磁気シールドA(下部磁極を兼
用), 4は書き込み用の上部磁極 5は書き込み用のライ
トコイルである。
In the figure, 1 is a magnetoresistive (MR) element, 2 is a magnetic shield B, 3 is a magnetic shield A (also serves as a lower magnetic pole), 4 is an upper magnetic pole for writing, and 5 is a write coil for writing.

【0026】この例は,磁気シールドAはリセスのない
形状をとっているが,磁気シールドAの高さbは同先端
部幅aより大きくなっている。このようにしても,磁気
シールドAの先端部まで還流磁区の面積の小さい磁区構
造をとることができ,再生出力を安定化することができ
る。
In this example, the magnetic shield A has a shape without a recess, but the height b of the magnetic shield A is larger than the tip end width a thereof. Even in this case, a magnetic domain structure having a small return magnetic domain area up to the tip of the magnetic shield A can be obtained, and the reproduction output can be stabilized.

【0027】[0027]

【発明の効果】本発明によれば, 再生時の出力変動の少
ないMRヘッドが得られる。
According to the present invention, it is possible to obtain an MR head with little output fluctuation during reproduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の原理説明図FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】 本発明のヘッドの断面図FIG. 2 is a sectional view of the head of the present invention.

【図3】 本発明の実施の形態1の説明図FIG. 3 is an explanatory diagram of the first embodiment of the present invention.

【図4】 本発明の実施の形態2の説明図FIG. 4 is an explanatory diagram of a second embodiment of the present invention.

【図5】 従来例の説明図FIG. 5 is an explanatory view of a conventional example.

【図6】 従来例の構造説明図FIG. 6 is a structural explanatory view of a conventional example.

【符号の説明】[Explanation of symbols]

1 磁気抵抗効果(MR)素子 2 磁気シールドB 3 磁気シールドA(下部磁極) 4 上部磁極 5 ライトコイル 1 Magnetoresistive (MR) element 2 Magnetic shield B 3 Magnetic shield A (lower magnetic pole) 4 Upper magnetic pole 5 Write coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2層の磁気シールド間に設けられた磁気
抵抗効果素子を有し,該磁気シールド先端部のリセスの
幅が該リセスの高さより小さいことを特徴とする磁気ヘ
ッド。
1. A magnetic head having a magnetoresistive effect element provided between two layers of magnetic shields, wherein the width of the recess at the tip of the magnetic shield is smaller than the height of the recess.
【請求項2】 2層の磁気シールド間に設けられた磁気
抵抗効果素子を有し,該磁気シールドの先端部の幅が該
磁気シールドの高さより小さいことを特徴とする磁気ヘ
ッド。
2. A magnetic head having a magnetoresistive effect element provided between two layers of magnetic shields, wherein the width of the tip of the magnetic shield is smaller than the height of the magnetic shield.
【請求項3】 前記磁気シールドは先端部より内側に向
かって幅が漸増していることを特徴とする請求項2記載
の磁気ヘッド。
3. The magnetic head according to claim 2, wherein the width of the magnetic shield gradually increases inward from the tip.
JP32560695A 1995-12-14 1995-12-14 Magnetic head Withdrawn JPH09167317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32560695A JPH09167317A (en) 1995-12-14 1995-12-14 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32560695A JPH09167317A (en) 1995-12-14 1995-12-14 Magnetic head

Publications (1)

Publication Number Publication Date
JPH09167317A true JPH09167317A (en) 1997-06-24

Family

ID=18178758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32560695A Withdrawn JPH09167317A (en) 1995-12-14 1995-12-14 Magnetic head

Country Status (1)

Country Link
JP (1) JPH09167317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879462B2 (en) 2001-02-14 2005-04-12 Alps Electric Co., Ltd. Magnetic head capable of being increased in shape freedom of support and magnetic head device using the magnetic head
JP2006018988A (en) * 2004-06-30 2006-01-19 Seagate Technology Llc Recording head for reducing side track erasure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879462B2 (en) 2001-02-14 2005-04-12 Alps Electric Co., Ltd. Magnetic head capable of being increased in shape freedom of support and magnetic head device using the magnetic head
JP2006018988A (en) * 2004-06-30 2006-01-19 Seagate Technology Llc Recording head for reducing side track erasure

Similar Documents

Publication Publication Date Title
JPH08185612A (en) Mr head and its production
JP2004127480A (en) Recording head for high density perpendicular magnetic recording
JPH04212709A (en) Magnetic reading and writing head having magnetoresistance element
JP2006260756A (en) Perpendicular magnetic recording head and recording medium for recording data using the same
US6137652A (en) Thin film magnetic head with separated yoke and pole tips
US5792546A (en) Magneto-resistive head and method of producing the same
JPH09167317A (en) Magnetic head
JPS6035315A (en) Thin film magnetic head
JPH07201021A (en) Composite magnetic head
JP2788403B2 (en) Magnetoresistive head
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JPH0441415B2 (en)
JP2980043B2 (en) Magnetic head and magnetic recording / reproducing method
JPH048852B2 (en)
JP2946952B2 (en) Composite type thin film magnetic head
JP2578927B2 (en) Thin film magnetic head
JPH0333924Y2 (en)
JPS6057520A (en) Magnetic head
JPS6398815A (en) Thin film head for perpendicular magnetic recording
JP2559109B2 (en) Yoke type thin film magnetic head
JP3565925B2 (en) Magnetoresistive head
JPH05266437A (en) Magnetoresistance effect type head
JPS6128251Y2 (en)
JPS59231728A (en) Thin film magnetic head
JPS5925282B2 (en) magnetoresistive head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304