JPH09165270A - Alumina casting monolithic refractory and production of formed body using the refractory - Google Patents

Alumina casting monolithic refractory and production of formed body using the refractory

Info

Publication number
JPH09165270A
JPH09165270A JP7346288A JP34628895A JPH09165270A JP H09165270 A JPH09165270 A JP H09165270A JP 7346288 A JP7346288 A JP 7346288A JP 34628895 A JP34628895 A JP 34628895A JP H09165270 A JPH09165270 A JP H09165270A
Authority
JP
Japan
Prior art keywords
refractory
alumina
fine powder
waste
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7346288A
Other languages
Japanese (ja)
Inventor
Naoki Hirai
直樹 平井
Katsumi Uchinokura
克己 内之倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7346288A priority Critical patent/JPH09165270A/en
Publication of JPH09165270A publication Critical patent/JPH09165270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material which can produce monolithic refractory capable of expressing properties similar to the conventional monolithic refractory when waste refractory materials is reused as aggregate in order to effectively utilize them and a method for producing the material. SOLUTION: Refractory waste is obtained by crushing alumina refractory which had been used in a kiln. Alumina casting monolithic refractory is produced by compounding <=30wt.% of the refractory waste whose particle diameter is larger than the maximum diameter of the aggregate constituting the refractory, <=15wt.% of fine powder consisting of alumina and magnesia of <=45μm in particle diameter and the remaining of alumina casting monolithic refractory. Magnesia content in the fine powder is >=28wt.% and <=40wt.%. In order to produce a formed body from the refractory, the refractory waste and the fine powder are mixed in advance to stick the fine powder on the surfaces of the refractory waste, and the treated refractory waste is mixed with other materials in construction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼製造用の窯炉
内張りに用いられるアルミナ質流し込み不定形耐火物及
びその成形体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina cast amorphous refractory used for lining a kiln for producing steel and a method for producing a molded article thereof.

【0002】[0002]

【従来の技術】アルミナ質流し込み不定形耐火物は、ア
ルミナ、マグネシアおよびセメント成分が、最も充填密
度が高くなるような粒度構成でもって配合されていて、
使用時に水分を添加して混練し、必要な炉壁形状に流し
込み施工されて使用されている。しかしながら、使用後
の施工体は、原料粒子同士が焼結したりセメント成分に
よって結合したりしてはいるものの、解体時に粉化しや
すいため、殆どが廃棄処分にされていた。
2. Description of the Related Art Amorphous castable refractory made of alumina is composed of alumina, magnesia and cement components in such a particle size constitution that the packing density is highest.
At the time of use, it is used by adding water and kneading and pouring it into the required furnace wall shape. However, the used constructions, although the raw material particles are sintered or bonded with each other by the cement component, are easily pulverized at the time of dismantling, and therefore most of them were discarded.

【0003】耐火物屑を利用する技術として、特開平6
−219853号公報には、マグ−カーボンレンガ屑の
処理方法及びマグネシア質キャスタブルに関して、マグ
−カーボンレンガ屑をシリカゾル溶液に浸漬し、レンガ
屑内部にシリカ分を含浸させたのちキャスタブルに添加
する方法が、また、特開平6−345548号公報に
は、耐火物廃材を用いた流し込み材の製造方法並びにそ
の成形体及び成形体の製造方法に関して、耐火物廃材の
粒塊表面をモルタルにより被覆して流し込み材に添加す
る方法が開示されている。
As a technique for utilizing refractory waste, Japanese Unexamined Patent Publication (Kokai) No. Hei 6
-2119853 discloses a method for treating mag-carbon brick waste and a magnesia castable, which is a method of immersing mag-carbon brick waste in a silica sol solution, impregnating the silica inside the brick waste, and then adding the castable. Further, Japanese Patent Application Laid-Open No. 6-345548 discloses a method of manufacturing a casting material using a refractory waste material, a molded body thereof, and a method of manufacturing a molded body thereof. A method of adding to wood is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、いずれ
についても耐火物屑とマトリックスとの間に十分な結合
がなく、高温で使用する場合には、マトリックスの焼結
収縮により隙間ができて強度が低下することがあった
り、またスラグ侵食に対しては、耐火物屑とマトリック
スの隙間にスラグが侵入して耐火物屑が遊離するなどで
溶損が大きくなることがあった。そこで本発明は、耐火
物屑とマトリックスの結合力を向上させるとともに隙間
へのスラグ侵食を抑制して、耐火物屑を配合した流し込
み不定形耐火物の耐用性を向上させようとするものであ
る。
However, in both cases, there is not sufficient bonding between the refractory waste and the matrix, and when used at high temperature, a gap is created due to sintering shrinkage of the matrix, resulting in a decrease in strength. With respect to slag erosion, slag may infiltrate into the gap between the refractory waste and the matrix and the refractory waste may be liberated, resulting in large melt loss. Therefore, the present invention is intended to improve the bond strength between the refractory waste and the matrix and suppress the slag erosion into the gap to improve the durability of the cast amorphous refractory containing the refractory waste. .

【0005】[0005]

【課題を解決するための手段】本発明においては、前述
の課題を解決するために、窯炉で使用したアルミナ質耐
火物を破砕して得られる耐火物屑のうち、粒径が該アル
ミナ質耐火物を構成している骨材の最大粒径以上のもの
30重量%以下と、粒径45μm以下のアルミナおよび
マグネシアからなる微粉15重量%以下と、残部がアル
ミナ質流し込み不定形耐火物とからなることを特徴とす
るアルミナ質流し込み不定形耐火物を提供する。
In the present invention, in order to solve the above-mentioned problems, among the refractory scraps obtained by crushing the alumina refractory used in the kiln, the particle size is the alumina refractory scrap. From 30% by weight or less of the maximum particle size of the aggregate constituting the refractory material, 15% by weight or less of fine powder composed of alumina and magnesia having a particle size of 45 μm or less, and the balance being an alumina cast amorphous refractory material The present invention provides an alumina cast amorphous refractory.

【0006】特に粒径45μm以下のアルミナおよびマ
グネシアからなる微粉は、マグネシアを28重量%以
上、40重量%以下含む微粉であることが有利である。
Particularly, the fine powder composed of alumina and magnesia having a particle size of 45 μm or less is advantageously a fine powder containing 28% by weight or more and 40% by weight or less of magnesia.

【0007】また、このアルミナ質流し込み不定形耐火
物成形体の製造方法は、粒径が前記条件を満足する耐火
物屑と微粉とを、予め混合して耐火物屑の表面に微粉を
付着させておき、施工時にこの微粉を付着させた耐火物
屑と残部の流し込み不定形耐火物とを混合することを特
徴とする。
Further, according to the method for producing an alumina cast amorphous refractory molded article, refractory scraps having a particle size satisfying the above-mentioned conditions and fine powders are mixed in advance and the fine powders are adhered to the surface of the refractory scraps. It is characterized in that the refractory scraps to which the fine powder is adhered are mixed with the remaining cast-in amorphous refractory at the time of construction.

【0008】[0008]

【発明の実施の形態】本発明に用いる使用済みのアルミ
ナ質耐火物屑は、材質としてアルミナを50%以上含む
耐火物で、破砕前にスラグ浸潤層を除去しておく必要が
ある。というのは、アルミナ質以外の成分が多く含まれ
ていると十分な強度が得られないからである。さらに本
発明に用いる耐火物屑の大きさは、この使用済みの耐火
物を構成している骨材の最大粒径以上とする。なぜなら
ば、破砕によって骨材の最大粒径よりも小さくなった耐
火物屑は、骨材のみからなる粒径かマトリックス成分を
多く含む粒子となる可能性が大きく、これを用いると組
織の均一性が得られなくなるからである。
BEST MODE FOR CARRYING OUT THE INVENTION The used alumina refractory waste used in the present invention is a refractory containing 50% or more of alumina as a material, and it is necessary to remove the slag infiltration layer before crushing. The reason is that if a large amount of components other than alumina is contained, sufficient strength cannot be obtained. Further, the size of the refractory waste used in the present invention is not less than the maximum particle size of the aggregate constituting the used refractory. This is because the refractory waste that has become smaller than the maximum particle size of the aggregate due to crushing has a high possibility of becoming a particle size consisting of only the aggregate or particles containing a large amount of matrix components. Is not obtained.

【0009】なお、さらに好ましい耐火物屑の大きさ
は、本発明で残部を構成するアルミナ質流し込み不定形
耐火物の骨材の最大粒径の2.5〜6倍である。すなわ
ち、発明者は種々の大きさの耐火物屑と、本発明で残部
を構成するアルミナ質流し込み不定形耐火物とを混合し
てこれを施工し、この粉粒体混合物が密に充填して得ら
れる不定形耐火物施工体の気孔率が小さくなる耐火物屑
の粒径は、混合する流し込み不定形耐火物を構成する骨
材の最大粒径の2.5倍以上であることを見いだした。
The size of the refractory waste is more preferably 2.5 to 6 times the maximum particle size of the aggregate of the alumina cast amorphous refractory which constitutes the balance of the present invention. That is, the inventor mixed refractory scraps of various sizes and an alumina cast amorphous refractory that constitutes the balance in the present invention and constructed it, and the powder mixture was densely packed. It was found that the particle size of the refractory scraps, which reduces the porosity of the obtained irregular-shaped refractory construction product, is at least 2.5 times the maximum particle size of the aggregate that constitutes the cast amorphous refractory to be mixed. .

【0010】また、施工時の流動性や施工体中の耐火物
屑の分布を調査したところ、粒径が混合する流し込み不
定形耐火物を構成する骨材の最大粒径の6倍を越えると
施工性が悪く、前述の混合が不均一となることを見いだ
した。従って、本発明で使用する耐火物屑のさらに好ま
しい大きさは、混合する流し込み不定形耐火物を構成す
る骨材の最大粒径の2.5〜6倍である。
Further, when the fluidity at the time of construction and the distribution of refractory wastes in the construction body were investigated, it was found that when the particle size exceeded 6 times the maximum particle size of the aggregate constituting the cast amorphous refractory. It was found that the workability was poor and the above-mentioned mixing was non-uniform. Therefore, the more preferable size of the refractory waste used in the present invention is 2.5 to 6 times the maximum particle size of the aggregate that constitutes the cast amorphous refractory to be mixed.

【0011】本発明は、上記のような粒径の耐火物屑3
0重量%以下と、粒径45μm以下のアルミナおよびマ
グネシアからなる微粉15重量%以下と、残部がアルミ
ナ質流し込み不定形耐火物とからなる。耐火物屑自身の
耐用性は、温度履歴を受けていることや破砕時の衝撃で
亀裂が発生していることなどが原因となって低下してい
る。耐火物屑の配合率の増加は、不定形耐火物施工体の
特性を徐々に低下させるが、30重量%以下の配合率で
あれば、従来と同等の耐用性を維持することができる。
The present invention is directed to refractory waste 3 having the above grain size.
0% by weight or less, 15% by weight or less of fine powder composed of alumina and magnesia having a particle size of 45 μm or less, and the balance consisting of an alumina cast amorphous refractory. The durability of the refractory waste itself has deteriorated due to the fact that it has undergone temperature history and that cracks have occurred due to the impact during crushing. An increase in the blending ratio of refractory scraps gradually deteriorates the characteristics of the irregular-shaped refractory work, but if the blending ratio is 30% by weight or less, it is possible to maintain the same durability as the conventional one.

【0012】ところで、耐火物屑を配合した時の耐用性
低下の原因の一つは、マトリックスとの結合力が不足し
て、強度が低下したり、マトリックスと耐火物屑との間
の隙間にスラグが侵入したりすることにあった。この課
題に対して本発明では、粒径45μm以下のアルミナお
よびマグネシアからなる微粉を15重量%以下配合す
る。このように、アルミナおよびマグネシアを加えるこ
とによって使用時にスピネルを生成し、膨張して耐火物
屑とマトリックスとの間の隙間を減らすと同時に、マト
リックスと耐火物屑とを結合させることができる。
By the way, one of the causes of the decrease in durability when the refractory waste is compounded is that the bonding strength with the matrix is insufficient and the strength is lowered, or the gap between the matrix and the refractory waste is caused. There was slag invading. To solve this problem, in the present invention, 15% by weight or less of fine powder of alumina and magnesia having a particle diameter of 45 μm or less is mixed. Thus, the addition of alumina and magnesia can produce spinels in use that expand and reduce the gap between the refractory debris and the matrix while simultaneously binding the matrix and the refractory debris.

【0013】その結果、不定形耐火物施工体の強度が向
上するとともに、耐火物屑とマトリックスの隙間へスラ
グが侵入するのが抑制されて耐食性が向上する。また、
配合するアルミナおよびマグネシアからなる微粉は粒径
45μm以下とする。というのは、粒径が45μmを越
えると、使用時の温度では十分なスピネル生成反応を起
こさないからである。さらに配合量は15重量%以下と
する。これは、15重量%を越えるとスピネル生成量が
過剰となり、膨張によって不定形耐火物施工体に亀裂が
入ってしまって耐用性が低下するためである。
As a result, the strength of the irregular-shaped refractory work body is improved, and the slag is prevented from entering the gap between the refractory waste and the matrix to improve the corrosion resistance. Also,
The fine powder made of alumina and magnesia to be blended has a particle size of 45 μm or less. This is because if the particle size exceeds 45 μm, a sufficient spinel forming reaction does not occur at the temperature during use. Further, the blending amount is 15% by weight or less. This is because if the amount exceeds 15% by weight, the amount of spinel produced becomes excessive, and expansion causes cracks in the irregular-shaped refractory construction product, resulting in reduced durability.

【0014】さらに、本発明に用いるアルミナおよびマ
グネシアからなる微粉は、マグネシアを28重量%以
上、40重量%以下含むものとする。これは、マグネシ
アを28重量%以上含有させることにより、微粉のもう
一つの成分であるアルミナと反応して理論組成のスピネ
ルを生成させるとともに、過剰のマグネシアは耐火物屑
と反応してマトリックスとの結合を生じさせようとする
ものである。しかし、マグネシアが40重量%を越える
と、未反応のマグネシアが残留するようになり、このマ
グネシアの熱膨張によって不定形耐火物施工体に亀裂が
入って耐用性が低下する。
Further, the fine powder of alumina and magnesia used in the present invention contains magnesia in an amount of 28% by weight or more and 40% by weight or less. This is because by containing 28% by weight or more of magnesia, spinel having a theoretical composition is generated by reacting with alumina which is another component of fine powder, and excess magnesia reacts with refractory waste and forms a matrix. It is the one that tries to create a bond. However, if the magnesia exceeds 40% by weight, unreacted magnesia will remain, and the thermal expansion of this magnesia will cause cracks in the amorphous refractory construction product, resulting in reduced durability.

【0015】一方、本発明の不定形耐火物成形体は、窯
炉で使用したアルミナ質耐火物を破砕して得られる耐火
物屑と、アルミナおよびマグネシアからなる微粉とを、
予め混合して耐火物屑の表面に微粉を付着させておき、
施工時にこの微粉を付着させた耐火物屑とその他の原料
とを混合することによって製造する。アルミナおよびマ
グネシアからなる微粉が、スピネルを生成して、耐火物
屑とマトリックスの隙間を充填すると同時に両者を結合
する効果を発揮するには、予め耐火物屑と微粉とを混合
して耐火物屑の表面に微粉を付着させておくことが有効
である。もし、耐火物屑と微粉と残部の流し込み不定形
耐火物とを同時に混合した場合には、微粉がマトリック
スとなる残部の流し込み不定形耐火物中にも分散してい
まい、前述の効果が得られなくなる。
On the other hand, the amorphous refractory molding of the present invention comprises refractory scraps obtained by crushing an alumina refractory used in a kiln, and fine powder composed of alumina and magnesia.
Mix in advance and attach fine powder to the surface of refractory waste,
It is manufactured by mixing refractory scraps to which the fine powder is attached at the time of construction and other raw materials. Fine particles of alumina and magnesia generate spinel, fill the gap between the refractory waste and the matrix, and at the same time exhibit the effect of binding the two, the refractory waste and the fine powder are mixed in advance to obtain the refractory waste. It is effective to attach fine powder to the surface of. If the refractory waste, the fine powder, and the remaining castable amorphous refractory are mixed at the same time, the fine powder may disperse in the residual castable amorphous refractory that forms the matrix, and the above-mentioned effect can be obtained. Disappear.

【0016】[0016]

【実施例】本発明に基づいて製造したアルミナ質流し込
み不定形耐火物及びその成形体についての実施例及び比
較例の特性を表1に示す。すなわち、溶鋼取鍋で使用し
たアルミナ質流し込み不定形耐火物からスラグ浸透のな
い部分を回収し組織調査をしたところ、最大粒径が5m
mの骨材が使用されていた。そこで、この不定形耐火物
屑を粉砕機で30mm以下に粉砕し、粒径を30〜20
mm、20〜10mm、10〜5mm、及び5mm未満
の4段階に分級して回収した。また、アルミナおよびマ
グネシアの微粉としては、耐火物原料に用いられるもの
で、最大粒径が10、45、75μmのものを用いた。
さらに、残部のアルミナ質流し込み不定形耐火物として
は、溶鋼取鍋に用いられていたものと同じ材料を使用し
た。これらの原料を表1に示すように配合し、水分を外
数で7wt%添加して混練し、スラグ侵食試験片と曲げ
試験片を作成して評価を行った。
[Examples] Table 1 shows the characteristics of the examples and comparative examples of the alumina cast amorphous refractory and the molded article produced according to the present invention. That is, when a part without slag permeation was recovered from the alumina cast amorphous refractory used in the molten steel ladle, and the structure was investigated, the maximum particle size was 5 m.
m aggregate was used. Therefore, this amorphous refractory waste is crushed with a crusher to a size of 30 mm or less, and the particle size is 30 to 20.
mm, 20 to 10 mm, 10 to 5 mm, and less than 5 mm were classified into four stages and collected. As the fine powder of alumina and magnesia, those used as a refractory raw material and having a maximum particle size of 10, 45, and 75 μm were used.
Further, as the remaining cast alumina refractory, the same material as that used for the molten steel ladle was used. These raw materials were blended as shown in Table 1, and water was added in an external number of 7 wt% and kneaded to prepare a slag erosion test piece and a bending test piece for evaluation.

【0017】[0017]

【表1A】 *1 混合法:”前”は予め不定形耐火物屑と微粉とを混合することを示す。 ”同”は同時に不定形耐火物屑と微粉と残部の不定形耐火物とを混 合することを示す。 *2 強度指数:成形体を1400℃で焼成した後、常温で曲げ強度を測定し、そ の結果に対して比較例17の強度を100としたときの相対値。[Table 1A] * 1 Mixing method: "Before" indicates that irregular refractory waste and fine powder are mixed in advance. "Same" indicates that the amorphous refractory waste, fine powder, and the remaining irregular refractory are mixed at the same time. * 2 Strength index: Relative value when the strength of Comparative Example 17 is set to 100 with respect to the result, after measuring the bending strength at room temperature after firing the molded body at 1400 ° C.

【0018】[0018]

【表1B】 *1 混合法:”前”は予め不定形耐火物屑と微粉とを混合することを示す。 ”同”は同時に不定形耐火物屑と微粉と残部の不定形耐火物とを混 合することを示す。 *2 強度指数:成形体を1400℃で焼成した後、常温で曲げ強度を測定し、そ の結果に対して比較例17の強度を100としたときの相対値。[Table 1B] * 1 Mixing method: "Before" indicates that irregular refractory waste and fine powder are mixed in advance. "Same" indicates that the amorphous refractory waste, fine powder, and the remaining irregular refractory are mixed at the same time. * 2 Strength index: Relative value when the strength of Comparative Example 17 is set to 100 with respect to the result, after measuring the bending strength at room temperature after firing the molded body at 1400 ° C.

【0019】[0019]

【表1C】 *1 混合法:”前”は予め不定形耐火物屑と微粉とを混合することを示す。 ”同”は同時に不定形耐火物屑と微粉と残部の不定形耐火物とを混 合することを示す。 *2 強度指数:成形体を1400℃で焼成した後、常温で曲げ強度を測定し、そ の結果に対して比較例17の強度を100としたときの相対値。[Table 1C] * 1 Mixing method: "Before" indicates that irregular refractory waste and fine powder are mixed in advance. "Same" indicates that the amorphous refractory waste, fine powder, and the remaining irregular refractory are mixed at the same time. * 2 Strength index: Relative value when the strength of Comparative Example 17 is set to 100 with respect to the result, after measuring the bending strength at room temperature after firing the molded body at 1400 ° C.

【0020】スラグ侵食試験は、スラグとしてC/S=
3.3、T.Fe=9%の転炉スラグを用い、1700
℃で4時間の回転侵食試験を行った。試験後のスラグ侵
食深さは、比較例17に示した従来の不定形耐火物の場
合の浸食深さを100としたときの相対値で示した。数
値が小さいほど耐スラグ溶損性に優れていることを示
す。
In the slag erosion test, C / S =
3.3, T. Using converter slag with Fe = 9%, 1700
A rotary erosion test was conducted at 4 ° C. for 4 hours. The slag erosion depth after the test is shown as a relative value when the erosion depth of the conventional amorphous refractory shown in Comparative Example 17 is 100. The smaller the value is, the more excellent the slag melting resistance is.

【0021】曲げ強度は、大きさ65×114×230
mmの試験片を流し込み施工し、1400℃で焼成した
後常温で試験した。焼成後の成形体の強度は、比較例1
7の場合を100としたときの相対値を求めて強度指数
とし、この値によって評価した。数値が大きいほど強度
が高く優れていることを示す。
The bending strength is 65 × 114 × 230.
A test piece of mm was poured into the test piece, fired at 1400 ° C., and then tested at room temperature. The strength of the molded body after firing is Comparative Example 1
When the value of 7 was taken as 100, the relative value was obtained and used as the strength index, and this value was used for evaluation. The larger the value, the higher the strength and the better.

【0022】実施例1、2、3、4、5は、最大粒径が
10μmで、マグネシア30重量%、アルミナ70重量
%からなり、用いる不定形耐火物屑の粒子表面を十分に
被覆するに足るだけの配合量の微粉と、表に示した配合
量の不定形耐火物屑とを予めよく混合し、その後に、さ
らに残部の流し込み不定形耐火物を配合して混合した不
定形耐火物である。
Examples 1, 2, 3, 4, and 5 have a maximum particle size of 10 μm, and are composed of 30% by weight of magnesia and 70% by weight of alumina, and sufficiently cover the particle surface of the amorphous refractory waste to be used. A sufficient amount of fine powder and the amorphous refractory scraps in the amounts shown in the table were mixed well in advance, and then the remaining castable amorphous refractory was further mixed to form an amorphous refractory. is there.

【0023】比較例17に対してスラグ侵食性、焼成後
の曲げ強度ともほぼ同等の特性を示した。なお、実施例
1は比較例17と変わらない特性であり、不定形屑の粒
径としては20〜10mmが最も好ましいと考えられ
る。また、実施例6は、本発明の範囲内で微粉の粒径を
大きくした材料であるが、比較例17と変わらない特性
を示した。さらに、実施例7は、本発明の範囲内で微粉
のマグネシア量を増加させたものであるが、耐食性が若
干向上し、焼成後の曲げ強度がやや低下したものの、問
題なく使用できる。
Compared with Comparative Example 17, the slag erosion resistance and the bending strength after firing showed almost the same characteristics. In addition, Example 1 has the same characteristics as Comparative Example 17, and it is considered that 20 to 10 mm is most preferable as the particle size of the irregular-shaped waste. In addition, Example 6 is a material in which the particle size of the fine powder is increased within the range of the present invention, but exhibits the same characteristics as Comparative Example 17. Furthermore, in Example 7, the magnesia amount of the fine powder was increased within the range of the present invention, but the corrosion resistance was slightly improved and the bending strength after firing was slightly lowered, but it could be used without problems.

【0024】比較例8は、不定形耐火物屑が5mm未満
と小さく、充填性が悪かったため、スラグ侵食性が劣っ
た。比較例9は、不定形耐火物屑の粒径が流し込み不定
形耐火物の最大骨材粒径の6倍以上と大きく、偏析がみ
られ、強度が低下した。比較例10、11は、不定形耐
火物屑の配合量が30重量%を越えるため、不定形耐火
物屑の特性の影響が現れ、耐食性、強度ともに低下し
た。比較例12は、微粉の最大粒径が45μmよりも大
きいために、スピネル化反応が十分に行なわれず、強度
が得られなかった。
In Comparative Example 8, the amorphous refractory waste was as small as less than 5 mm and the filling property was poor, so the slag erosion resistance was poor. In Comparative Example 9, the particle size of the irregular refractory waste was as large as 6 times or more the maximum aggregate particle size of the cast refractory, segregation was observed, and the strength was reduced. In Comparative Examples 10 and 11, since the amount of the amorphous refractory waste compounded exceeded 30% by weight, the influence of the properties of the amorphous refractory waste appeared, and both the corrosion resistance and the strength decreased. In Comparative Example 12, since the maximum particle size of the fine powder was larger than 45 μm, the spinelization reaction was not sufficiently performed and the strength was not obtained.

【0025】比較例13は、微粉の配合量が20重量%
を越え、生成スピネルの膨張による亀裂の発生等の影響
で強度が低下した。比較例14は、微粉中のマグネシア
量が40重量%を越えたために、過剰なマグネシアが残
存し、耐食性は向上するものの強度を低下させた。比較
例15は、微粉中のマグネシア量が28重量%より少な
いために、十分なスピネルが生成せず強度が得られなか
った。比較例16は、不定形耐火物屑と微粉と残部流し
込み不定形耐火物とを同時に混練した材料であるが、微
粉が不定形耐火物屑とマトリックスの間に十分に分配さ
れず、耐食性、強度とも低下した。
In Comparative Example 13, the amount of fine powder is 20% by weight.
And the strength decreased due to the influence of cracking due to expansion of the generated spinel. In Comparative Example 14, since the amount of magnesia in the fine powder exceeded 40% by weight, excess magnesia remained, and corrosion resistance was improved, but strength was reduced. In Comparative Example 15, since the amount of magnesia in the fine powder was less than 28% by weight, sufficient spinel was not formed and strength could not be obtained. Comparative Example 16 is a material obtained by simultaneously kneading amorphous refractory scraps, fine powder, and the remaining cast amorphous refractory, but the fine powder is not sufficiently distributed between the amorphous refractory scraps and the matrix, and the corrosion resistance and the strength are high. Both dropped.

【0026】[0026]

【発明の効果】本発明により、従来廃棄処分されていた
耐火物屑が有効に利用できる。すなわち、本発明の組成
でもって、アルミナおよびマグネシアからなる微粉を耐
火物屑の表面に付着させて流し込み不定形耐火物と混練
することにより、耐火物屑とマトリックスとの結合が強
くなり、従来用いられてきた不定形耐火物成形体と同等
の特性を有する不定形耐火物成形体が製造可能となっ
た。
Industrial Applicability According to the present invention, refractory waste that has been conventionally disposed of can be effectively used. That is, with the composition of the present invention, fine powder consisting of alumina and magnesia is adhered to the surface of refractory scraps and kneaded to mix with the amorphous refractory, whereby the bond between the refractory scraps and the matrix is strengthened, and is conventionally used. It has become possible to manufacture an irregular shaped refractory molded body having properties equivalent to those of the conventional irregular shaped refractory molded body.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窯炉で使用したアルミナ質耐火物を破砕
して得られる耐火物屑のうち、粒径が該アルミナ質耐火
物を構成している骨材の最大粒径以上のもの30重量%
以下と、粒径が45μm以下のアルミナおよびマグネシ
アからなる微粉15重量%以下と、残部がアルミナ質流
し込み不定形耐火物とからなることを特徴とするアルミ
ナ質流し込み不定形耐火物。
1. A refractory scrap obtained by crushing an alumina refractory used in a kiln, the particle size of which is equal to or larger than the maximum particle size of the aggregate constituting the alumina refractory 30 weight %
An alumina cast amorphous refractory, characterized in that: 15% by weight or less of fine powder composed of alumina and magnesia having a particle size of 45 μm or less, and the balance being an alumina cast amorphous refractory.
【請求項2】 粒径45μm以下のアルミナおよびマグ
ネシアからなる微粉が、マグネシアを28重量%以上、
40重量%以下含む微粉であることを特徴とする請求項
1記載のアルミナ質流し込み不定形耐火物。
2. A fine powder composed of alumina and magnesia having a particle diameter of 45 μm or less contains 28% by weight or more of magnesia,
The castable amorphous alumina refractory according to claim 1, which is a fine powder containing 40% by weight or less.
【請求項3】 請求項1または2に記載のアルミナ質流
し込み不定形耐火物成形体を製造する方法であって、窯
炉で使用したアルミナ質耐火物を破砕して得られる耐火
物屑のうち、粒径が該アルミナ質耐火物を構成している
骨材の最大粒径以上のものと、アルミナおよびマグネシ
アからなる微粉とを、予め混合して耐火物屑の表面に微
粉を付着させておき、施工時にこの微粉を付着させた耐
火物屑と残部のアルミナ質流し込み不定形耐火物とを混
合することを特徴とするアルミナ質流し込み不定形耐火
物成形体の製造方法。
3. A method for producing an alumina cast amorphous refractory material according to claim 1 or 2, wherein the refractory waste is obtained by crushing the alumina refractory material used in a kiln. , A particle having a particle size equal to or larger than the maximum particle size of the aggregate constituting the alumina refractory and a fine powder made of alumina and magnesia are mixed in advance and the fine powder is adhered to the surface of the refractory waste. A method for manufacturing an alumina cast amorphous refractory body, characterized in that the refractory scrap to which the fine powder is attached at the time of construction is mixed with the rest of the alumina cast amorphous refractory.
JP7346288A 1995-12-13 1995-12-13 Alumina casting monolithic refractory and production of formed body using the refractory Pending JPH09165270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346288A JPH09165270A (en) 1995-12-13 1995-12-13 Alumina casting monolithic refractory and production of formed body using the refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346288A JPH09165270A (en) 1995-12-13 1995-12-13 Alumina casting monolithic refractory and production of formed body using the refractory

Publications (1)

Publication Number Publication Date
JPH09165270A true JPH09165270A (en) 1997-06-24

Family

ID=18382387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346288A Pending JPH09165270A (en) 1995-12-13 1995-12-13 Alumina casting monolithic refractory and production of formed body using the refractory

Country Status (1)

Country Link
JP (1) JPH09165270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143355A (en) * 1998-11-02 2000-05-23 Nisshin Steel Co Ltd Prepared unshaped refractory
KR100478141B1 (en) * 2000-12-20 2005-03-22 재단법인 포항산업과학연구원 Injection repair composition for blast furnace by using spent refractories

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143355A (en) * 1998-11-02 2000-05-23 Nisshin Steel Co Ltd Prepared unshaped refractory
KR100478141B1 (en) * 2000-12-20 2005-03-22 재단법인 포항산업과학연구원 Injection repair composition for blast furnace by using spent refractories

Similar Documents

Publication Publication Date Title
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
US5506181A (en) Refractory for use in casting operations
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
JP3610523B2 (en) Fused slag refractory material composition and molten slag refractory material
JPH09165270A (en) Alumina casting monolithic refractory and production of formed body using the refractory
JP2008207238A (en) Casting mold
JPH08259313A (en) Production of magnesia-chrome-based refractory brick
JPH08259311A (en) Production of magnesia-carbonaceous refractory brick
JPH082975A (en) Refractory for casting application
JPH06345550A (en) Castable refractory
JP2002201080A (en) Using method of scrap refractory and castable refractory
JPH026373A (en) Cast amorphous refractory
JP2766624B2 (en) Alumina / Spinel amorphous refractories
JPH03174369A (en) Monolithic refractory
JPH03159967A (en) Lining material of container for molten metal
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JP3157310B2 (en) Refractory
JP3604301B2 (en) Refractory raw materials, kneaded raw materials and refractories
JP3197378B2 (en) Graphite-containing basic amorphous refractory composition
JP2607916B2 (en) Zircon castable refractories
JPH05238838A (en) Amorphous refractory for casting
JP2000191364A (en) Shaped magnesia-chrome refractory
JPH0541590B2 (en)
JPH07110780B2 (en) Sintered fireproof material
JP2000143355A (en) Prepared unshaped refractory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705