JPH09161811A - Anode catalyst for polyelectrolyte type fuel cell and its preparation - Google Patents

Anode catalyst for polyelectrolyte type fuel cell and its preparation

Info

Publication number
JPH09161811A
JPH09161811A JP7337663A JP33766395A JPH09161811A JP H09161811 A JPH09161811 A JP H09161811A JP 7337663 A JP7337663 A JP 7337663A JP 33766395 A JP33766395 A JP 33766395A JP H09161811 A JPH09161811 A JP H09161811A
Authority
JP
Japan
Prior art keywords
platinum
iron
catalyst
fuel cell
anode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7337663A
Other languages
Japanese (ja)
Other versions
JP3389393B2 (en
Inventor
Masahiro Watanabe
政廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Original Assignee
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Stonehart Associates Inc filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP33766395A priority Critical patent/JP3389393B2/en
Publication of JPH09161811A publication Critical patent/JPH09161811A/en
Application granted granted Critical
Publication of JP3389393B2 publication Critical patent/JP3389393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anode catalyst having the composition range different from that of a cathode catalyst for a fuel cell having the conventional platinum- iron alloy phase, excellent in poisoning resistance characteristic against carbon monoxide, rarely having elution, and having a long life. SOLUTION: A platinum-iron alloy phase containing platinum of 84-99 atomic % and iron of 1-16 atomic % is carried on a catalyst carrier. This alloy phase may contain a noble metal selected from palladium, ruthenium, rhodium, and gold. An anode catalyst containing iron of 1-16 atomic % doesn't generate FePt3 generated by the anode catalyst containing iron in the range exceeding 16 atomic %, inferior in poisoning resistance characteristic, and liable to cause deterioration due to elution, thus it has a longer life than before.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、白金を主成分とする高
分子電解質型燃料電池用アノード触媒及びその製造方法
に関し、より詳細には少なくとも白金と鉄を含有する高
分子電解質型燃料電池用アノード触媒及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode catalyst for a polymer electrolyte fuel cell containing platinum as a main component and a method for producing the same, more specifically for a polymer electrolyte fuel cell containing at least platinum and iron. The present invention relates to an anode catalyst and a method for manufacturing the same.

【0002】[0002]

【従来技術及び問題点】高分子電解質型燃料電池は酸化
物電解質型燃料電池やリン酸型燃料電池等と比較して動
作温度が低く、高電流密度での運転が可能なため、ユニ
ットの小型軽量化が可能であると認識されている。その
ため該高分子電解質型燃料電池は電気自動車などの移動
体の駆動電源として期待されている。この燃料電池に供
給される燃料としては純水素の他に、燃料を流通させる
ための環境整備の容易さから、天然ガスやメタノール改
質ガスの使用が検討されている。しかし天然ガスや改質
ガスには水素の他に二酸化炭素や一酸化炭素が含有さ
れ、特に一酸化炭素は燃料電池のアノード(燃料極)で
使用される白金触媒を被毒し、電池出力の低下原因とな
っている。この問題点は低温で動作させる高分子電解質
型燃料電池で特に顕著である。
2. Description of the Related Art Polymer electrolyte fuel cells have a lower operating temperature than oxide electrolyte fuel cells, phosphoric acid fuel cells, etc., and can be operated at high current densities. It is recognized that weight reduction is possible. Therefore, the polymer electrolyte fuel cell is expected as a driving power source for moving bodies such as electric vehicles. As the fuel supplied to this fuel cell, in addition to pure hydrogen, the use of natural gas or methanol reformed gas is being considered because of the ease of environmental maintenance for circulating the fuel. However, natural gas and reformed gas contain carbon dioxide and carbon monoxide in addition to hydrogen, and in particular carbon monoxide poisons the platinum catalyst used in the anode (fuel electrode) of the fuel cell, and It is causing the decline. This problem is particularly remarkable in the polymer electrolyte fuel cell operated at low temperature.

【0003】この問題は純水素を使用することにより回
避できるが、純水素は炭化水素系の燃料に比べてエネル
ギー密度が小さいため、貯蔵や運搬にコストが掛かり、
絶対的な流通量も少ないのが現状である。一方前記天然
ガスや改質ガスは選択酸化等により該ガス中に含まれる
数%の一酸化炭素濃度を数百ppm のレベルまで低減する
ことが可能になっているが、常温から100 ℃迄の高分子
電解質型燃料電池の使用温度で白金触媒は数ppm レベル
の僅かな一酸化炭素に対しても特性低下を示す。こうし
た状況から燃料電池の実用化の促進のためには優れた耐
一酸化炭素被毒触媒の解決が不可欠であり、一酸化炭素
によるアノード触媒の被毒を回避することが当該分野の
最大の関心事となっている。
This problem can be avoided by using pure hydrogen, but since pure hydrogen has a smaller energy density than hydrocarbon type fuel, it costs much to store and transport, and
At present, the absolute distribution volume is also small. On the other hand, the natural gas and reformed gas can reduce the concentration of carbon monoxide contained in the gas to several hundred ppm by selective oxidation or the like. At the operating temperature of the polymer electrolyte fuel cell, the platinum catalyst shows deterioration in characteristics even for a few ppm of carbon monoxide. Under these circumstances, it is indispensable to solve an excellent carbon monoxide poisoning-resistant catalyst in order to promote the practical use of the fuel cell, and avoiding poisoning of the anode catalyst by carbon monoxide is the greatest concern in the field. It has become a thing.

【0004】一方燃料電池用の触媒として貴金属特に白
金とこれに鉄を添加した合金の使用が提案されている
(例えば特開平4−358540号公報、特開昭60−7941号公
報)。前者の特開平4−358540号公報に記載の触媒はカ
ソード触媒として使用するもので、白金と合金化可能な
多数の金属の1種として記載されているのみで、具体的
な製法や組成に関する記載はない。後者の特開昭60−79
41号公報に記載の白金−鉄触媒は、燃料電池用カソード
触媒の寿命がその表面積減少により短くなることを防止
するために、Pt3Fe で表される超格子構造を意図的に形
成することを目的とし、鉄の組成範囲として前記超格子
構造が形成可能な17〜42原子%を特定している。
On the other hand, it has been proposed to use a noble metal, particularly platinum, and an alloy in which iron is added thereto as a catalyst for fuel cells (for example, JP-A-4-358540 and JP-A-60-7941). The former catalyst described in JP-A-4-358540 is used as a cathode catalyst, and is described only as one kind of many metals that can be alloyed with platinum, and a description regarding a specific manufacturing method and composition. There is no. The latter JP-A-60-79
The platinum-iron catalyst described in Japanese Patent No. 41, intentionally forming a superlattice structure represented by Pt 3 Fe in order to prevent the life of the cathode catalyst for a fuel cell from being shortened due to the decrease in the surface area. For that purpose, 17 to 42 atom% capable of forming the superlattice structure is specified as the composition range of iron.

【0005】しかしながら本発明者は、鉄の組成範囲が
17〜42原子%である白金−鉄合金を燃料電池のアノード
用触媒として使用すると、表面積の減少を防いで寿命を
向上させる効果よりも、Pt3Fe で表される特定の格子構
造の燃料電池の電解液中への溶解に起因する寿命短縮の
影響の方が大きく、鉄組成が前記範囲内にある白金−鉄
合金では燃料電池の寿命を延ばすことはできないことを
見出した。本発明はこの知見に基づき成されたものであ
る。
However, the present inventor has found that the composition range of iron is
When a platinum-iron alloy containing 17 to 42 atomic% is used as a catalyst for an anode of a fuel cell, it has a specific lattice structure represented by Pt 3 Fe rather than the effect of preventing reduction of surface area and improving life. It was found that the effect of shortening the service life due to the dissolution in the electrolyte solution is greater, and the life of the fuel cell cannot be extended with a platinum-iron alloy having an iron composition within the above range. The present invention was made based on this finding.

【0006】[0006]

【発明の目的】本発明の目的は、高分子電解質型燃料電
池の動作温度でも一酸化炭素による被毒を受けにくい高
分子電解質型燃料電池用アノード触媒及びその製造方法
を提供することを目的とし、該触媒及び製造方法により
実質的に燃料電池の寿命を短縮することなく改質燃料を
使用することが可能になる。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an anode catalyst for a polymer electrolyte fuel cell which is less likely to be poisoned by carbon monoxide even at the operating temperature of the polymer electrolyte fuel cell, and a method for producing the same. The catalyst and the manufacturing method allow the reformed fuel to be used without substantially shortening the life of the fuel cell.

【0007】[0007]

【問題点を解決するための手段】本発明の高分子電解質
型燃料電池用アノード触媒は、触媒担体、及び該担体に
担持された原子%で84〜99%の白金及び原子%で1〜16
%の鉄を含んで成ることを特徴とする高分子電解質型燃
料電池用アノード触媒であり、該触媒は該白金及び鉄に
対して0.1 〜50原子%のパラジウム、ルテニウム、ロジ
ウム及び金から選択される貴金属を含有していても良
い。又これらの触媒は、前記担体上へ白金を熱分解や還
元剤による還元により析出させ、かつ必要に応じて前記
貴金属を担持させ、かつ該白金担持触媒担体を鉄化合物
を含有する溶液中に浸漬しpH調整等により鉄の塩化物
及び/又は水酸化物を析出させ還元雰囲気下で熱処理す
ることにより前記白金及び鉄を合金化することにより製
造できる。
An anode catalyst for a polymer electrolyte fuel cell according to the present invention comprises a catalyst carrier, 84% to 99% by atom of platinum and 1 to 16% of atom% supported on the carrier.
% Of iron, the anode catalyst for polymer electrolyte fuel cells being selected from 0.1 to 50 atomic% of palladium, ruthenium, rhodium and gold with respect to the platinum and iron. It may also contain a precious metal. In addition, these catalysts are prepared by precipitating platinum on the carrier by thermal decomposition or reduction with a reducing agent, and optionally supporting the precious metal, and immersing the platinum-supporting catalyst carrier in a solution containing an iron compound. It can be produced by alloying platinum and iron by precipitating iron chloride and / or hydroxide by adjusting pH and heat treating in a reducing atmosphere.

【0008】以下、本発明の詳細について説明する。本
発明では高分子電解質型燃料電池のアノード触媒を対象
とし、特に改質ガス中に含まれる一酸化炭素ガスに対す
る低温での十分な耐被毒性を有するアノード触媒を提供
しようとするものである。高分子電解質型燃料電池では
触媒金属の溶出により触媒が劣化するとともに溶出した
金属イオンが高分子電解質のプロトンとイオン交換して
電解質の伝導性を損なうことがあり、これが燃料電池の
長寿命化を妨げている。そのため本発明では、担体上に
担持された触媒金属が一酸化炭素で被毒されずかつ高分
子電解質である陽イオン交換樹脂が侵されないように添
加元素の種類と添加量、及び金属合金相を的確に選定す
ることが必要になる。
The details of the present invention will be described below. The present invention is intended for an anode catalyst of a polymer electrolyte fuel cell, and particularly to provide an anode catalyst having sufficient resistance to poisoning at a low temperature with respect to carbon monoxide gas contained in a reformed gas. In polymer electrolyte fuel cells, the catalyst may deteriorate due to the elution of the catalyst metal, and the eluted metal ions may exchange ions with the protons of the polymer electrolyte, impairing the conductivity of the electrolyte, which may prolong the life of the fuel cell. Hindering Therefore, in the present invention, the type and addition amount of the additive element, and the metal alloy phase are selected so that the catalyst metal supported on the carrier is not poisoned by carbon monoxide and the cation exchange resin that is the polymer electrolyte is not attacked. It is necessary to make an accurate selection.

【0009】本発明では主たる触媒金属として白金を、
又前記添加元素として基本的に鉄を選定し、溶出に対す
る耐性が劣るFePt3 相が生成しない範囲つまり白金と鉄
の合計量に対して1〜16原子%の鉄を含む白金−鉄合金
相を触媒とする。従って本発明の第1の高分子電解質型
燃料電池用アノード触媒では、84〜99原子%の白金と1
〜16原子%の鉄を含んで成る白金−鉄合金相を触媒担体
上に担持して高分子電解質型燃料電池用アノード触媒を
構成する。鉄の含有量が1原子%未満であると一酸化炭
素に対する耐被毒性の効果が少なくなり、16原子%を越
えると溶出し易いFeリッチなFePt3 相が生成し、該FePt
3 相の溶出が前記触媒及び電解質の劣化を招き易くな
る。
In the present invention, platinum is used as the main catalytic metal.
Further, iron is basically selected as the additional element, and a range in which FePt 3 phase having poor resistance to elution is not formed, that is, a platinum-iron alloy phase containing 1 to 16 atom% of iron with respect to the total amount of platinum and iron is used. Use as a catalyst. Therefore, in the first polymer electrolyte fuel cell anode catalyst of the present invention, 84 to 99 atomic% of platinum and 1
A platinum-iron alloy phase containing ~ 16 atomic% iron is supported on a catalyst carrier to form an anode catalyst for a polymer electrolyte fuel cell. If the iron content is less than 1 atom%, the effect of poisoning resistance to carbon monoxide is reduced, and if it exceeds 16 atom%, Fe-rich FePt 3 phase, which is easy to elute, is formed.
The elution of the three phases easily causes deterioration of the catalyst and the electrolyte.

【0010】又本発明の第2の高分子電解質型燃料電池
用アノード触媒では、84〜99原子%の白金と1〜16原子
%の鉄、及び該白金及び鉄に対して0.1 〜50原子%のパ
ラジウム、ルテニウム、ロジウム及び金から選択される
貴金属を触媒担体上に担持して高分子電解質型燃料電池
用アノード触媒を構成する。これらの貴金属は、前記原
子%の範囲で白金−鉄合金相の燃料電池のアノードにお
ける水素酸化の触媒活性を損なわずに一酸化炭素に対す
る耐被毒性を向上させる。つまり貴金属添加量が0.1 原
子%未満であると貴金属添加効果が現れず、50原子%を
越えると水素酸化に対する活性が損なわれることにな
る。
In the second anode catalyst for polymer electrolyte fuel cells of the present invention, 84 to 99 atom% of platinum and 1 to 16 atom% of iron, and 0.1 to 50 atom% of platinum and iron are used. A noble metal selected from palladium, ruthenium, rhodium and gold is supported on a catalyst carrier to form an anode catalyst for polymer electrolyte fuel cells. These noble metals improve the poisoning resistance to carbon monoxide within the above atomic% range without impairing the catalytic activity of hydrogen oxidation in the anode of the fuel cell of the platinum-iron alloy phase. That is, if the amount of the noble metal added is less than 0.1 at%, the noble metal addition effect does not appear, and if it exceeds 50 at%, the activity against hydrogen oxidation is impaired.

【0011】前記第1及び第2のアノード触媒では、全
触媒重量に対して白金が5〜40重量%含有されているこ
とが望ましく、これは白金含有量が5重量%未満である
と燃料電池のアノードにおける水素酸化に必要な量の白
金を担持させると触媒全体の重量が嵩み電極シートが厚
くなってガス拡散律速となり特性の低下を招くことがあ
り、又40%を越えると熱処理工程で触媒金属粒子の粒子
径が粗大化し、担持量に見合う触媒比表面積が得られな
いことがあるからである。これらのアノード触媒ではFe
Pt3 のような金属間化合物は生成せず、多くの場合鉄が
白金中に固溶した合金相が形成される。平衡状態では鉄
は白金中に原子%で17%程度固溶するが(Kubaschewsk
i, O., "Fe-Pt; Iron-Platinum", pp 91-94, ofvolume
Iron Binary Phase Diagrams; Springer-Verlag, 1982)
、添加量が17%未満であっても合金化の熱処理時の拡
散過程でFeリッチな金属間化合物相が現れれ、耐食性が
損なわれることがある。このような部分的偏析を避け
て、更に確実に固溶合金相を形成するためには熱処理
を、触媒金属粒子が粗大化しない範囲で一定以上の温度
と保持時間を保って熱処理を行なえば良く、例えば400
〜900 ℃の温度で30分以上熱処理を行なえば良い。その
後の冷却に関しては、本発明の鉄添加量の範囲内であれ
ば徐冷しても急冷しても良い。
It is desirable that the first and second anode catalysts contain 5 to 40% by weight of platinum based on the total weight of the catalyst, which means that if the platinum content is less than 5% by weight. If the amount of platinum required for hydrogen oxidation at the anode of is supported, the weight of the entire catalyst will increase and the electrode sheet will become thicker, and gas diffusion will be the rate-determining factor, leading to deterioration of properties. This is because the particle size of the catalytic metal particles becomes coarse, and the catalyst specific surface area commensurate with the supported amount may not be obtained. Fe in these anode catalysts
An intermetallic compound such as Pt 3 is not formed, and an alloy phase in which iron is solid-soluted in platinum is often formed. At equilibrium, iron dissolves in platinum at about 17% in atomic% (Kubaschewsk
i, O., "Fe-Pt;Iron-Platinum", pp 91-94, of volume
Iron Binary Phase Diagrams; Springer-Verlag, 1982)
Even if the addition amount is less than 17%, an Fe-rich intermetallic compound phase may appear in the diffusion process during the heat treatment for alloying, and the corrosion resistance may be impaired. In order to avoid such partial segregation and to form a solid solution alloy phase more reliably, heat treatment may be carried out at a temperature higher than a certain level and a holding time within a range where the catalyst metal particles do not coarsen. , For example 400
The heat treatment should be performed at a temperature of ~ 900 ° C for 30 minutes or longer. Regarding the subsequent cooling, if it is within the range of the iron addition amount of the present invention, it may be gradually cooled or rapidly cooled.

【0012】前述の本発明に係わる高分子電解質型燃料
電池用アノード触媒の製造方法は特に限定されないが、
白金と鉄を含んで成る合金相を形成する場合には、触媒
担体好ましくはカーボンブラック、アセチレンブラッ
ク、ファーネスブラック、活性炭、無定形炭素等の炭素
単体から成るカーボン担体を塩化白金酸等の白金化合物
を含有する溶液中に分散し、該白金化合物を乾燥熱分解
又は還元剤による還元により前記触媒担体上に析出さ
せ、該白金担持触媒担体を塩化鉄、硝酸鉄及びモール塩
等の鉄化合物を含有する溶液中に浸漬し、蒸発乾固した
もの又はpH調整により鉄の塩化物及び/又は水酸化物
を析出させ、更に蒸発乾固したものを水素気流中等の還
元雰囲気下で熱処理することにより前記白金及び鉄を合
金化して製造することが望ましい。なお、白金及び鉄の
担持は白金−鉄の順に限定されず、鉄−白金の順で行な
っても良い。
The method for producing the above-mentioned anode catalyst for a polymer electrolyte fuel cell according to the present invention is not particularly limited,
In the case of forming an alloy phase containing platinum and iron, a catalyst carrier is preferably a carbon carrier composed of carbon simple substance such as carbon black, acetylene black, furnace black, activated carbon and amorphous carbon, and a platinum compound such as chloroplatinic acid. Dispersed in a solution containing, the platinum compound is deposited on the catalyst carrier by dry thermal decomposition or reduction with a reducing agent, and the platinum-supported catalyst carrier contains iron compounds such as iron chloride, iron nitrate and Mohr's salt By dipping in a solution to evaporate to dryness, or to precipitate iron chloride and / or hydroxide by adjusting pH, and further evaporating to dryness, and subjecting the product to heat treatment in a reducing atmosphere such as a hydrogen stream, It is desirable to manufacture by alloying platinum and iron. The loading of platinum and iron is not limited to platinum-iron, but iron-platinum may be loaded in that order.

【0013】又前述の貴金属を含有するアノード触媒を
製造する場合には、前述の通り白金担持触媒を作製し、
前記貴金属化合物例えば貴金属の塩化物の水溶液中に該
白金担持触媒を浸漬し、該貴金属を還元析出させ、かつ
前述と同様に鉄を担持して製造すればことが望ましい
が、この担持順も白金−貴金属−鉄に限定されず、任意
の順で行なえば良い。
In the case of producing the above-mentioned noble metal-containing anode catalyst, a platinum-supported catalyst is produced as described above,
It is desirable that the noble metal compound, for example, the platinum-supported catalyst is immersed in an aqueous solution of a chloride of the noble metal, the noble metal is reduced and precipitated, and iron is carried in the same manner as described above. -Precious metal-It is not limited to iron, and may be performed in any order.

【0014】[0014]

【実施例】次に本発明に係わる高分子電解質型燃料電池
用アノード触媒及びその製造方法に関する実施例を説明
するが、本実施例は本発明を限定するものではない。
EXAMPLES Examples of the anode catalyst for a polymer electrolyte fuel cell and a method for producing the same according to the present invention will be described below, but the present invention is not limited to the examples.

【実施例1】白金及び鉄のターゲットを減圧チャンバー
内でアルゴンガスを用いて同時スパッタし、直径10mmの
リード端子付きガラス板に厚さ0.5 μmの白金−鉄合金
薄膜を形成した。これを直径8mmのステンレス製ロッド
の片端面に固定し、回転電極装置に装着した。なお合金
組成は同時に製作した試料のうちの1個をICP法(誘
導結合プラズマ)法で定量分析して確認した。
Example 1 Platinum and iron targets were co-sputtered in a vacuum chamber using argon gas to form a 0.5 μm thick platinum-iron alloy thin film on a glass plate with a lead terminal having a diameter of 10 mm. This was fixed to one end surface of a stainless steel rod having a diameter of 8 mm and attached to a rotary electrode device. The alloy composition was confirmed by quantitatively analyzing one of the simultaneously manufactured samples by the ICP method (inductively coupled plasma) method.

【0015】白金:鉄=95:5(原子%)及び白金:鉄
=85:15(原子%)の組成比で製作した回転電極試料を
別個に0.1 Mの過塩素酸水溶液に浸漬し、一酸化炭素10
0 ppm を含有する水素を1時間バブリングして前記試料
を被毒した。その後バブリングを120 分間継続しなが
ら、白金電極を対極として時間に対する無限拡散電流値
即ち電極触媒反応電流値をプロットした。その結果を図
1に示す。又測定終了後に電解液をICP法により分析
し、鉄の溶出を確認したところ、その値は検出限界以下
であった。
Rotating electrode samples prepared with a composition ratio of platinum: iron = 95: 5 (atomic%) and platinum: iron = 85: 15 (atomic%) were separately immersed in a 0.1 M perchloric acid aqueous solution, and Carbon oxide 10
The sample was poisoned by bubbling hydrogen containing 0 ppm for 1 hour. After that, bubbling was continued for 120 minutes, and the infinite diffusion current value, that is, the electrocatalytic reaction current value was plotted against time with the platinum electrode as the counter electrode. The result is shown in FIG. After the measurement, the electrolytic solution was analyzed by the ICP method to confirm the elution of iron. The value was below the detection limit.

【0016】[0016]

【比較例1】白金及び鉄の代わりに純白金を使用したこ
と以外は実施例1と同一条件で回転電極試料を製作し、
同様の測定を行ない、電極触媒反応電極値をプロットし
た。その結果を図1に示す。
Comparative Example 1 A rotating electrode sample was prepared under the same conditions as in Example 1 except that pure platinum was used instead of platinum and iron.
The same measurement was performed and the electrode value of the electrocatalytic reaction electrode was plotted. The result is shown in FIG.

【0017】[0017]

【比較例2】実施例1と同様にして白金:鉄=80:20
(原子%)の組成比の回転電極試料を製作し、同様の測
定を行ない電極触媒反応電流値をプロットした。その結
果を図1に示す。又実施例1と同様に鉄の溶出を確認し
たところトレース量の鉄が検出された。又この白金−鉄
合金の合金相をCuKα線を用いてX線回折装置で同定
したところ、Ptα固溶相のピークとともにPt3Fe 及び
PtFeの金属間化合物相のピークを検出した。図1から実
施例1の電極と比較例2の電極を比較すると、比較例2
の電極の方が高電流が取り出されているが、比較例2の
電極では鉄の溶出量が大きく比較的短時間で寿命に達す
るためその実用的価値は実施例1の電極の方が高かっ
た。
[Comparative Example 2] Platinum: iron = 80: 20 in the same manner as in Example 1.
A rotating electrode sample having a composition ratio of (atomic%) was manufactured, and the same measurement was performed to plot the electrocatalytic reaction current value. The result is shown in FIG. When elution of iron was confirmed in the same manner as in Example 1, a trace amount of iron was detected. When the alloy phase of this platinum-iron alloy was identified by an X-ray diffractometer using CuKα rays, Pt 3 Fe and Pt 3 Fe and a solid solution phase peak were identified.
The peak of the intermetallic compound phase of PtFe was detected. Comparing the electrode of Example 1 and the electrode of Comparative Example 2 from FIG. 1, Comparative Example 2
The electrode of Comparative Example 2 has a higher electric current, but the electrode of Comparative Example 2 has a higher practical value because the electrode of Comparative Example 2 has a large iron elution amount and reaches a life in a relatively short time. .

【0018】[0018]

【実施例2】実施例1と同様にして、白金:鉄:パラジ
ウム=60:10:30(原子%)、白金:鉄:ルテニウム=
60:10:30(原子%)、白金:鉄:ロジウム=70:10:
20(原子%)及び白金:鉄:金=70:10:20(原子%)
の組成比の回転電極試料を製作し、同様の測定を行ない
電極触媒反応電流の値を測定した。又実施例1と同様に
して鉄の溶出を確認したところ、その値は検出限界以下
であった。本実施例で得られた初期及び120 分での電極
触媒反応電流値を、実施例1、比較例1及び比較例2の
同様の値とともに表1に纏めた。
Example 2 Platinum: iron: palladium = 60: 10: 30 (atomic%), platinum: iron: ruthenium = in the same manner as in Example 1.
60:10:30 (atomic%), platinum: iron: rhodium = 70: 10:
20 (atomic%) and platinum: iron: gold = 70:10:20 (atomic%)
A rotating electrode sample having the composition ratio of was prepared, and the same measurement was performed to measure the value of the electrocatalytic reaction current. When elution of iron was confirmed in the same manner as in Example 1, the value was below the detection limit. The initial and 120-minute electrocatalytic reaction current values obtained in this example are summarized in Table 1 together with the same values as in Example 1, Comparative Example 1 and Comparative Example 2.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【実施例3】アセチレンカーボンブラック粉末10gに白
金濃度が150 g/リットルである塩化白金酸を含浸させ
た後、熱分解処理を行ない、白金担持量が触媒重量に対
して10%と30%の白金担持触媒を作製した。これらの各
触媒に白金:鉄=85:15(原子%)の組成比となるよう
に、塩化鉄の水溶液を含浸させ蒸発乾固した後、水素−
窒素の混合ガス中800 ℃で90分間熱処理して合金化し
た。この触媒金属粒子の合金相をCuα線を用いてX線
回折装置で同定したところ、(111) 、(200) 、(220) の
Ptα固溶相のピークを検出した。又(220) 面のピークよ
り半値幅を求めて粒子径を算出したところ粒子径はそれ
ぞれ6nmと7nmであった。
Example 3 10 g of acetylene carbon black powder was impregnated with chloroplatinic acid having a platinum concentration of 150 g / liter, and then subjected to a thermal decomposition treatment so that platinum loadings were 10% and 30% with respect to the catalyst weight. A platinum-supported catalyst was prepared. Each of these catalysts was impregnated with an aqueous solution of iron chloride so as to have a composition ratio of platinum: iron = 85:15 (atomic%), evaporated to dryness, and then hydrogen-
It was alloyed by heat treatment in a mixed gas of nitrogen at 800 ° C for 90 minutes. When the alloy phase of the catalytic metal particles was identified by an X-ray diffractometer using Cuα rays, it was confirmed that the (111), (200),
The peak of Ptα solid solution phase was detected. Further, when the half-width was calculated from the peak of the (220) plane and the particle diameter was calculated, the particle diameters were 6 nm and 7 nm, respectively.

【0021】[0021]

【実施例4】実施例3と同様にして、白金担持量が50重
量%となるように白金担持触媒を作製し、更に白金:鉄
=85:15(原子%)の組成比となるように塩化鉄の水溶
液を含浸、蒸発乾固した後、水素−窒素の混合ガス中80
0 ℃で10分間熱処理した。この触媒金属粒子の合金相を
X線回折装置で同定したところ白金のα固溶相のピーク
の他、FePt3 もしくはFePtの金属間化合物相ピークを検
出した。このFePt3 やFePtは、白金担持量が最適範囲で
ある5〜40重量%から外れかつ熱処理時間が最適時間で
ある30分以上より短いためであると推測される。このFe
Pt3 等のピーク値は極小であり、寿命短縮への影響は僅
かであると推測される。又Ptα固溶相のピークより半値
幅を求めて粒子径を算出したところ10nmであった。この
値も白金担持量が5〜40重量%より多く、これにより粒
子径が大きくなったものと推測される。
Example 4 In the same manner as in Example 3, a platinum-supported catalyst was prepared so that the amount of platinum supported was 50% by weight, and the composition ratio of platinum: iron = 85: 15 (atomic%) was adjusted. After impregnating with an aqueous solution of iron chloride and evaporating to dryness, 80% in a hydrogen-nitrogen mixed gas.
Heat treatment was performed at 0 ° C. for 10 minutes. When the alloy phase of the catalyst metal particles was identified by an X-ray diffractometer, a peak of the α solid solution phase of platinum and a peak of FePt 3 or FePt intermetallic compound phase were detected. It is presumed that this FePt 3 or FePt is because the amount of platinum supported deviates from the optimum range of 5 to 40 wt% and the heat treatment time is shorter than the optimum time of 30 minutes or more. This Fe
The peak value of Pt 3 etc. is extremely small, and it is presumed that the effect on life shortening is slight. Further, when the half-width was calculated from the peak of the Ptα solid solution phase and the particle size was calculated, it was 10 nm. This value is also considered to be because the amount of platinum supported is more than 5 to 40% by weight, and the particle size is increased by this.

【0022】[0022]

【発明の効果】本発明は、触媒担体、及び該担体に担持
された原子%で84〜99%の白金及び原子%で1〜16%の
鉄を含んで成ることを特徴とする高分子電解質型燃料電
池用アノード触媒(請求項1)である。本発明の白金−
鉄合金相では鉄の含有量が1〜16原子%で鉄含有量が17
原子%以上で存在するFePt3 で表される金属間化合物を
生成しない。このFePt3 は表面積減少に対する耐性は有
するものの、アノード触媒として使用すると燃料電池の
電解液中に溶出し易く又一酸化炭素に対する耐被毒性に
劣り、燃料電池用のアノード触媒として使用した場合、
本発明の白金−鉄合金を有するアノード触媒の方が十分
に長い寿命を有する。
Industrial Applicability The present invention comprises a catalyst carrier, and a polyelectrolyte which comprises 84% to 99% by atom of platinum and 1% to 16% of iron by atomic% supported on the carrier. A fuel cell anode catalyst (claim 1). The platinum of the present invention
In the iron alloy phase, the iron content is 1 to 16 atomic% and the iron content is 17
It does not form an intermetallic compound represented by FePt 3 which is present in the atomic% or more. Although FePt 3 has resistance to surface area reduction, when it is used as an anode catalyst, it easily elutes in the electrolyte of a fuel cell and is poor in poisoning resistance to carbon monoxide, and when used as an anode catalyst for fuel cells,
The anode catalyst having the platinum-iron alloy of the present invention has a sufficiently long life.

【0023】又全触媒重量に対する白金担持量は5〜40
重量%であることが望ましく、この範囲の白金担持量を
アノード触媒を使用すると、ガス拡散が生じ易くかつ微
細な触媒粒子を有する燃料電池を提供できる(請求項
2)。請求項1のアノード触媒は、例えば触媒担体を白
金化合物を含有する溶液中に分散し、該白金化合物を熱
分解又は還元剤による還元により前記触媒担体上に析出
させ、該白金担持触媒担体を鉄化合物を含有する溶液中
に浸漬し、蒸発乾固又はpH調整により鉄の水酸化物を
析出させ還元雰囲気下で熱処理することにより前記白金
及び鉄を合金化することによって製造できる(請求項
3)。この工程における熱処理を400 〜900 ℃の温度で
30分以上行なうと、鉄が白金中に固溶している合金相が
形成され、前述した溶出し易いFePt3 金属間化合物の生
成を更に確実に抑制し長寿命のアノード触媒が提供され
る(請求項4)。
The amount of platinum supported on the total catalyst weight is 5 to 40.
The amount of platinum supported is preferably in the range of% by weight. When the amount of platinum supported in this range is used as the anode catalyst, it is possible to provide a fuel cell in which gas diffusion easily occurs and which has fine catalyst particles (claim 2). In the anode catalyst according to claim 1, for example, a catalyst carrier is dispersed in a solution containing a platinum compound, and the platinum compound is deposited on the catalyst carrier by thermal decomposition or reduction with a reducing agent, and the platinum-supported catalyst carrier is made of iron. It can be produced by alloying platinum and iron by immersing in a solution containing a compound, evaporating to dryness or adjusting pH to precipitate iron hydroxide and heat treating in a reducing atmosphere (claim 3). . The heat treatment in this process is performed at a temperature of 400-900 ℃.
When it is carried out for 30 minutes or more, an alloy phase in which iron is solid-solved in platinum is formed, and the production of the FePt 3 intermetallic compound, which easily elutes, is further reliably suppressed, and a long-life anode catalyst is provided ( Claim 4).

【0024】前述のアノード触媒の白金−鉄合金相は、
白金及び鉄に対して0.1 〜50原子%のパラジウム、ルテ
ニウム、ロジウム及び金から選択される貴金属を含有し
ていても良く(請求項5)、該貴金属は前記原子%の範
囲で白金−鉄合金相の燃料電池のアノードにおける水素
酸化の触媒活性を損なわずに一酸化炭素に対する耐被毒
性を向上させる。この貴金属含有アノード触媒でも、全
触媒重量に対する白金担持量は5〜40重量%であること
が望ましく(請求項6)、この範囲の白金担持量のアノ
ード触媒を使用すると、同様にガス拡散が生じ易くかつ
微細な触媒粒子を有する燃料電池を提供できる。
The platinum-iron alloy phase of the above-mentioned anode catalyst is
It may contain 0.1 to 50 atom% of a noble metal selected from palladium, ruthenium, rhodium and gold with respect to platinum and iron (claim 5), and the noble metal is a platinum-iron alloy within the above atomic% range. To improve the poisoning resistance to carbon monoxide without impairing the catalytic activity of hydrogen oxidation at the anode of a two-phase fuel cell. Even in this noble metal-containing anode catalyst, it is desirable that the platinum loading amount is 5 to 40% by weight based on the total weight of the catalyst (Claim 6). When an anode catalyst having a platinum loading amount in this range is used, gas diffusion similarly occurs. A fuel cell having easy and fine catalyst particles can be provided.

【0025】この貴金属含有アノード触媒は、前記アノ
ード触媒の白金担持と鉄担持の工程の間に、白金担持触
媒担体を前記貴金属の化合物溶液中に浸漬しかつ還元処
理して該貴金属を前記触媒担体上に析出させる工程を挿
入して製造することもできる(請求項7)。この場合に
も同様に熱処理を400 〜900 ℃の温度で30分以上行なう
と、鉄が白金中に固溶している合金相が形成され、前述
した溶出し易いFePt3 金属間化合物の生成を更に確実に
抑制し長寿命のアノード触媒が提供される(請求項
8)。
The noble metal-containing anode catalyst is prepared by immersing the platinum-supported catalyst carrier in a solution of the compound of the noble metal and reducing the platinum-supported catalyst carrier during the steps of supporting the anode catalyst on platinum and iron. It can also be manufactured by inserting a step of precipitating (Claim 7). In this case as well, when heat treatment is similarly performed at a temperature of 400 to 900 ° C for 30 minutes or more, an alloy phase in which iron is solid-soluted in platinum is formed, and the formation of the FePt 3 intermetallic compound that easily dissolves as described above is formed. Further, an anode catalyst which is surely suppressed and has a long life is provided (Claim 8).

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1、比較例1及び2における時間と電極
触媒反応電流値の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between time and electrocatalytic reaction current value in Example 1 and Comparative Examples 1 and 2.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 391016716 ストンハルト・アソシエーツ・インコーポ レーテッド STONEHART ASSOCIATE S INCORPORATED アメリカ合衆国 06443 コネチカット州、 マジソン、コテッジ・ロード17、ピー・オ ー・ボックス1220 (72)発明者 渡辺 政廣 山梨県甲府市和田町2421番地8 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 391016716 STONHART Associates Incorporated STONEHART ASSOCIATES INCORPORATED United States 06443 Connecticut, Madison, Cottage Road 17, P-O Box 1220 (72) Inventor Masanori Watanabe 82-1 Wadamachi, Kofu City, Japan

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 触媒担体、及び該担体に担持された原子
%で84〜99%の白金及び原子%で1〜16%の鉄を含んで
成ることを特徴とする高分子電解質型燃料電池用アノー
ド触媒。
1. A polymer electrolyte fuel cell, comprising a catalyst carrier and at least 84 to 99% by atom of platinum and at least 1 to 16% of iron at the atomic% supported on the carrier. Anode catalyst.
【請求項2】 全触媒重量に対する白金担持量が5〜40
重量%である請求項1に記載の高分子電解質型燃料電池
用アノード触媒。
2. The amount of platinum supported on the total catalyst weight is 5 to 40.
The anode catalyst for polymer electrolyte fuel cells according to claim 1, wherein the anode catalyst is contained in a weight percentage.
【請求項3】 触媒担体、及び該担体に担持された原子
%で84〜99%の白金及び原子%で1〜16%の鉄を含んで
成る高分子電解質型燃料電池用アノード触媒の製造方法
において、触媒担体を白金化合物を含有する溶液中に分
散し、該白金化合物を熱分解又は還元剤による還元によ
り前記触媒担体上に析出させ、該白金担持触媒担体を鉄
化合物を含有する溶液中に浸漬し、蒸発乾固又はpH調
整により鉄の塩化物及び/又は水酸化物を析出させ還元
雰囲気下で熱処理することにより前記白金及び鉄を合金
化することを特徴とする高分子電解質型燃料電池用アノ
ード触媒の製造方法。
3. A method for producing an anode catalyst for a polymer electrolyte fuel cell, which comprises a catalyst carrier and 84 to 99% by atom of platinum and 1 to 16% by atom of iron supported on the carrier. In, the catalyst carrier is dispersed in a solution containing a platinum compound, the platinum compound is deposited on the catalyst carrier by thermal decomposition or reduction with a reducing agent, and the platinum-supported catalyst carrier in a solution containing an iron compound. A polymer electrolyte fuel cell, characterized in that the platinum and iron are alloyed by immersing, evaporating to dryness or adjusting pH to precipitate iron chloride and / or hydroxide and heat treating in a reducing atmosphere. Of manufacturing anode catalyst for automobile.
【請求項4】 熱処理を400 〜900 ℃の温度で30分以上
行ない、鉄が白金中に固溶している合金相を形成するよ
うにした請求項2に記載の高分子電解質型燃料電池用ア
ノード触媒の製造方法。
4. The polymer electrolyte fuel cell according to claim 2, wherein the heat treatment is carried out at a temperature of 400 to 900 ° C. for 30 minutes or more to form an alloy phase in which iron is solid-soluted in platinum. Manufacturing method of anode catalyst.
【請求項5】 触媒担体、及び該担体に担持された原子
%で(84〜99):(1〜16)の白金及び鉄、及び該白金
及び鉄に対して0.1 〜50原子%のパラジウム、ルテニウ
ム、ロジウム及び金から選択される貴金属を含んである
ことを特徴とする高分子電解質型燃料電池用アノード触
媒。
5. A catalyst carrier, and platinum (84 to 99): (1 to 16) platinum and iron supported on the carrier, and palladium (0.1 to 50 atom% based on the platinum and iron). An anode catalyst for a polymer electrolyte fuel cell, comprising a noble metal selected from ruthenium, rhodium and gold.
【請求項6】 全触媒重量に対する白金担持量が5〜40
重量%である請求項5に記載の高分子電解質型燃料電池
用アノード触媒。
6. The amount of platinum supported on the total catalyst weight is 5 to 40.
The anode catalyst for polymer electrolyte fuel cells according to claim 5, wherein the anode catalyst is contained in a weight percentage.
【請求項7】 触媒担体、及び該担体に担持された原子
%で(84〜99):(1〜16)の白金及び鉄、及び該白金
及び鉄に対して0.1 〜50原子%のパラジウム、ルテニウ
ム、ロジウム及び金から選択される貴金属を含有する高
分子電解質型燃料電池用アノード触媒の製造方法におい
て、触媒担体を白金化合物を含有する溶液中に分散し、
該白金化合物を熱分解又は還元剤による還元により前記
触媒担体上に析出させ、該白金担持触媒担体をパラジウ
ム、ルテニウム、ロジウム及び金から選択される貴金属
の化合物溶液中に浸漬しかつ還元処理して該貴金属を前
記触媒担体上に析出させ、かつ該白金及び貴金属担持触
媒担体を鉄化合物を含有する溶液中に浸漬し蒸発乾固又
はpH調整により鉄の塩化物及び/又は水酸化物を析出
させ還元雰囲気下で熱処理することにより前記白金、貴
金属及び鉄を合金化することを特徴とする高分子電解質
型燃料電池用アノード触媒の製造方法。
7. A catalyst carrier, and platinum and iron (84 to 99): (1 to 16) in atomic% supported on the carrier, and palladium in an amount of 0.1 to 50 atomic% with respect to the platinum and iron. In a method for producing an anode catalyst for a polymer electrolyte fuel cell containing a noble metal selected from ruthenium, rhodium and gold, a catalyst carrier is dispersed in a solution containing a platinum compound,
The platinum compound is deposited on the catalyst carrier by thermal decomposition or reduction with a reducing agent, the platinum-supported catalyst carrier is immersed in a compound solution of a noble metal selected from palladium, ruthenium, rhodium and gold and subjected to reduction treatment. The noble metal is deposited on the catalyst carrier, and the platinum and the noble metal-supported catalyst carrier are immersed in a solution containing an iron compound and evaporated to dryness or pH is adjusted to precipitate iron chloride and / or hydroxide. A method for producing an anode catalyst for a polymer electrolyte fuel cell, comprising alloying the platinum, the noble metal and iron by heat treatment in a reducing atmosphere.
【請求項8】 熱処理を400 〜900 ℃の温度で30分以上
行ない、鉄が白金中に固溶している合金相を形成する請
求項7に記載の高分子電解質型燃料電池用アノード触媒
の製造方法。
8. The anode catalyst for a polymer electrolyte fuel cell according to claim 7, wherein the heat treatment is carried out at a temperature of 400 to 900 ° C. for 30 minutes or more to form an alloy phase in which iron is solid-soluted in platinum. Production method.
JP33766395A 1995-12-04 1995-12-04 Anode catalyst for polymer electrolyte fuel cell and method for producing the same Expired - Fee Related JP3389393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33766395A JP3389393B2 (en) 1995-12-04 1995-12-04 Anode catalyst for polymer electrolyte fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33766395A JP3389393B2 (en) 1995-12-04 1995-12-04 Anode catalyst for polymer electrolyte fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09161811A true JPH09161811A (en) 1997-06-20
JP3389393B2 JP3389393B2 (en) 2003-03-24

Family

ID=18310785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33766395A Expired - Fee Related JP3389393B2 (en) 1995-12-04 1995-12-04 Anode catalyst for polymer electrolyte fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP3389393B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098561A1 (en) * 2001-06-01 2002-12-12 Sony Corporation Conductive catalyst particle and its manufacturing method, gas-diffusing catalyst electrode, and electrochemical device
JP2003045442A (en) * 2001-08-03 2003-02-14 Toyota Motor Corp Noble metal-base metal alloy based catalyst, its evaluation and method for manufacturing it
JP2003142112A (en) * 2001-10-31 2003-05-16 Tanaka Kikinzoku Kogyo Kk Catalyst for air electrode of high polymer solid electrolyte type fuel cell and its manufacturing method
JP2004335328A (en) * 2003-05-09 2004-11-25 Cataler Corp Electrode catalyst for solid polymer type fuel cell
EP1526592A1 (en) * 2003-10-23 2005-04-27 Cataler Corporation Cathode catalyst for fuel cell
WO2005081340A1 (en) * 2004-02-23 2005-09-01 Cataler Corporation Supported catalyst for fuel cell, method for producing same and fuel cell
JP2006205088A (en) * 2005-01-28 2006-08-10 Cataler Corp Electrode catalyst, its manufacturing method and fuel cell
JP2007294332A (en) * 2006-04-27 2007-11-08 Nippon Steel Corp Electrode catalyst for fuel cell, and fuel cell
JP2008100227A (en) * 2001-06-01 2008-05-01 Sony Corp Conductive catalyst particle and its manufacturing method, gas-diffusing catalyst electrode, and electrochemical device
WO2008123364A1 (en) * 2007-03-28 2008-10-16 Sumitomo Chemical Company, Limited Electrode catalyst composition, method for production thereof, electrode, and fuel cell and membrane-electrode assembly each comprising the electrode
WO2008123365A1 (en) * 2007-03-28 2008-10-16 Sumitomo Chemical Company, Limited Electrode catalyst composition, electrode, and fuel cell and membrane-electrode assembly each comprising the electrode
JP2009514167A (en) * 2005-10-27 2009-04-02 ユーティーシー パワー コーポレイション Metal catalysts that extend the life of fuel cell membranes and ionomers.
WO2009051110A1 (en) 2007-10-15 2009-04-23 Cataler Corporation Fuel cell and loaded catalyst used therein
JP2021012834A (en) * 2019-07-08 2021-02-04 株式会社豊田中央研究所 Electrode catalyst manufacturing device, electrode catalyst, and manufacturing method of the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988834B2 (en) 2001-06-01 2011-08-02 Sony Corporation Conductive catalyst particles and process for production thereof, gas-diffusing catalytic electrode, and electrochemical device
JP2008100227A (en) * 2001-06-01 2008-05-01 Sony Corp Conductive catalyst particle and its manufacturing method, gas-diffusing catalyst electrode, and electrochemical device
WO2002098561A1 (en) * 2001-06-01 2002-12-12 Sony Corporation Conductive catalyst particle and its manufacturing method, gas-diffusing catalyst electrode, and electrochemical device
JP2003045442A (en) * 2001-08-03 2003-02-14 Toyota Motor Corp Noble metal-base metal alloy based catalyst, its evaluation and method for manufacturing it
US7060385B2 (en) * 2001-08-03 2006-06-13 Toyota Jidosha Kabushiki Kaisha Noble metal-base metal alloy catalyst, evaluation of such catalyst, and method of producing such catalyst
JP2003142112A (en) * 2001-10-31 2003-05-16 Tanaka Kikinzoku Kogyo Kk Catalyst for air electrode of high polymer solid electrolyte type fuel cell and its manufacturing method
JP2004335328A (en) * 2003-05-09 2004-11-25 Cataler Corp Electrode catalyst for solid polymer type fuel cell
US7241717B2 (en) 2003-10-23 2007-07-10 Cataler Corporation Cathode catalyst for fuel cell
EP1526592A1 (en) * 2003-10-23 2005-04-27 Cataler Corporation Cathode catalyst for fuel cell
US7223493B2 (en) 2004-02-23 2007-05-29 Cataler Corporation Supported catalyst for fuel cell, method of manufacturing the same, and fuel cell
WO2005081340A1 (en) * 2004-02-23 2005-09-01 Cataler Corporation Supported catalyst for fuel cell, method for producing same and fuel cell
JP2006205088A (en) * 2005-01-28 2006-08-10 Cataler Corp Electrode catalyst, its manufacturing method and fuel cell
JP2009514167A (en) * 2005-10-27 2009-04-02 ユーティーシー パワー コーポレイション Metal catalysts that extend the life of fuel cell membranes and ionomers.
US8288054B2 (en) 2005-10-27 2012-10-16 Utc Power Corporation Alloy catalysts for extending life of fuel cell membranes and ionomer
JP2007294332A (en) * 2006-04-27 2007-11-08 Nippon Steel Corp Electrode catalyst for fuel cell, and fuel cell
WO2008123364A1 (en) * 2007-03-28 2008-10-16 Sumitomo Chemical Company, Limited Electrode catalyst composition, method for production thereof, electrode, and fuel cell and membrane-electrode assembly each comprising the electrode
WO2008123365A1 (en) * 2007-03-28 2008-10-16 Sumitomo Chemical Company, Limited Electrode catalyst composition, electrode, and fuel cell and membrane-electrode assembly each comprising the electrode
WO2009051110A1 (en) 2007-10-15 2009-04-23 Cataler Corporation Fuel cell and loaded catalyst used therein
JP2021012834A (en) * 2019-07-08 2021-02-04 株式会社豊田中央研究所 Electrode catalyst manufacturing device, electrode catalyst, and manufacturing method of the same

Also Published As

Publication number Publication date
JP3389393B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
US6797667B2 (en) Process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
US8129306B2 (en) Non-platinum bimetallic polymer electrolyte fuel cell catalysts
US7223493B2 (en) Supported catalyst for fuel cell, method of manufacturing the same, and fuel cell
Cermenek et al. Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cell
EP2953195B1 (en) Catalyst for polymer fuel cell and method for manufacturing the same
JP3389393B2 (en) Anode catalyst for polymer electrolyte fuel cell and method for producing the same
EP3614472B1 (en) Catalyst for solid polymer electrolyte fuel cells and method for producing same
KIVRAK The effect of temperature and concentration for methanol electrooxidation on Pt-Ru catalyst synthesized by microwave assisted route
TW201409813A (en) Catalyst for polymer electrolyte fuel cell and method for producing same
Guterman et al. The relationship between activity and stability of deposited platinum-carbon electrocatalysts
CN109792059B (en) Catalyst for solid polymer fuel cell and method for producing same
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
EP3691007B1 (en) Catalyst for solid polymer fuel cells and method for producing the same
McKeown et al. Pt-Au film catalyst for formic acid oxidation
US11239473B2 (en) Catalyst for solid polymer fuel cells and method for manufacturing the same
EP3843186A1 (en) Catalyst for solid polymer fuel cell and method for selecting catalyst for solid polymer fuel cell
Bogdanovskaya et al. Electrochemical processes on multi-component cathodic catalysts PtM and PtM 1 M 2 (M= Co, Ni, Cr): the effect of surface composition on the catalyst stability and its activity in O 2 reduction
US11596926B2 (en) Method for preparing ternary alloy catalyst with polydopamine coating and ternary alloy catalyst prepared thereby
EP3870541B1 (en) Tungsten metal/tungsten nitride enhanced platinum-based orr catalyst and method for making the same
JPH11111305A (en) Fuel cell
JP2005251455A (en) Catalyst for fuel cell, manufacturing method of the same, electrode, and direct methanol type fuel cell
EP1260269B1 (en) A process for preparing an anode catalyst for fuel cells
RU216310U1 (en) Hydrogen electrode from a thin palladium film modified with core-shell nanoparticles
Kugai et al. Effect of reduction enhancer on a radiolytic synthesis of carbon-supported Pt–Cu nanoparticles and their structural and electrochemical properties

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees