JPH09166557A - X-ray optical axis adjusting method and device therefor - Google Patents

X-ray optical axis adjusting method and device therefor

Info

Publication number
JPH09166557A
JPH09166557A JP7326899A JP32689995A JPH09166557A JP H09166557 A JPH09166557 A JP H09166557A JP 7326899 A JP7326899 A JP 7326899A JP 32689995 A JP32689995 A JP 32689995A JP H09166557 A JPH09166557 A JP H09166557A
Authority
JP
Japan
Prior art keywords
ray
optical axis
scattered
visible light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7326899A
Other languages
Japanese (ja)
Inventor
Toru Takayama
透 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7326899A priority Critical patent/JPH09166557A/en
Publication of JPH09166557A publication Critical patent/JPH09166557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To confirm a position on the sample surface to be irradiated with X-ray safely and easily with accuracy by inversely injecting light toward an X-ray source, and detecting light scattered by X-ray transmission material or the like existing on an X-ray optical axis. SOLUTION: Light 5 is inversely made incident on an X-ray source 6 from a light source 3 installed on the layout face of an X-ray detector 2, that is, an X-ray optical axis face 1, in such a way as to pass the optical axis face 1 of the sample surface 4. The light 5 having passed outgoing slits 7, 8 of the X-ray source 6 is projected to window material 10 (X-ray transmission material) for taking out X-rays from target material 9. At this time, light 11 scattered on the surface of the window material 10 is detected by a photo detector 12. The inclination angle of the sample surface 4 in a sample position, and the optical axis face 1 in the position of the X-ray detector 2 are respectively moved to adjust an optical axis so that the intensity of the detected scattered light 11 becomes maximum. In this way of adjusting the optical axis, X-rays are not used, so that a worker is not exposed to X-rays.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はX線を利用する工業
分野あるいは医療分野の分析機器において、安全、簡
便、かつ精度よくX線光軸調整を行うための方法および
その装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for safely, simply and accurately adjusting an X-ray optical axis in an analytical instrument utilizing X-rays in the industrial field or medical field.

【0002】[0002]

【従来の技術】X線はレントゲンによって発見されて以
来100年にわたり、物質の結晶構造解析、元素分析な
らびに医療における身体内部診断等、種々の目的で利用
されてきた。しかし、X線が電離放射線であるため、そ
の取扱いにおいては安全上の規制(労働安全衛生規則お
よび電離放射線障害防止規則)も多く、注意深い取扱い
が必要である。特に、可視光線と異なり、目に見えない
光であるX線の光軸合わせには細心の注意が必要であ
る。
2. Description of the Related Art X-rays have been used for various purposes such as crystal structure analysis of substances, elemental analysis and internal diagnosis in the body for 100 years since they were discovered by X-ray. However, since X-rays are ionizing radiation, there are many safety regulations (Occupational Safety and Health Regulations and Ionizing Radiation Hazard Prevention Regulations) in handling them, and careful handling is necessary. In particular, it is necessary to pay close attention to aligning the X-ray optical axis, which is invisible light, unlike visible light.

【0003】これまで、X線の装置上の光軸を合わせる
操作は、例えばX線回折装置においては、試料上のX線
照射位置に蛍光板や写真フィルムを設置して目視で蛍光
を発する部分を確認したり、半価板と呼ばれる治具を試
料設置位置に取り付けて透過X線の強度を測定したりす
る等の方法によって行われてきた。
Up to now, the operation of aligning the optical axis of the X-ray device has been carried out, for example, in an X-ray diffraction device, by placing a fluorescent plate or a photographic film at the X-ray irradiation position on the sample and visually observing the fluorescent portion. It has been carried out by a method such as confirming or attaching a jig called a half-value plate to the sample installation position and measuring the intensity of the transmitted X-ray.

【0004】また、最近ではこれらのやり方を自動化し
た全自動光軸調整機能を有する装置も種々の形態で取り
付けられるようになった。さらに、蛍光X線分析装置に
おいては、X線全反射現象とシンチレーション検出器と
を利用した光軸測定方法も試みられている(例えば、
「ぶんせき」(日本分析化学会誌),1992年,第2
号,p.129〜130)。
Further, recently, an apparatus having a fully automatic optical axis adjusting function that automates these methods has come to be attached in various forms. Further, in a fluorescent X-ray analyzer, an optical axis measuring method using an X-ray total reflection phenomenon and a scintillation detector has also been tried (for example,
"Bunseki" (Journal of Japan Society for Analytical Chemistry), 1992, 2nd
No., p. 129-130).

【0005】しかし、これらの方法はいずれも実際にX
線を発生させて行うものであり、密閉式の装置の場合は
ともかく、現場で使用する開放式の装置では、作業者に
被曝の恐れがあった。また、蛍光板や写真フィルムを用
いた光軸調整方法以外は全てX線検出器によって行うも
のであり、試料へのX線照射位置で直接確かめることが
できるものではなかった。
However, all of these methods are actually X
This is done by generating a line, and an open-type device used on site has a risk of being exposed to an operator, regardless of the closed-type device. In addition, except for the optical axis adjusting method using a fluorescent plate or a photographic film, the method is performed by an X-ray detector, and it is not possible to directly check the position of X-ray irradiation on the sample.

【0006】[0006]

【発明が解決しようとする課題】上述のように、従来の
X線光軸調整方法においては、X線を発生させなければ
ならないために作業者が被曝する恐れがあり、また試料
表面へのX線照射位置を直接確かめることも困難である
という問題点がある。
As described above, in the conventional X-ray optical axis adjusting method, since X-rays must be generated, there is a risk that the operator will be exposed to the X-rays, and the X-rays on the sample surface will be exposed. There is also a problem that it is difficult to directly confirm the irradiation position of the rays.

【0007】本発明は、係る従来技術の問題点に鑑みて
なされたものであり、作業者にとって安全で、かつ試料
表面へのX線照射位置も確かめることができるX線光軸
調整方法およびその装置を提供することを目的とする。
The present invention has been made in view of the problems of the prior art, and is an X-ray optical axis adjusting method which is safe for an operator and which can confirm the X-ray irradiation position on the sample surface, and its method. The purpose is to provide a device.

【0008】[0008]

【課題を解決するための手段】本発明は、X線を利用し
た分析機器におけるX線光軸調整方法であって、次の手
順で行われる方法を要旨とする。
SUMMARY OF THE INVENTION The gist of the present invention is an X-ray optical axis adjustment method in an analytical instrument using X-rays, which is performed by the following procedure.

【0009】可視光線をX線源に向けて逆入射する。Visible light rays are incident back to the X-ray source.

【0010】X線光軸上にあるX線透過物質(例え
ば、窓物質等)またはX線ターゲットで散乱した前記
の可視光線を検出する。
The visible light scattered by an X-ray transmitting substance (for example, a window substance) or an X-ray target on the X-ray optical axis is detected.

【0011】前記で検出した散乱可視光線の強度が
最も強くなるように試料位置またはX線検出器の位置を
調整する。
The sample position or the position of the X-ray detector is adjusted so that the intensity of the scattered visible light detected above becomes the strongest.

【0012】また本発明は、X線を利用した分析機器に
おけるX線光軸調整装置であって、次の構成を具備する
ことを特徴とする装置を要旨とする。
Further, the gist of the present invention is an X-ray optical axis adjusting device in an analytical instrument using X-rays, which is characterized by having the following configuration.

【0013】X線源に向けて逆入射させる可視光源。A visible light source which makes the X-ray source incident backwards.

【0014】X線光軸上にあるX線透過物質(例え
ば、窓物質等)またはX線ターゲットで散乱した可視光
線を検出する光検出器。
A photodetector for detecting visible light scattered by an X-ray transmitting substance (for example, a window substance) or an X-ray target on the X-ray optical axis.

【0015】前記の散乱可視光線の検出強度が最も
強くなるように試料位置またはX線検出器の位置を調整
する可動手段。
Movable means for adjusting the position of the sample or the position of the X-ray detector so that the detection intensity of the scattered visible light becomes the strongest.

【0016】[0016]

【発明の実施の形態】本発明方法では、まず可視光をX
線源に向けて逆入射し、そのときにX線源内部で発生し
た散乱光を検出する。図2は、本発明方法における可視
光源、試料、X線源および光軸面の関係を説明する模式
図である。また、図3は、本発明方法を実施するに必要
なX線源内部で散乱する可視光線を検出する機構を示す
X線源の縦断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION According to the method of the present invention, first, visible light is X-rayed.
The light is incident back toward the radiation source, and the scattered light generated inside the X-ray source at that time is detected. FIG. 2 is a schematic diagram illustrating the relationship between the visible light source, the sample, the X-ray source, and the optical axis plane in the method of the present invention. Further, FIG. 3 is a longitudinal sectional view of the X-ray source showing a mechanism for detecting visible light scattered inside the X-ray source necessary for carrying out the method of the present invention.

【0017】以下に、可視光のX線源への逆入射から散
乱光の検出までの操作手順を図2および図3に基づき説
明する。
The operation procedure from the reverse incidence of visible light on the X-ray source to the detection of scattered light will be described below with reference to FIGS. 2 and 3.

【0018】図2および図3において符号の2はX線検
出器、3は可視光源、4は試料表面、5は可視光線、6
はX線源、7および8はX線の出射スリット、9はター
ゲット物質、10は窓物質、11は散乱された可視光線
[以下、散乱可視光線と称す]ならびに12は光検出器
を示す。
2 and 3, reference numeral 2 is an X-ray detector, 3 is a visible light source, 4 is the sample surface, 5 is visible light, and 6
Is an X-ray source, 7 and 8 are X-ray emission slits, 9 is a target material, 10 is a window material, 11 is scattered visible light [hereinafter referred to as scattered visible light], and 12 is a photodetector.

【0019】図2に示すように、X線検出器2の配置面
すなわちX線光軸面1[以下、光軸面1と呼ぶ]に設置
した可視光源3から直接あるいは試料表面4等の光軸面
1を通るように、可視光線5をX線源6に向けて逆入射
する。この場合の可視光線としては、低出力のレーザ光
源を用いると輝度が高く散乱した場合に検出が容易とな
るので望ましい。
As shown in FIG. 2, the light from the visible light source 3 installed on the arrangement plane of the X-ray detector 2, that is, the X-ray optical axis plane 1 [hereinafter referred to as the optical axis plane 1] or directly from the sample surface 4 or the like. Visible light rays 5 are incident back toward the X-ray source 6 so as to pass through the axial plane 1. As the visible light in this case, it is desirable to use a low-power laser light source because detection becomes easy when scattered with high brightness.

【0020】図3に示すように、通常X線源6はX線を
外部に取り出すために、ターゲット物質9でのX線発生
部、2つの出射スリット7および8が直線上に配置され
ている。そこで、X線源6のX線制限用の出射スリット
7および8を通過した可視光線5はX線源のターゲット
物質9からX線を取り出すためにBe等で作製された窓
物質10に照射される。このとき、この窓物質10の表
面で散乱された可視光線11を光ダイオードなどの光検
出器12によって検出する。
As shown in FIG. 3, the normal X-ray source 6 has an X-ray generator for the target material 9 and two emission slits 7 and 8 arranged in a straight line in order to extract the X-rays to the outside. . Therefore, the visible light 5 that has passed through the X-ray limiting exit slits 7 and 8 of the X-ray source 6 is applied to a window material 10 made of Be or the like in order to extract X-rays from the target material 9 of the X-ray source. It At this time, visible light 11 scattered on the surface of the window material 10 is detected by a photodetector 12 such as a photodiode.

【0021】なお、窓物質10を使用していない場合に
はターゲット物質9の表面で、あるいはX線の光軸上に
X線透過物質を挿入して散乱光を検出しても何等問題は
ない。
When the window material 10 is not used, there is no problem even if the scattered light is detected on the surface of the target material 9 or by inserting the X-ray transmitting material on the optical axis of the X-ray. .

【0022】次に、このようにして検出された散乱可視
光線11の強度が最大となるように、試料位置は試料表
面4のあおり角(傾き)を、またX線検出器位置は光軸
面1をそれぞれ動かして光軸を調整する。この場合、光
学系によって設定すべき軸の数が異なる。例えば、X線
回折における通常のディフラクトメータ(X線回折
計)、すなわちX線の検出器と試料とを同一駆動軸で回
転させる必要がある装置の場合には、X線検出器2を光
軸面1に沿って走査する必要があり、可視光線5の入射
方向を一方向だけでなく複数の方向からそれぞれ行い、
光軸面上にX線源6、X線検出器2および試料表面4が
配置されるように各駆動部を調整することが望ましい。
Next, in order to maximize the intensity of the scattered visible light 11 detected in this way, the sample position is the tilt angle (tilt) of the sample surface 4, and the X-ray detector position is the optical axis plane. Adjust the optical axis by moving 1 respectively. In this case, the number of axes to be set differs depending on the optical system. For example, in the case of an ordinary diffractometer (X-ray diffractometer) in X-ray diffraction, that is, a device in which the X-ray detector and the sample need to be rotated on the same drive axis, the X-ray detector 2 is used as an optical detector. It is necessary to scan along the axial surface 1, and the incident direction of the visible light ray 5 is not limited to one direction but from a plurality of directions,
It is desirable to adjust each drive unit so that the X-ray source 6, the X-ray detector 2, and the sample surface 4 are arranged on the optical axis plane.

【0023】なお、前記散乱可視光線11の強度を検出
するためには光ファイバ等を用いて、X線源6の外部に
設けた光電子増倍管等で検出する方法もある。また、用
いる可視光線5をチョッパ等で特定周波数に断続させて
X線源6に逆入射し、この周波数に同調させるようにロ
ックインアンプ等を介した信号処理を行えば、迷光や光
検出器12の暗電流の影響を除去できるためにノイズが
軽減できて高感度な検出が可能となる。
There is also a method of detecting the intensity of the scattered visible light 11 by using an optical fiber or the like and using a photomultiplier tube or the like provided outside the X-ray source 6. If the visible light 5 to be used is interrupted at a specific frequency by a chopper or the like and is incident back to the X-ray source 6 and signal processing is performed via a lock-in amplifier so as to be tuned to this frequency, stray light or a photodetector is detected. Since the effect of the dark current 12 can be removed, noise can be reduced and highly sensitive detection can be performed.

【0024】上述のようにして光軸調整を実施した場
合、X線を使用しないで実施できるので、作業者がX線
によって被曝されることはなく、また試料へのX線照射
位置が目視で確認できる。特に、表面に凹凸のある試料
では、目的とする部分に実際にX線が照射されるかどう
かの確認が確実に行える。
When the optical axis adjustment is carried out as described above, it can be carried out without using X-rays, so that the operator is not exposed to X-rays, and the X-ray irradiation position on the sample can be visually observed. I can confirm. In particular, in the case of a sample having unevenness on the surface, it can be surely confirmed whether or not the target portion is actually irradiated with X-rays.

【0025】[0025]

【実施例】図1は、本発明方法をX線ディフラクトメー
タに適用した実施例のシステム構成ブロック図である。
1 is a system configuration block diagram of an embodiment in which the method of the present invention is applied to an X-ray diffractometer.

【0026】図4は、本実施例における散乱光の強度と
試料あおり角およびX線検出器の上下動との関係を示す
図である。
FIG. 4 is a diagram showing the relationship between the intensity of scattered light, the sample tilt angle, and the vertical movement of the X-ray detector in this embodiment.

【0027】図1に示すように、可視光源3としてHe
−Neレーザ(100mW)を用い、幾何学的にこのレ
ーザ光線軸とX線検出器2の光軸との角度が試料中心
(ゴニオメータの軸中心)に対して10.0゜になるよ
うに隣接(一体化)設置した。
As shown in FIG. 1, He is used as the visible light source 3.
-Ne laser (100 mW) is used and geometrically, the angle between the laser beam axis and the optical axis of the X-ray detector 2 is 10.0 ° with respect to the center of the sample (center of the goniometer). (Integrated) Installed.

【0028】また、レーザ光線をX線源6に向かって逆
入射した場合のX線源内の散乱光は光ダイオード12に
よって検出した。なお、試料4としては金蒸着した石英
板を用いた。
Further, the scattered light in the X-ray source when the laser beam is incident back to the X-ray source 6 is detected by the photodiode 12. As the sample 4, a quartz plate with gold vapor deposition was used.

【0029】光軸調整は、以下の一連の操作によって行
った。
The optical axis adjustment was performed by the following series of operations.

【0030】まず、レーザ光線が試料4に照射され、
反射してX線源6に向かうように、およその配置をと
る。このとき、試料表面で反射されるレーザ光線が最も
強く検出できるように入射角と取り出し角はα(反射位
置、実際に用いた角度はα=30゜)で固定する。
First, the sample 4 is irradiated with a laser beam,
An approximate arrangement is taken so that it reflects and goes toward the X-ray source 6. At this time, the incident angle and the extraction angle are fixed at α (reflection position, actually used angle is α = 30 °) so that the laser beam reflected on the sample surface can be detected most strongly.

【0031】こののち、試料4のあおり角調整用の駆
動装置13を回転し、散乱されるレーザ光線が光検出器
12で最も強く検出される位置を探す。そして、散乱光
が最も強く検出される位置に試料あおり角を固定する
(この実施例の場合は図4(a)に示すように、”あお
り角”=1°)。
After that, the drive device 13 for adjusting the tilt angle of the sample 4 is rotated, and the position where the scattered laser beam is detected most strongly by the photodetector 12 is searched for. Then, the sample tilt angle is fixed at the position where the scattered light is detected most strongly (in this embodiment, as shown in FIG. 4A, "tilt angle" = 1 °).

【0032】今度は、同様にX線検出器2と可視光源
3の上下動調整用駆動装置14を動かし、散乱光強度が
最大となる位置を探す。X線検出器2をレーザ光線の散
乱光の強度が最大となる位置に固定する(この実施例の
場合は図4(b)に示すように、”検出器上下動”=0
mm)。
Similarly, the X-ray detector 2 and the vertical movement adjusting drive device 14 for the visible light source 3 are moved to search for a position where the scattered light intensity is maximum. The X-ray detector 2 is fixed at a position where the intensity of scattered light of the laser beam is maximized (in the case of this embodiment, "detector vertical movement" = 0 as shown in FIG. 4 (b)).
mm).

【0033】次に、ゴニオメータ軸駆動装置15によ
って試料4の回転軸(θ軸、ここでθはX線の試料への
入射角)だけを回転し、同様に散乱光の強度が最大とな
る角度を探し、固定する。この実施例ではこのときの角
度がθ=30゜となった。
Next, the goniometer axis driving device 15 rotates only the rotation axis of the sample 4 (θ axis, where θ is the angle of incidence of X-rays on the sample), and similarly the angle at which the intensity of scattered light becomes maximum. Find and fix. In this example, the angle at this time was θ = 30 °.

【0034】最後に、ゴニオメータ軸駆動装置15の
X線検出器2の回転軸(2θ軸、ここで2θは試料への
入射X線の方向と試料からX線検出器への方向のなす
角)だけを回転し、同様に散乱光の強度が最大となる角
度γを探す。前述したように、X線検出器2とレーザ光
源3には差角(10.0゜)があるので、γよりも1
0.0゜大きい角度がこの実施例での2θ=70゜とな
る。
Finally, the rotation axis of the X-ray detector 2 of the goniometer axis drive unit 15 (2θ axis, where 2θ is the angle between the direction of incident X-rays on the sample and the direction from the sample to the X-ray detector). Just rotate and search for the angle γ that maximizes the scattered light intensity. As described above, since there is a difference angle (10.0 °) between the X-ray detector 2 and the laser light source 3, it is 1 rather than γ.
An angle larger by 0.0 ° is 2θ = 70 ° in this embodiment.

【0035】以上の操作によって、θおよび2θの初期
値(本実施例ではそれぞれ30゜と70゜)が決まるの
で、X線光軸調整は一応完了する。この実施例では、こ
れらの一連の操作が制御演算器(コンピュータ)16の
制御指令によって行われるようにした。
By the above operation, the initial values of θ and 2θ (30 ° and 70 ° in this embodiment, respectively) are determined, and the X-ray optical axis adjustment is completed for the time being. In this embodiment, these series of operations are performed by the control command of the control calculator (computer) 16.

【0036】なお、前述のゴニオメータ軸の位置決め精
度を上げるためには、αを別の角度に設定して、再度前
記〜の操作を行い、各軸の位置を収束させるとさら
によい結果が得られる。
In order to improve the positioning accuracy of the goniometer shafts described above, a better result can be obtained by setting α to a different angle and performing the operations 1 to 3 again to converge the positions of the respective axes. .

【0037】また、X線検出器2とレーザ光源3との差
角(10.0゜)は幾何学的な配置であるため、配置の
精度が問題になる場合には、実際にX線回折測定を行う
前に、特定の結晶格子面に切り出した単結晶試料を用い
て、さらに2θ軸の初期値を較正することが望ましい。
この場合の較正は、実際にX線を発生させ、切り出した
格子面の間隔に合わせてθ軸を固定し、上記と同様に
2θ軸のみを走査することによって行うのみで可能であ
る。
Further, since the difference angle (10.0 °) between the X-ray detector 2 and the laser light source 3 is a geometrical arrangement, when the accuracy of the arrangement is a problem, the actual X-ray diffraction is used. Before the measurement, it is desirable to calibrate the initial value of the 2θ axis by using a single crystal sample cut out on a specific crystal lattice plane.
The calibration in this case can be performed only by actually generating X-rays, fixing the θ axis in accordance with the intervals of the cut lattice planes, and scanning only the 2θ axis in the same manner as above.

【0038】[0038]

【発明の効果】本発明により、精度の高いX線光軸調整
およびX線照射位置の確認が可能となる。
According to the present invention, it is possible to accurately adjust the X-ray optical axis and confirm the X-ray irradiation position.

【0039】また、本発明方法は、X線を用いずに実施
できるため作業者の安全も確保できる。
Since the method of the present invention can be carried out without using X-rays, the safety of workers can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法をX線ディフラクトメータに適用し
た実施例のシステム構成ブロック図である。
FIG. 1 is a system configuration block diagram of an embodiment in which the method of the present invention is applied to an X-ray diffractometer.

【図2】本発明方法における可視光源、試料、X線源お
よび光軸面の関係を説明する模式図である。
FIG. 2 is a schematic diagram illustrating the relationship between a visible light source, a sample, an X-ray source, and an optical axis plane in the method of the present invention.

【図3】本発明方法を実施するためのX線源内部で散乱
する可視光線を検出する機構を示すX線源の縦断面図で
ある。
FIG. 3 is a vertical sectional view of an X-ray source showing a mechanism for detecting visible light scattered inside the X-ray source for carrying out the method of the present invention.

【図4】散乱光の強度と試料あおり角およびX線検出器
の上下動との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the intensity of scattered light, the sample tilt angle, and the vertical movement of the X-ray detector.

【符号の説明】[Explanation of symbols]

1 光軸面 2 X線検出器 3 可視光源 4 試料表面(試料) 5 可視光線 6 X線源 7および8 X線出射スリット 9 X線ターゲット物質 10 窓物質 11 散乱された可視光線(散乱可視光線) 12 光検出器 13 試料あおり角の駆動装置 14 検出器上下動の駆動装置 15 ゴニオメータ軸駆動装置(θ軸と2θ軸) 16 制御演算器 17 光検出制御器。 1 Optical axis plane 2 X-ray detector 3 Visible light source 4 Sample surface (sample) 5 Visible light ray 6 X-ray source 7 and 8 X-ray emission slit 9 X-ray target material 10 Window material 11 Scattered visible light ray (scattered visible light ray) ) 12 photodetector 13 sample tilting drive device 14 detector vertical movement drive device 15 goniometer axis drive device (θ axis and 2θ axis) 16 control calculator 17 photodetection controller.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】可視光線をX線源に向けて逆入射し、X線
光軸上にあるX線透過物質またはX線ターゲットで散乱
した可視光線を検出し、この散乱可視光線の検出強度が
最も強くなるように試料位置またはX線検出器の位置を
調整することを特徴とするX線光軸調整方法。
1. Visible light is incident back toward an X-ray source and the visible light scattered by an X-ray transmitting substance or an X-ray target on the X-ray optical axis is detected, and the detected intensity of this scattered visible light is An X-ray optical axis adjusting method characterized by adjusting the position of a sample or the position of an X-ray detector so as to be the strongest.
【請求項2】X線源に向けて逆入射させる可視光源と、
X線光軸上にあるX線透過物質またはX線ターゲットで
散乱した可視光線を検出する光検出器と、この散乱可視
光線の検出強度が最も強くなるように試料位置またはX
線検出器の位置を調整する可動手段とを具備することを
特徴とするX線光軸調整装置。
2. A visible light source for making an X-ray source incident backwards,
A photodetector for detecting visible light scattered by an X-ray transmitting substance or an X-ray target on the X-ray optical axis, and a sample position or X-ray so that the detected intensity of the scattered visible light becomes the strongest.
An X-ray optical axis adjusting device, comprising: a movable means for adjusting the position of the ray detector.
JP7326899A 1995-12-15 1995-12-15 X-ray optical axis adjusting method and device therefor Pending JPH09166557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7326899A JPH09166557A (en) 1995-12-15 1995-12-15 X-ray optical axis adjusting method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7326899A JPH09166557A (en) 1995-12-15 1995-12-15 X-ray optical axis adjusting method and device therefor

Publications (1)

Publication Number Publication Date
JPH09166557A true JPH09166557A (en) 1997-06-24

Family

ID=18192999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7326899A Pending JPH09166557A (en) 1995-12-15 1995-12-15 X-ray optical axis adjusting method and device therefor

Country Status (1)

Country Link
JP (1) JPH09166557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389538A (en) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X-ray analysis apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389538A (en) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X-ray analysis apparatus and method
CN115389538B (en) * 2022-08-09 2023-12-29 深圳市埃芯半导体科技有限公司 X-ray analysis device and method

Similar Documents

Publication Publication Date Title
US7583788B2 (en) Measuring device for the shortwavelength x ray diffraction and a method thereof
US8433034B2 (en) Localization of an element of interest by XRF analysis of different inspection volumes
EP1445604A1 (en) Apparatus and method for x-ray analysis
JP2005106815A (en) Optical alignment of x-ray microanalyzer
JP2012122737A (en) X-ray diffraction device
US7860217B2 (en) X-ray diffraction measuring apparatus having debye-scherrer optical system therein, and an X-ray diffraction measuring method for the same
US6285736B1 (en) Method for X-ray micro-diffraction measurement and X-ray micro-diffraction apparatus
JP2000504422A (en) X-ray analyzer having two collimator masks
JPH09166557A (en) X-ray optical axis adjusting method and device therefor
US6310937B1 (en) X-ray diffraction apparatus with an x-ray optical reference channel
JP3197104B2 (en) X-ray analyzer
JP3626965B2 (en) X-ray apparatus and X-ray measurement method
JP2921597B2 (en) Total reflection spectrum measurement device
JP3590681B2 (en) X-ray absorption fine structure analysis method and apparatus
JP2004177248A (en) X-ray analyzer
JP2000275113A (en) Method and apparatus for measuring x-ray stress
JP2001133420A (en) Method and apparatus for total reflection x-ray fluorescence analysis
JP3529068B2 (en) X-ray small angle scattering device
JPH02138854A (en) X-ray tomograph
JPH03148056A (en) Total-reflection x-ray fluorescence analysis apparatus
JP2002340825A (en) Fluorescent beam analyzing device and fluorescent beam analyzing method
JPH09119906A (en) X-ray small-angle scattering device
JPH04175647A (en) X-ray mapping device
JPH10221275A (en) X-ray diffraction determining device
JP2002228604A (en) X-ray apparatus