JPH09161640A - Latch ( latching ) type heat-driven microrelay device - Google Patents

Latch ( latching ) type heat-driven microrelay device

Info

Publication number
JPH09161640A
JPH09161640A JP8163401A JP16340196A JPH09161640A JP H09161640 A JPH09161640 A JP H09161640A JP 8163401 A JP8163401 A JP 8163401A JP 16340196 A JP16340196 A JP 16340196A JP H09161640 A JPH09161640 A JP H09161640A
Authority
JP
Japan
Prior art keywords
channel
region
micro
latch
relay element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8163401A
Other languages
Japanese (ja)
Other versions
JP3050526B2 (en
Inventor
Choi Bu-Iyan
チョイ ブーイャン
Pahk Kyunho
パーク キュンホ
Lee Jonhyun
リー ジョンヒュン
Yu Heung-Jhon
ユー ヒュンジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKOKU DENSHI TSUSHIN KENKYUSHO
Electronics and Telecommunications Research Institute ETRI
Original Assignee
KANKOKU DENSHI TSUSHIN KENKYUSHO
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKOKU DENSHI TSUSHIN KENKYUSHO, Electronics and Telecommunications Research Institute ETRI filed Critical KANKOKU DENSHI TSUSHIN KENKYUSHO
Publication of JPH09161640A publication Critical patent/JPH09161640A/en
Application granted granted Critical
Publication of JP3050526B2 publication Critical patent/JP3050526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0042Bistable switches, i.e. having two stable positions requiring only actuating energy for switching between them, e.g. with snap membrane or by permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H29/00Switches having at least one liquid contact
    • H01H2029/008Switches having at least one liquid contact using micromechanics, e.g. micromechanical liquid contact switches or [LIMMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H2061/006Micromechanical thermal relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H29/00Switches having at least one liquid contact
    • H01H29/28Switches having at least one liquid contact with level of surface of contact liquid displaced by fluid pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/02Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively

Abstract

PROBLEM TO BE SOLVED: To provide an extremely small micro-relay capable of being integrated and having low contact resistance by changing the internal pressure of a storage chamber via a temperature difference, moving a conductive liquid metal in a channel, and closing or opening signal electrodes. SOLUTION: Power is applied to the heater 12 of an active storage chamber 10 or the heater 42 of a passive storage chamber 40, the internal pressure of the storage chamber is changed by temperature, a liquid metal 50 is moved in a channel 20, and signal electrodes 34, 35 or 31, 32 are closed or opened. When power is selectively applied to the heater 12 or 42, the signal can be turned on or off. This latching heat-driven micro-relay element can be integrated in a silicon wafer bulk by the technique such as macro-burnishing, electroplating, and conductor process, and an extremely small micro-relay capable of being integrated and having small contact resistance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はラッチ(latch
ing)型熱駆動マイクロリレー素子に関するもので、
より詳しくは他の電子部品との集積化が可能になるよう
に超小型化して製作の可能なラッチ型熱駆動マイクロリ
レーおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a latch.
ing) type thermal drive micro relay element,
More specifically, the present invention relates to a latch-type thermally actuated micro-relay that can be miniaturized and manufactured so that it can be integrated with other electronic components, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】一般的に、電気信号を中継するリレー
(relay)は電子力あるいは圧力等の手段によって
二つの接点の間に伝導体を連結させ一側接点より他側接
点に電気信号を伝達する電気部品の中の一つである。
2. Description of the Related Art Generally, a relay for relaying an electrical signal transmits a electrical signal from one contact to another contact by connecting a conductor between two contacts by means of electronic force or pressure. It is one of the electrical components that

【0003】従来のリレーは電子交換器、自動充電器
機、交通信号制御システム等広い応用分野で電流の開、
閉を担当するスイッチ素子として使用されているが、大
きさが大きくて、高価であり、リレーアレイ構成が不可
能だけでなく他の電子部品との集積化が難しいので利用
に不便があった。
Conventional relays are used to open electric current in a wide range of application fields such as electronic exchanges, automatic chargers, and traffic signal control systems.
Although it is used as a switching element for closing, it is inconvenient to use because it is large in size and expensive, and it is not possible to configure a relay array and it is difficult to integrate it with other electronic components.

【0004】すなわち、従来の技術として汎用化されて
いるリレーは主に駆動コイルとこの駆動コイルに印加さ
れる電圧によって発生する電子力でスイッチをオン/オ
フさせる方式が利用された。
That is, in the conventional relays, which are generally used, a method is used in which a switch is turned on / off mainly by a driving coil and an electronic force generated by a voltage applied to the driving coil.

【0005】[0005]

【発明が解決しようとする課題】しかし、電子技術の発
達につれて電子部品の小型化が進むようになり、これら
の電子部品と同一な回路基板上にリレーを設置して回路
を構成しなければならない必要性が増大している。
However, with the development of electronic technology, miniaturization of electronic parts has progressed, and a circuit must be constructed by installing a relay on the same circuit board as these electronic parts. The need is increasing.

【0006】したがって、従来のリレーをより小型化す
ると同時に半導体基板上に集積させることができるマイ
クロリレーの開発が進行されてきた。
[0006] Therefore, development of a micro relay, which can be integrated on a semiconductor substrate while reducing the size of a conventional relay, has been advanced.

【0007】上述した条件を満足させるためには大きさ
が数mm以下で小型であり、他の電子部品とともに集積
化が可能でなければならない。
In order to satisfy the above conditions, the size must be a few mm or less and be small, and it must be possible to integrate with other electronic parts.

【0008】こうした条件を満足させるためには半導体
工程技術を使用して微細な構造を持つ形状で製造が可能
なリレーが開発されなければならない。
In order to satisfy these requirements, a semiconductor process technology must be used to develop a relay that can be manufactured in a shape having a fine structure.

【0009】従来技術のリレーの例として、提示された
ヨーロッパの特許EP−573267号は磁気(mag
netic)駆動方式を使用し、信号電極部分に金属を
使用するため接触抵抗を1Ω以下にすることができず、
リレーアレイ構造が複雑であるという短所をもってい
る。
As an example of a prior art relay, the proposed European patent EP-573267 is magnetic (mag).
The contact resistance cannot be reduced to 1Ω or less because a metal is used for the signal electrode portion.
It has the disadvantage that the relay array structure is complicated.

【0010】又、1995年トランスデューサー誌(T
ransducers)に発表されたジェイ.ドレイク
(J.Drake)の停電力駆動マイクロリレーは駆動
電圧が50V以上、接触抵抗2Ωで実用化に問題点をも
っている。
In 1995, Transducer magazine (T
Jay. The power failure driving micro relay of J. Drake has a problem in practical use because the driving voltage is 50 V or more and the contact resistance is 2Ω.

【0011】したがって、上述した従来技術の問題点を
解決するための本発明の目的は、液体金属接点で1Ω以
下の接触抵抗を保持しながら半導体工程技術とシリコン
ウェハーの表面(surface)およびバルク マイ
クロマシニング(micromachining)を利
用した湿式食刻方法で集積化が可能な超小型のマイクロ
リレーを提供することにある。
Therefore, an object of the present invention to solve the above-mentioned problems of the prior art is to maintain the contact resistance of 1 Ω or less at the liquid metal contact, semiconductor process technology, surface of silicon wafer and bulk micro. An object of the present invention is to provide an ultra-compact microrelay that can be integrated by a wet etching method using machining.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、半導体基板のバルク内に所定の体積を持
ち、その内部の空気を加熱するヒータ12が設置されて
いる能動貯蔵庫と、上記の能動貯蔵庫と所定の間隔に離
隔され、その内部にヒータが設置された、同一の体積を
持つ受動貯蔵庫と、上記の能動貯蔵庫と受動貯蔵庫の間
の空間に延長され、接点金属である液体金属50の移動
路としての役割を果すチャンネルと、互いに離隔されて
上記のチャンネルの所定の領域から各々チャンネルの内
部に一端が挿入され外部へ伸びる第1信号電極と、上記
の第1信号電極と一定の間隔に離隔されて同一な形状で
形成されている第2信号電極と、上記のチャンネルの内
部に実装されて第1信号電極と第2信号電極の接点とし
ての役割を果す液体金属と、半導体基板の上、下側面に
接合されている上、下部ガラス基板とを含むことを特徴
とする。
SUMMARY OF THE INVENTION To achieve the above object, the present invention relates to an active storage having a predetermined volume in a bulk of a semiconductor substrate and having a heater 12 for heating air therein. , A passive storage container having the same volume, which is separated from the active storage container by a predetermined distance and has a heater installed therein, and a contact metal extended to a space between the active storage container and the passive storage container. A channel serving as a moving path for the liquid metal 50, a first signal electrode spaced apart from each other and having one end inserted into the channel from a predetermined region of the channel and extending to the outside; and the first signal electrode described above. And a second signal electrode that is formed in the same shape and is separated by a constant distance, and a liquid that is mounted inside the above channel and serves as a contact point between the first signal electrode and the second signal electrode. And metal, on a semiconductor substrate, on which is bonded to the lower surface, characterized in that it comprises a lower glass substrate.

【0013】[0013]

【発明の実施の形態】以下、添付された図面を参照して
本発明の実施の形態を詳しく説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0014】図1は本発明による熱駆動マイクロリレー
の平面構造を概略的に図示した平面図であり、図2は本
発明のラッチ型熱駆動マイクロリレー素子の平面レイア
ウトである。
FIG. 1 is a plan view schematically showing a planar structure of a heat-actuated micro-relay according to the present invention, and FIG. 2 is a plane layout of a latch-type heat-actuated micro-relay element of the present invention.

【0015】まず、図1と図2を参照すると、本発明に
よる熱駆動マイクロリレーは所定の体積を持つ能動貯蔵
庫10と、この能動貯蔵庫10と所定の間隔に離隔され
て同一な体積を持つ受動貯蔵庫40が形成されている。
能動貯蔵庫10と受動貯蔵庫40の間に所定の直径を持
つ流通路としてチャンネル20が形成されている。この
チャンネル20の中間部に上記のチャンネルより小さい
直径を持つマイクロチャンネル領域21が形成されてい
る。チャンネル20の内部に液体金属50が実装されて
いる。
First, referring to FIG. 1 and FIG. 2, the heat-driven micro relay according to the present invention includes an active storage container 10 having a predetermined volume and a passive storage container having the same volume as the active storage container 10 and having a predetermined interval. A storage 40 is formed.
A channel 20 is formed between the active store 10 and the passive store 40 as a flow passage having a predetermined diameter. A microchannel region 21 having a diameter smaller than that of the above channel is formed in the middle of the channel 20. A liquid metal 50 is mounted inside the channel 20.

【0016】図1のような構造を持つ熱駆動マイクロリ
レーの動作原理は、リレーの能動貯蔵庫(active
reservoir)10の圧力が上昇してチャンネ
ル内部に実装されているリレーの電極接点用で使用され
る液体金属50が受動貯蔵庫(passive res
ervoir)40側に移動し、受動貯蔵庫40の圧力
が上昇すると液体金属が能動貯蔵庫10側の元の位置に
引き返すようになる。
The operating principle of a heat-driven micro-relay having a structure as shown in FIG. 1 is that the active storage of the relay is active.
When the pressure of the reservoir 10 rises, the liquid metal 50 used for the electrode contact of the relay mounted inside the channel is transferred to the passive reservoir.
When the pressure of the passive storage 40 increases, the liquid metal comes back to the original position on the active storage 10 side.

【0017】これをより詳しく説明すると、マイクロチ
ャンネル領域21で液体金属50の形状は液体金属50
の表面張力とシリコンとの親和力によって決定され、こ
の液体金属を駆動するのに必要な圧力はチャンネル20
に液体金属を注入するための圧力と貯蔵庫とマイクロチ
ャンネル領域21の体積比に対する圧力の合計で表わさ
れる。
This will be described in more detail. The shape of the liquid metal 50 in the microchannel region 21 is the liquid metal 50.
The pressure required to drive this liquid metal, determined by the surface tension of the liquid and its affinity for silicon, is in the channel 20.
It is represented by the sum of the pressure for injecting the liquid metal into and the pressure with respect to the volume ratio of the reservoir and the microchannel region 21.

【0018】マイクロチャンネル領域21で液体金属5
0を駆動するための圧力Pは次の数式に表現される。
Liquid metal 5 in the microchannel region 21
The pressure P for driving 0 is expressed by the following equation.

【0019】[0019]

【数1】 [Equation 1]

【0020】この時、Pはチャンネル20で液体金属5
0を駆動するために必要な圧力、γ1は表面張力(su
rface tension)、Dはチャンネル直径、
θcは液体金属の接触角(contact angl
e)である。
At this time, P is a liquid metal 5 in the channel 20.
The pressure required to drive 0, γ 1, is the surface tension (su
rface tension), D is the channel diameter,
θ c is the contact angle of liquid metal
e).

【0021】図1のようなマイクロリレー素子で液体金
属50滴が距離xほど移動すると、能動貯蔵庫10の圧
力および体積が変動し、液体金属50が動くことが可能
な距離が制限される。
When 50 droplets of the liquid metal move by the distance x in the micro relay device as shown in FIG. 1, the pressure and volume of the active reservoir 10 fluctuate, and the distance that the liquid metal 50 can move is limited.

【0022】能動貯蔵庫10の圧力、体積がP1(V
1(x=0))からPa,Va(x=x)に、受動貯蔵
庫40の圧力、体積がP0,V0(x=0)から、Pp
p(x=x)に変ったと仮定し、この時の大気圧はP0
とし、体積比に対する圧力に対して数式に表現すると次
のようである。
The pressure and volume of the active storage 10 are P 1 (V
1 (x = 0)) to Pa, Va (x = x), and the pressure and volume of the passive storage 40 from P 0 , V 0 (x = 0) to P p ,
Assuming that the pressure has changed to V p (x = x), the atmospheric pressure at this time is P 0
Then, the pressure with respect to the volume ratio is expressed in a mathematical formula as follows.

【0023】[0023]

【数2】 (Equation 2)

【0024】[0024]

【数3】 (Equation 3)

【0025】[0025]

【数4】 (Equation 4)

【0026】[0026]

【数5】 (Equation 5)

【0027】[0027]

【数6】 (Equation 6)

【0028】上の数式で、V1+Acx=V0,V1=kA
cxに仮定した。Acはマイクロリレー素子のマイクロチ
ャンネル領域21部分の断面積である。
In the above formula, V 1 + A c x = V 0 , V 1 = kA
Assume c x. A c is a cross-sectional area of the microchannel region 21 portion of the microrelay element.

【0029】それゆえ、マイクロリレー素子で液体金属
50を駆動するための圧力は数式(1),(6)の合計
である(7)式のP2に表われる。
Therefore, the pressure for driving the liquid metal 50 by the micro relay element is represented by P2 in the equation (7) which is the sum of the equations (1) and (6).

【0030】この時、ボイル(Boyle′s)の法則
とシャルル(Charles′s)の法則によりPV/
T=一定であるため、圧力変化に必要な温度差を数式で
表現すると次のようである。
At this time, PV / is calculated according to Boyle's law and Charles's law.
Since T = constant, the temperature difference required for pressure change is expressed by the following formula.

【0031】[0031]

【数7】 (Equation 7)

【0032】[0032]

【数8】 (Equation 8)

【0033】結果的に温度変化によって圧力が増加する
ようになり、これによって液体金属50をリレー素子の
チャンネル20内で移動させ、電気的な信号を導通およ
び遮断できるリレー素子の動作特性が得られる。
As a result, the pressure increases due to a change in temperature, which causes the liquid metal 50 to move in the channel 20 of the relay element, thereby obtaining the operating characteristics of the relay element capable of conducting and interrupting an electrical signal. .

【0034】図2は本発明による熱駆動マイクロリレー
素子を平面上に表した詳細図である。
FIG. 2 is a detailed view showing a heat-driven micro relay element according to the present invention on a plane.

【0035】図2を参照して、本発明による熱駆動マイ
クロリレー素子の詳細な構成を説明する。
With reference to FIG. 2, the detailed structure of the heat-driven micro-relay element according to the present invention will be described.

【0036】本発明による熱駆動マイクロリレーは、半
導体基板100の所定の領域に一定の体積を持ち、それ
の底面にヒータ12がカンチレバー形状で設置されてい
る。このヒータ12の通過ラインの下部に一方向へ一列
に各々断続して進行するヒータ支持台14が設置されて
いる能動貯蔵庫10と、上記の能動貯蔵庫10と所定の
間隔に隔離されてヒータ42とヒータ支持台44が能動
貯蔵庫10と同一な形状で設置されている受動貯蔵庫4
0が形成されている。能動貯蔵庫10と受動貯蔵庫40
の間に流通路としてチャンネル20が形成されている。
このチャンネル20の全体構成は、次のごとくである。
すなわち、そのチャンネル20より小さい直径を持つマ
イクロチャンネル21が中間領域に形成されている。能
動貯蔵庫10とマイクロチャンネル領域21の間に第1
チャンネル領域22が設置されている。受動貯蔵庫40
とマイクロチャンネル領域21の間に第2チャンネル領
域23が形成されている。第1チャンネル領域22は、
能動貯蔵庫10側において、二つの狭いチャンネルで形
成され、この二つの狭いチャンネルが一つの狭いチャン
ネルに延長される形態で第1の狭いチャンネル領域24
と接続されている。第2チャンネル領域23は、受動貯
蔵庫40側において、二つの狭いチャンネルで形成さ
れ、この二つの狭いチャンネルが一つの狭いチャンネル
に延長される形態を持つ第2の狭いチャンネル領域25
を含んでいる。
The thermally actuated micro-relay according to the present invention has a certain volume in a predetermined area of the semiconductor substrate 100, and the heater 12 is installed in a cantilever shape on the bottom surface thereof. An active storage 10 having a heater support 14 which is intermittently advanced in a line in one direction below the passage line of the heater 12, and a heater 42 which is separated from the active storage 10 at a predetermined interval. The passive storage 4 in which the heater support base 44 is installed in the same shape as the active storage 10.
0 is formed. Active store 10 and passive store 40
A channel 20 is formed as a flow passage therebetween.
The overall configuration of this channel 20 is as follows.
That is, the micro channel 21 having a diameter smaller than that of the channel 20 is formed in the intermediate region. First between the active storage 10 and the microchannel area 21
A channel area 22 is installed. Passive storage 40
A second channel region 23 is formed between the microchannel region 21 and the microchannel region 21. The first channel region 22 is
On the side of the active storage 10, the first narrow channel region 24 is formed by two narrow channels, and the two narrow channels are extended to one narrow channel.
Is connected to The second channel region 23 is formed of two narrow channels on the side of the passive storage 40, and the two narrow channels are extended into one narrow channel region 25.
Contains.

【0037】そして、互いに分離され第1チャンネル領
域22で各々の内部から外部に進行する信号電極として
二つの電極に分れている第1信号電極31,32と第2
チャンネル23に第1信号電極31,32と同一な形状
を持つ二つの電極になった第2信号電極34,35が形
成されている。
Then, in the first channel region 22, the first signal electrodes 31 and 32 and the second signal electrodes 32 and 32, which are separated into two electrodes as signal electrodes traveling from the inside to the outside, are separated from each other.
Second signal electrodes 34 and 35, which are two electrodes having the same shape as the first signal electrodes 31 and 32, are formed in the channel 23.

【0038】そして、チャンネル20内部に導電性接触
金属として液体金属50が実装されている構成を持つ。
The liquid metal 50 is mounted inside the channel 20 as a conductive contact metal.

【0039】図3は図2のA−A線によるラッチ型マイ
クロリレーの断面図を図示する。
FIG. 3 is a sectional view of the latch type microrelay taken along the line AA of FIG.

【0040】図3を参照して、本発明によるラッチ型マ
イクロリレーの断面構造を説明する。
The sectional structure of the latch type micro relay according to the present invention will be described with reference to FIG.

【0041】半導体基板100の表面の所定の領域に所
定の面積と深さを持つ能動貯蔵庫10が配置されてい
る。その内部の底面には内部の空気を加熱させるための
ヒータ12がヒータ支持台14の上を通過して設置され
ている。
An active storage 10 having a predetermined area and depth is arranged in a predetermined region on the surface of the semiconductor substrate 100. A heater 12 for heating the inside air is installed on the bottom surface of the inside thereof so as to pass over the heater support base 14.

【0042】この能動貯蔵庫10と所定の間隔に離隔さ
れ、同一な形状を持つヒータ42とヒータ支持台44が
設置されている受動貯蔵庫40が設置されている。
A passive storage 40, which is separated from the active storage 10 by a predetermined distance and has a heater 42 and a heater support 44 having the same shape, is installed.

【0043】能動貯蔵庫10と受動貯蔵庫40との間に
図3で点線に表した部分20Lまで溝でチャンネル20
(図示せず)が形成されている。
A channel 20 is formed by a groove between the active storage 10 and the passive storage 40 up to a portion 20L indicated by a dotted line in FIG.
(Not shown) is formed.

【0044】上記の図示されなかったチャンネル20の
進行方向で所定の間隔に離隔され、各々同一方向に対向
する第1信号電極31,32と第2信号電極34,35
が設置されている。
The first signal electrodes 31 and 32 and the second signal electrodes 34 and 35, which are separated from each other by a predetermined distance in the traveling direction of the channel 20 (not shown) and face each other in the same direction.
Is installed.

【0045】そして、第1信号電極31,32および第
2信号電極34,35と半導体基板100の間は絶縁の
ために酸化膜112,114が形成されている。
Then, oxide films 112 and 114 are formed between the first signal electrodes 31 and 32 and the second signal electrodes 34 and 35 and the semiconductor substrate 100 for insulation.

【0046】半導体基板100の表面には能動貯蔵庫1
0、受動貯蔵庫40およびチャンネル20を上部より密
閉させるための上部ガラス基板120が合着されてい
る。半導体基板100の下部面よりチャンネル20に貫
通する第1穴116と第2穴118を密閉させるための
下部ガラス基板130が設置されている。上記第1,2
穴116,118を除外した半導体基板100の下部に
は酸化膜106と窒化膜108でできた絶縁膜が形成さ
れている。
On the surface of the semiconductor substrate 100, the active storage 1
0, the passive storage 40 and the upper glass substrate 120 for sealing the channel 20 from above are attached. A lower glass substrate 130 for sealing the first hole 116 and the second hole 118 penetrating the channel 20 from the lower surface of the semiconductor substrate 100 is installed. The above first and second
An insulating film made of an oxide film 106 and a nitride film 108 is formed below the semiconductor substrate 100 excluding the holes 116 and 118.

【0047】上記のような構造でチャンネル20の両端
部に形成されている第1の狭いチャンネル領域24と第
2狭いチャンネル領域25はマイクロリレーの駆動時、
能動貯蔵庫10と受動貯蔵庫40から発生する圧力によ
り液体金属50が第1チャンネル領域22、マイクロチ
ャンネル領域21および第2チャンネル領域23の範囲
をはずれないようにする役割を果す。
The first narrow channel region 24 and the second narrow channel region 25, which are formed at both ends of the channel 20 in the above-described structure, are formed when the micro relay is driven.
The pressure generated from the active storage 10 and the passive storage 40 serves to prevent the liquid metal 50 from leaving the range of the first channel region 22, the micro channel region 21 and the second channel region 23.

【0048】同じように、第1チャンネル領域22と第
2チャンネル領域23の間に形成されているマイクロチ
ャンネル領域21は能動貯蔵庫10と受動貯蔵庫40か
ら発生する圧力によって液体金属50が第1チャンネル
領域22と第2チャンネル領域23に移動された後、上
記のチャンネル領域を離脱しないようにする役割を果
す。
Similarly, in the microchannel region 21 formed between the first channel region 22 and the second channel region 23, the pressure generated from the active reservoir 10 and the passive reservoir 40 causes the liquid metal 50 to move into the first channel region. After being moved to the second channel area 22 and the second channel area 23, the channel area is prevented from leaving.

【0049】すなわち、上記のように広い幅を持つ第1
チャンネル領域22と第2チャンネル領域23より狭い
幅を持つマイクロチャンネル領域21、このマイクロチ
ャンネル領域21より狭い幅を持つ第1の狭いチャンネ
ル24と第2の狭いチャンネル25により構成されたチ
ャンネル20は、液体金属50が動いた後、逆方向に引
き返すことを防止するラッチ作用とヒータ12,42に
印加される電圧変動幅の範囲を大きくする作用を果たす
ように形成されている。
That is, the first having a wide width as described above
The microchannel region 21 having a width narrower than the channel region 22 and the second channel region 23, and the channel 20 constituted by the first narrow channel 24 and the second narrow channel 25 having a width narrower than the microchannel region 21 are After the liquid metal 50 has moved, it is formed so as to perform a latching action for preventing it from returning in the opposite direction and an action for enlarging the range of the voltage fluctuation width applied to the heaters 12, 42.

【0050】又、ヒータ支持台14,44は熱伝達が少
ない酸化膜を使用し、ヒータ支持台14,44の配置は
ヒータ12,42に電圧が印加されて熱膨脹が生じる場
合を考慮してカンチレバー(cantilever)形
態に製作されている。
Further, the heater supports 14 and 44 use an oxide film with little heat transfer, and the heater supports 14 and 44 are arranged in a cantilever in consideration of the case where a voltage is applied to the heaters 12 and 42 to cause thermal expansion. It is manufactured in a cantilever form.

【0051】そして、第1穴116は液体金属50をリ
レーの第1チャンネル領域22に注入するためのもので
あり、第2穴118は液体金属50に注入時、逆方向の
圧力発生による注入圧力の上昇を防ぐために形成されて
いる。
The first hole 116 is for injecting the liquid metal 50 into the first channel region 22 of the relay, and the second hole 118 is for injecting pressure due to pressure generation in the opposite direction when the liquid metal 50 is injected. It is formed to prevent the rise of.

【0052】この時、第1穴116と第2穴118は体
積比を大きくするために下部部分が広く上部に行くにつ
れて狭い直径を持つように形成されている。
At this time, the first hole 116 and the second hole 118 are formed so that the lower part is wide and the diameter is narrower toward the upper part in order to increase the volume ratio.

【0053】すなわち、能動貯蔵庫10および受動貯蔵
庫40から発生する圧力がチャンネル20の液体金属5
0に加わる時、空気圧力の加圧方向に対して反対に作用
する圧力の効果を最小化するため、第1,2穴116,
118と貯蔵庫10,40の体積比を30:1になるよ
うに形成した。
That is, the pressure generated from the active storage 10 and the passive storage 40 is the liquid metal 5 of the channel 20.
When applied to 0, in order to minimize the effect of pressure acting in opposition to the direction of pressurization of air pressure,
The volume ratio of 118 to the storages 10, 40 was 30: 1.

【0054】又、能動貯蔵庫10と受動貯蔵庫40の側
壁部分は上部部分が広くて、下部部分が狭い傾斜型構造
に形成された。これは、ヒータ12,42によって加熱
された空気が効果的にチャンネル20に伝達できるよう
にするためである。
The side walls of the active store 10 and the passive store 40 are formed in an inclined structure in which the upper part is wide and the lower part is narrow. This is so that the air heated by the heaters 12 and 42 can be effectively transmitted to the channel 20.

【0055】そして、上記の第1信号電極31,32と
第2信号電極34,35はマイクロメータ単位厚さのT
iW,Au,Cu,Ni等で形成され、ヒータ12,4
2の材料としてはプラチナ(Pt)、ポリシリコン、ニ
ッケル等で製作される。
The first signal electrodes 31 and 32 and the second signal electrodes 34 and 35 have a thickness T of a micrometer unit.
The heaters 12, 4 are made of iW, Au, Cu, Ni, etc.
The second material is made of platinum (Pt), polysilicon, nickel or the like.

【0056】上述した構造を持つ熱駆動マイクロリレー
は、受動貯蔵庫40のヒータ42に電源が印加されず能
動貯蔵庫10のヒータ12に電源が印加される場合、能
動貯蔵庫10内部の空気が加熱されることによって内部
圧力が上昇する。
In the heat-driven micro-relay having the above-mentioned structure, when power is not applied to the heater 42 of the passive storage 40 and power is applied to the heater 12 of the active storage 10, the air inside the active storage 10 is heated. This raises the internal pressure.

【0057】この時、この圧力がリレーの接点として使
用される水銀、ガリウム等の液体金属50の表面張力
(surface tension)である上記の式
(1)の力(圧力)より強くなった時、上記の液体金属
50が右側に移動して第2信号電極34,35の両端に
接触することによって第2信号電極34,35が伝導
(ON)状態になる。
At this time, when this pressure becomes stronger than the force (pressure) of the above formula (1) which is the surface tension of the liquid metal 50 such as mercury or gallium used as the contact of the relay, When the liquid metal 50 moves to the right and contacts both ends of the second signal electrodes 34, 35, the second signal electrodes 34, 35 are turned on (ON).

【0058】これと反対に能動貯蔵庫10のヒータ12
に電源が印加されず受動貯蔵庫40のヒータ42に電源
が印加される場合、受動貯蔵庫40の内部圧力が上昇し
て第2チャンネル領域23にある液体金属50が第1チ
ャンネル領域22に移動する。これによって第2信号電
極34,35を通じて一側に流れる電流が遮断され、第
1信号電極31,32が伝導状態になる。
On the contrary, the heater 12 of the active storage 10
When the power is not applied to the heater 42 of the passive storage 40 and the power is applied to the heater 42 of the passive storage 40, the internal pressure of the passive storage 40 rises and the liquid metal 50 in the second channel region 23 moves to the first channel region 22. As a result, the current flowing to one side through the second signal electrodes 34 and 35 is cut off, and the first signal electrodes 31 and 32 become conductive.

【0059】すなわち、上記の二つの動作状態で、能動
貯蔵庫10と受動貯蔵庫40の各ヒータ12,42に電
源を選択的に印加できるようにすることによって各々二
つの電極で構成された第1信号電極31,32と第2信
号電極34,35で構成される電源ラインを流れる電流
をオン/オフさせることができる。
That is, in the above two operating states, the power source can be selectively applied to the heaters 12 and 42 of the active storage 10 and the passive storage 40, respectively, so that the first signal composed of two electrodes is provided. It is possible to turn on / off the current flowing through the power supply line composed of the electrodes 31 and 32 and the second signal electrodes 34 and 35.

【0060】又、上記のような動作で一側の電源ライン
をオンさせて、他側の電源ラインはオフさせるために能
動貯蔵庫10と受動貯蔵庫40のヒータ12,42に印
加される電源は所定の時間、たとえば、液体金属50を
第1チャンネル領域10より第2チャンネル領域40
に、あるいはその反対に移動させるのに必要な時間の間
だけ印加することもできる。
The power applied to the heaters 12 and 42 of the active storage 10 and the passive storage 40 in order to turn on the power supply line on one side and turn off the power supply line on the other side by the above-described operation is predetermined. , The liquid metal 50 from the first channel region 10 to the second channel region 40.
Can be applied only for the time required to move to or vice versa.

【0061】図4は本発明のラッチ型熱駆動リレー素子
の変形例を図示した平面図である。
FIG. 4 is a plan view showing a modified example of the latch type thermal drive relay element of the present invention.

【0062】図4に図示された変形例によるラッチ型熱
駆動マイクロリレー素子は図2および図3に図示したリ
レー素子と狭いチャンネル領域だけが異なるだけで他の
構成部分は同一である。
The latch type thermally actuated micro-relay element according to the modification shown in FIG. 4 differs from the relay element shown in FIGS. 2 and 3 only in the narrow channel region, and the other components are the same.

【0063】すなわち、本発明の変形例によると、先の
実施の形態での第1の狭いチャンネル領域24と第2の
狭いチャンネル領域25が、能動貯蔵庫10と受動貯蔵
庫40から各々第1チャンネル領域22と第2チャンネ
ル領域23に延長されている第1の狭いチャンネル領域
28と第2の狭いチャンネル領域29が一つの流通路形
状に置き換わっている。
That is, according to the modified example of the present invention, the first narrow channel region 24 and the second narrow channel region 25 in the previous embodiment are the first channel region from the active storage 10 and the passive storage 40, respectively. The first narrow channel region 28 and the second narrow channel region 29 extending to the second channel region 22 and the second narrow channel region 23 are replaced by one flow passage shape.

【0064】以下、図2と図3で説明した平面構造と断
面構造を持つラッチ型マイクロリレー素子の製造工程を
図5ないし図11を参照して説明すると次のようであ
る。
The manufacturing process of the latch type micro-relay element having the planar structure and the sectional structure described with reference to FIGS. 2 and 3 will be described below with reference to FIGS.

【0065】図5ないし図6を参照すると、〔100〕
あるいは〔110〕の結晶方向を持つ半導体基板100
の前面と後面に写真食刻工程時、パターンニングされて
食刻遮蔽マスクとして使用される絶縁膜で各々1000
Åの厚さを持つ酸化膜102,106と2000Åの厚
さを持つ窒化膜104,108を基板の前面と後面に次
列に形成する。
Referring to FIGS. 5 to 6, [100]
Alternatively, the semiconductor substrate 100 having a [110] crystal orientation
An insulating film that is patterned and used as an etching mask on the front and back surfaces of the photo-etching process.
Oxide films 102 and 106 having a thickness of Å and nitride films 104 and 108 having a thickness of 2000 Å are formed in the next row on the front and rear surfaces of the substrate.

【0066】続いて、半導体基板100上部面の酸化膜
102と窒化膜106を写真食刻法で半導体基板100
上部面にマイクロリレーの配線領域を形成するための領
域が露出されるように窒化膜104と酸化膜102を除
去して配線領域形成用食刻マスクパターン(図示せず)
を形成する。
Subsequently, the oxide film 102 and the nitride film 106 on the upper surface of the semiconductor substrate 100 are photolithographically etched.
The nitride film 104 and the oxide film 102 are removed so that a region for forming a wiring region of the micro relay is exposed on the upper surface, and an etching mask pattern for wiring region formation (not shown)
To form

【0067】次に、上記の食刻マスクパターンを食刻遮
蔽膜に利用して露出された半導体基板100を異方性湿
式食刻して図5に示されたように互いに一定の間隔に隔
離されて縦方向に伸びる第1配線領域60aと第2配線
領域60bを形成する。
Next, the exposed semiconductor substrate 100 is anisotropically wet-etched by using the above-mentioned etching mask pattern as an etching shield film, and as shown in FIG. Thus, a first wiring region 60a and a second wiring region 60b which are vertically extended are formed.

【0068】続いて、残存する窒化膜104と酸化膜1
02を写真食刻法で再パターンニングして能動貯蔵庫領
域、チャンネル領域および受動貯蔵庫領域用の食刻マス
クパターン(図示されない)を形成した後、半導体基板
100の露出された部分を異方性湿式食刻して図5に図
示されたように互いに一定の間隔を保持し、大きい面積
を持つ能動貯蔵庫領域10aと受動貯蔵庫領域40aを
形成すると同時に二つの領域を連結させるチャンネル2
0を互いに一体形の溝で形成する。
Subsequently, the remaining nitride film 104 and oxide film 1
02 is re-patterned by photo-etching to form an etching mask pattern (not shown) for the active storage region, the channel region and the passive storage region, and then the exposed portion of the semiconductor substrate 100 is anisotropically wet. A channel 2 that is etched to maintain a constant distance from each other as shown in FIG. 5 to form an active storage area 10a and a passive storage area 40a having a large area and at the same time connecting the two areas.
The 0s are formed by grooves that are integral with each other.

【0069】この時、このチャンネル20はその中間部
分に狭い幅を持つマイクロチャンネル領域22aが形成
されている。能動貯蔵庫領域10aとマイクロチャンネ
ル領域21の間には上記のマイクロチャンネル領域より
狭い幅を持つ第1の狭いチャンネル領域24および第1
チャンネル領域22が形成されている。上記のマイクロ
チャンネル領域21と受動貯蔵庫領域40aの間には第
2チャンネル領域23と第2の狭いチャンネル25が形
成されている構造を持つように形成される。
At this time, the channel 20 has a microchannel region 22a having a narrow width formed in the middle portion thereof. Between the active storage area 10a and the microchannel area 21, there are a first narrow channel area 24 and a first narrow channel area 24 having a width narrower than that of the microchannel area.
The channel region 22 is formed. A second channel region 23 and a second narrow channel 25 are formed between the micro channel region 21 and the passive storage region 40a.

【0070】続いて、半導体基板100上に残存する酸
化膜102と窒化膜104を次例に乾式食刻して除去し
た後、半導体基板100の全面に電極形成用食刻マスク
パターン(図示せず)を形成し、半導体基板100の露
出された部分を乾式食刻して図5と図6に図示されたよ
うに所定の間隔に隔離されて形成されている第1チャン
ネル領域22と第2チャンネル領域23の縦方向へ両側
に各々分離されている第1信号電極領域31a,32a
と第2信号電極領域34a,35aを定義する。
Subsequently, the oxide film 102 and the nitride film 104 remaining on the semiconductor substrate 100 are removed by dry etching as in the following example, and then an etching mask pattern for electrode formation (not shown) is formed on the entire surface of the semiconductor substrate 100. ) Is formed, and the exposed portion of the semiconductor substrate 100 is dry-etched to have a first channel region 22 and a second channel formed at predetermined intervals as shown in FIGS. 5 and 6. First signal electrode regions 31a and 32a, which are separated from each other in the vertical direction of the region 23, respectively.
And second signal electrode regions 34a and 35a are defined.

【0071】この時、食刻される第1信号電極領域31
a,32aと第2信号電極領域34a,35aとして食
刻される厚さは能動、受動貯蔵庫領域10a,40aお
よびチャンネル領域20aの食刻深さより浅い深さを持
つように形成される。これは電極として形成される金属
がチャンネル22の中間の深さの範囲に形成されるよう
にするためである。
At this time, the first signal electrode region 31 to be etched
a, 32a and the second signal electrode regions 34a, 35a are formed to have a shallower depth than the active and passive storage regions 10a, 40a and the channel region 20a. This is to ensure that the metal formed as the electrode is formed in the intermediate depth range of the channel 22.

【0072】上述した食刻工程により図5に図示したよ
うに半導体基板100の内部に互いに空間的に連結され
る一定の形状を持つ溝が形成される。
Through the above-described etching process, as shown in FIG. 5, grooves having a certain shape are formed in the semiconductor substrate 100, which are spatially connected to each other.

【0073】続いて、図7と図8に図示したように、半
導体基板100の露出された部分である第1配線領域6
0a,60bおよび第2配線領域70a,70b、能動
貯蔵庫領域10a、受動貯蔵庫領域40aおよびチャン
ネル領域20aに各々酸化膜112を形成する。
Subsequently, as shown in FIGS. 7 and 8, the first wiring region 6 which is an exposed portion of the semiconductor substrate 100.
0a, 60b, the second wiring regions 70a, 70b, the active storage region 10a, the passive storage region 40a, and the channel region 20a are respectively formed with an oxide film 112.

【0074】この時、酸化膜112の形成工程は上述し
た形成方法に限定されないし、露出された半導体基板1
00を熱酸化して熱酸化膜を形成したり陽極酸化法等に
よって形成したりすることもできる。
At this time, the formation process of the oxide film 112 is not limited to the above-described formation method, and the exposed semiconductor substrate 1
00 can be thermally oxidized to form a thermal oxide film, or can be formed by an anodic oxidation method or the like.

【0075】上記の酸化膜112は、後続形成される電
極およびヒータ用金属と配線用金属を半導体基板100
より電気的に絶縁させるために形成される。
The oxide film 112 is formed on the semiconductor substrate 100 by forming electrodes, heater metal and wiring metal that are formed subsequently.
It is formed for more electrical insulation.

【0076】続いて、能動貯蔵庫領域10aと受動貯蔵
庫領域40aに厚いCVD酸化膜114を形成する。こ
れは後続工程で形成されるヒータを貯蔵庫領域10a,
40aの床面より浮遊させる支持台として利用するため
に形成される。
Subsequently, a thick CVD oxide film 114 is formed in the active storage area 10a and the passive storage area 40a. This is because the heater formed in the subsequent process has a storage area 10a,
It is formed to be used as a support stand that floats from the floor surface of 40a.

【0077】続いて、図9と図10に図示したように、
露出された基板の全面に導電性であるプラチナ(P
t)、ポリシリコンおよびニッケルを蒸着した後、これ
をパターンニングして上記の能動貯蔵庫領域10aおよ
び受動貯蔵庫領域40aにカンチレバー形を持つヒータ
12,42を形成すると同時に第1配線領域60aと第
2配線領域70aに第1配線60と第2配線70を形成
する。
Then, as shown in FIGS. 9 and 10,
Conductive platinum (P
t), after depositing polysilicon and nickel, patterning the same to form the cantilever-shaped heaters 12 and 42 in the active storage area 10a and the passive storage area 40a, and at the same time, to form the first wiring area 60a and the second wiring area 60a. The first wiring 60 and the second wiring 70 are formed in the wiring region 70a.

【0078】その後、上記のヒータ12,42を貯蔵庫
領域10a,40aの床面より浮遊させるためにヒータ
12,42ラインが通過する下部の酸化膜114が縦方
向に断続されてヒータの下部に残存するように酸化膜1
14を1次湿式食刻した後、2次に乾式食刻してヒータ
支持台14,44を形成する。これはヒータ12,42
が各々能動貯蔵庫領域10aと受動貯蔵庫領域40bを
底面より浮遊させて電圧印加の時、熱効率を高めるため
である。
Thereafter, the lower oxide film 114 through which the heaters 12 and 42 lines pass in order to float the heaters 12 and 42 above the floor of the storage areas 10a and 40a is interrupted in the vertical direction and remains below the heaters. So that the oxide film 1
After the primary wet etching of 14 is performed, the secondary dry etching is performed to form the heater support bases 14 and 44. This is the heater 12, 42
This is because the active storage area 10a and the passive storage area 40b are floated from the bottom surface to increase the thermal efficiency when a voltage is applied.

【0079】この時、酸化膜114を湿式食刻で完全に
食刻する場合、ヒータ用金属が食刻溶液の表面張力によ
って貯蔵庫領域10a,40aの床面に接触するおそれ
があるから湿式食刻と乾式食刻を並行した。
At this time, when the oxide film 114 is completely etched by wet etching, the heater metal may come into contact with the floor surfaces of the storage areas 10a and 40a due to the surface tension of the etching solution. And dry etching was done in parallel.

【0080】続いて、上記の半導体基板100の全面に
導電性金属であるTiW,Au,CuおよびNi等の金
属を蒸着し、これをパターンニングして第1チャンネル
領域22と第2チャンネル領域23に各々隔離されて縦
方向へ外部に伸びる第1信号電極31,32と第2信号
電極34,35を同時にパターンニングする。
Then, a metal such as TiW, Au, Cu and Ni which is a conductive metal is vapor-deposited on the entire surface of the semiconductor substrate 100 and is patterned to form the first channel region 22 and the second channel region 23. The first signal electrodes 31 and 32 and the second signal electrodes 34 and 35, which are isolated from each other and extend outward in the vertical direction, are simultaneously patterned.

【0081】続いて、半導体基板100の全面に食刻遮
蔽物(図示せず)を形成した後、半導体基板100の下
側面に形成されている酸化膜106と窒化膜108をパ
ターンニングして所定の直径で上記チャンネル領域20
の中、各々第1の狭いチャンネル領域24と第2の狭い
チャンネル25に垂直で対応する領域が露出するように
食刻マスクパターン(残存する酸化膜と窒化膜)を形成
した後、半導体基板100の下側より上側に食刻して第
1の狭いチャンネル24と第2の狭いチャンネル25の
所定の領域に貫通するように異方性乾式食刻して第1穴
116と第2穴118を形成する。
Subsequently, an etching shield (not shown) is formed on the entire surface of the semiconductor substrate 100, and then the oxide film 106 and the nitride film 108 formed on the lower surface of the semiconductor substrate 100 are patterned to a predetermined size. The diameter of the channel region 20
Of the semiconductor substrate 100 after forming an etching mask pattern (remaining oxide film and nitride film) so as to expose regions corresponding vertically to the first narrow channel region 24 and the second narrow channel 25, respectively. The first hole 116 and the second hole 118 are etched by etching from the lower side to the upper side so as to penetrate a predetermined area of the first narrow channel 24 and the second narrow channel 25. Form.

【0082】この時、形成される第1穴112と第2穴
114は下側面が広くて上側面に行くにつれて狭くな
り、第1狭いチャンネル24と第2狭いチャンネル25
面が狭い直径で露出されるように形成する。導電性液体
金属のチャンネル20の注入を容易にするため、このよ
うな傾斜型に形成される。
At this time, the first hole 112 and the second hole 114 that are formed have a wide lower surface and become narrower toward the upper surface, so that the first narrow channel 24 and the second narrow channel 25 are formed.
Form the surface so that it is exposed with a narrow diameter. In order to facilitate the injection of the channel 20 of the conductive liquid metal, the inclined type is formed.

【0083】続いて、図11に図示したように、上記の
食刻マスクパターンを除去し、半導体基板100の上部
表面にガラス基板120を陽極(anodic)結合
し、半導体基板100の下側面が上側面になるように裏
返した状態で上記の第1穴116あるいは第2穴118
を通じて導電性金属として水銀あるいはガリウム等の液
体金属50を注入する。
Then, as shown in FIG. 11, the etching mask pattern is removed, and the glass substrate 120 is anodically bonded to the upper surface of the semiconductor substrate 100 so that the lower surface of the semiconductor substrate 100 is on the upper side. The first hole 116 or the second hole 118 is turned over so that the side surface is turned upside down.
A liquid metal 50 such as mercury or gallium is injected as a conductive metal through.

【0084】続いて、半導体基板100の下側面にガラ
ス基板130を紫外線接着剤で接着してマイクロリレー
素子を製造する。
Subsequently, the glass substrate 130 is adhered to the lower surface of the semiconductor substrate 100 with an ultraviolet adhesive to manufacture a micro relay element.

【0085】[0085]

【発明の効果】上述した本発明のラッチ型熱駆動マイク
ロリレー素子は、シリコンウェハーのバルク内にマイク
ロマシニング技術、電気鍍金技術および半導体工程技術
を利用してリレー素子を集積させることができるので、
既存のリレー素子より小型で製作することが可能であ
る。
Since the above-described latch-type thermally actuated micro-relay element of the present invention can be integrated with the bulk of a silicon wafer by utilizing micromachining technology, electroplating technology and semiconductor process technology,
It can be made smaller than existing relay elements.

【0086】又、本発明のリレー素子は集積回路工程と
互換性があるのでリレーアレイ(array)を構成で
きる長所がある。
Also, since the relay device of the present invention is compatible with the integrated circuit process, it has the advantage of forming a relay array.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のラッチ型熱駆動マイクロリレー素子の
平面概略図。
FIG. 1 is a schematic plan view of a latch-type thermally actuated micro-relay element of the present invention.

【図2】本発明のラッチ型熱駆動マイクロリレー素子の
平面レイアウト図。
FIG. 2 is a plan layout view of the latch-type thermally driven micro relay element of the present invention.

【図3】図2のA−A線による断面を概略的に表したラ
ッチ型熱駆動マイクロリレー素子の断面図。
3 is a cross-sectional view of a latch-type thermally actuated micro-relay element schematically showing a cross section taken along the line AA of FIG.

【図4】本発明のラッチ型熱駆動マイクロリレー素子の
変形例を表した概略的な平面図。
FIG. 4 is a schematic plan view showing a modified example of the latch type thermally driven micro relay element of the present invention.

【図5】ラッチ型熱駆動マイクロリレー素子の平面図。FIG. 5 is a plan view of a latch-type heat-driven micro relay element.

【図6】図5のA−A線によるラッチ型マイクロリレー
素子の断面図。
6 is a sectional view of the latch type micro relay element taken along the line AA in FIG.

【図7】半導体基板の食刻部分である貯蔵庫形成領域、
チャンネル形成領域、電極形成領域および配線領域に酸
化膜を形成した状態を表した平面図。
FIG. 7 is a storage formation region that is an etched portion of a semiconductor substrate;
FIG. 3 is a plan view showing a state in which an oxide film is formed in a channel formation region, an electrode formation region and a wiring region.

【図8】図7のA−A線による半導体基板の断面を表し
た断面図。
8 is a cross-sectional view showing a cross section of the semiconductor substrate taken along the line AA of FIG.

【図9】熱駆動マイクロリレー素子の形成領域に各々ヒ
ータ、ヒータ支持台と信号電極を形成して液体金属を注
入した状態を概略的に表した平面図。
FIG. 9 is a plan view schematically showing a state in which a heater, a heater support, and a signal electrode are formed in a region where a heat-driven micro relay element is formed and liquid metal is injected.

【図10】半導体基板上に貯蔵庫、第1,2信号電極お
よび第1,2穴の形成状態を表した断面図。
FIG. 10 is a cross-sectional view showing a storage state, first and second signal electrodes, and first and second holes formed on a semiconductor substrate.

【図11】ラッチ型熱駆動マイクロリレー素子の上部面
と下部面にガラス基板を合着してリレー素子の製作を完
了した状態を表した断面図。
FIG. 11 is a cross-sectional view showing a state in which glass substrates are attached to the upper surface and the lower surface of the latch-type heat-driven micro-relay element to complete the manufacture of the relay element.

【符号の説明】[Explanation of symbols]

10 能動貯蔵庫 20 チャンネル 21 マイクロチャンネル領域 22 第1チャンネル領域 23 第2チャンネル領域 24 第1狭いチャンネル領域 31,32 第1信号電極 34,35 第2信号電極 60 第1配線 70 第2配線 100 半導体基板 102,106 酸化膜 104,108 窒化膜 112,114 酸化膜 116,118 第1,2穴 120 上部ガラス基板 130 下部ガラス基板 10 Active Storage 20 Channel 21 Micro Channel Region 22 First Channel Region 23 Second Channel Region 24 First Narrow Channel Region 31, 32 First Signal Electrode 34, 35 Second Signal Electrode 60 First Wiring 70 Second Wiring 100 Semiconductor Substrate 102, 106 Oxide film 104, 108 Nitride film 112, 114 Oxide film 116, 118 First and second holes 120 Upper glass substrate 130 Lower glass substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ジョンヒュン リー 大韓民国、デェジョン、ユソンク、イォー ウンドン、ハンビィット アパートメント 131−801 (72)発明者 ヒュンジョン ユー 大韓民国、デェジョン、ユソンク、イォー ウンドン、ハンビィット アパートメント 130−1206 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Jung Hyun Lee Korea, Daejeong, Yousungk, Yeung Dong, Hanwit Apartment 131-801 (72) Inventor Hyun Jung Yu South Korea, Daejeong, Yousungk, Ye Won Dong, Hanwit Apartment 130-1206

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板100のバルク内に所定の体
積を持ち、その内部の空気を加熱するヒータ12が設置
されている能動貯蔵庫10と、 上記の能動貯蔵庫10と所定の間隔に離隔されてその内
部にヒータ42が設置されている、同一な体積を持つ受
動貯蔵庫40と、 上記の能動貯蔵庫10と受動貯蔵庫40の間の空間に延
長されて接点金属である液体金属50の移動路としての
役割を果すチャンネル20と、 互いに離隔されて上記のチャンネル20の所定の領域で
各々チャンネルの内部に一端が挿入されて外部に伸びる
第1信号電極31,32と、 上記の第1信号電極31,32と一定の間隔に離隔され
て同一な形状で形成されている第2信号電極34,35
と、 上記のチャンネルの内部に実装されて第1信号電極3
1,32と第2信号電極34,35の接点としての役割
を果たす液体金属50と、 半導体基板100の上、下側面に接合されている上、下
部ガラス基板120,130とを含むことを特徴とする
ラッチ型熱駆動マイクローリレー素子。
1. An active storage container 10 having a predetermined volume inside a bulk of a semiconductor substrate 100, in which a heater 12 for heating air therein is installed, and an active storage container 10 separated from the active storage container 10 at a predetermined interval. A passive storage 40 having the same volume, in which a heater 42 is installed, and a moving path of the liquid metal 50, which is a contact metal, is extended to the space between the active storage 10 and the passive storage 40 described above. The channel 20 that plays a role, the first signal electrodes 31 and 32 that are spaced apart from each other and have one end inserted into the channel in a predetermined region of the channel 20 and extending to the outside; The second signal electrodes 34 and 35, which have the same shape as the second signal electrode 32 and are spaced at a constant interval.
And the first signal electrode 3 mounted inside the above channel.
1, 32 and the second signal electrodes 34, 35 serving as contact points of the liquid metal 50, and the upper and lower side surfaces of the semiconductor substrate 100 bonded to the upper and lower glass substrates 120, 130. Latch type thermal drive micro relay element.
【請求項2】 第1項において、 上記のヒータ12,42はカンチレバー形態で形成され
たことを特徴とするラッチ型熱駆動マイクローリレー素
子。
2. The latch type thermally actuated micro-relay element according to claim 1, wherein the heaters 12 and 42 are formed in a cantilever shape.
【請求項3】 第2項において、 上記のヒータ12,42は、各々能動貯蔵庫10と受動
貯蔵庫40の床面に上記のヒータの進行方向に垂直方向
に断続して一列に形成されているヒータ支持台14,4
4の上に支持され、床面より浮遊されていることを特徴
とするラッチ型熱駆動マイクローリレー素子。
3. The heater according to claim 2, wherein the heaters 12 and 42 are formed in a row on the floor surfaces of the active storage 10 and the passive storage 40, respectively, which are intermittent in the vertical direction in the traveling direction of the heater. Support bases 14, 4
A heat-actuated micro-relay element of the latch type, which is supported on 4 and is suspended from the floor.
【請求項4】 第1項において、 上記の液体金属50は水銀あるいはガリウムであること
を特徴とするラッチ型熱駆動マイクローリレー素子。
4. The latch type thermally driven micro relay element according to claim 1, wherein the liquid metal 50 is mercury or gallium.
【請求項5】 第1項において、 上記の第1信号電極31,32と第2信号電極34,3
5はTiW,Au,CuおよびNiの中、いずれ一つの
金属であることを特徴とするラッチ型熱駆動マイクロー
リレー素子。
5. The first signal electrode 31, 32 and the second signal electrode 34, 3 according to claim 1.
Reference numeral 5 is a latch-type thermally actuated micro-relay element, which is one of TiW, Au, Cu and Ni.
【請求項6】 第1項において、 上記のヒータ12,42はプラチナ、ポリシリコンおよ
びニッケルで形成されたことを特徴とするラッチ型熱駆
動マイクローリレー素子。
6. The latch type thermally driven micro-relay element according to claim 1, wherein the heaters 12 and 42 are formed of platinum, polysilicon and nickel.
【請求項7】 第1項において、 上記のチャンネル20は、その中間領域にチャンネルの
幅が狭いマイクロチャンネル領域21を有し、上記のマ
イクロチャンネル領域21の両端に上記のマイクロチャ
ンネル領域21より広い幅を持つ第1チャンネル領域2
2と第2チャンネル領域23を有し、上記の第1,2チ
ャンネル領域22,23と貯蔵庫10,40の間に各々
上記のマイクロチャンネル領域21より狭い幅を持つ第
1の狭いチャンネル領域24と第2の狭いチャンネル領
域25を有することを特徴とするラッチ型熱駆動マイク
ローリレー素子。
7. The channel 20 according to claim 1, wherein the channel 20 has a microchannel region 21 having a narrow channel width in an intermediate region thereof, and is wider than the microchannel region 21 at both ends of the microchannel region 21. First channel area 2 with width
2 and a second channel region 23, and a first narrow channel region 24 having a width narrower than that of the micro channel region 21 between the first and second channel regions 22 and 23 and the storages 10 and 40. A latch-type thermally actuated micro-relay element having a second narrow channel region 25.
【請求項8】 第7項において、 上記の第1,2の狭いチャンネル24,25は、各々能
動貯蔵庫10と受動貯蔵庫40側に二つの狭いチャンネ
ルで延長される形態を持つことを特徴とするラッチ型熱
駆動マイクローリレー素子。
8. The method according to claim 7, wherein the first and second narrow channels 24 and 25 have two narrow channels extending toward the active storage 10 and the passive storage 40, respectively. Latch type thermal drive micro relay element.
【請求項9】 第1項において、 上記半導体基板100の下側から上側に行くにつれて狭
くなり、 上部が上記能動貯蔵庫10と上記第1信号電極31,3
2間のチャンネル20の領域と、 受動貯蔵庫40と上記第2信号電極34,35間のチャ
ンネル20の領域に各々連通されるように形成されて上
記液体金属50を注入するための注入通路に使用される
第1,第2穴116,118を有して構成されることを
特徴とするラッチ型マイクロリレー素子。
9. The semiconductor device according to claim 1, wherein the semiconductor substrate 100 becomes narrower from the lower side to the upper side, and the upper portion has the active storage 10 and the first signal electrodes 31, 3.
2 and a region of the channel 20 between the passive reservoir 40 and the second signal electrodes 34 and 35, respectively, and used as an injection passage for injecting the liquid metal 50. A latch-type microrelay element having the first and second holes 116 and 118 to be formed.
【請求項10】 第9項において、 上記第1,2穴116,118と、能動貯蔵用10およ
び受動貯蔵庫40との体積費が30:1であることを特
徴とするラッチ型熱駆動マイクロ素子。
10. The latch type thermally driven micro device according to claim 9, wherein the volume costs of the first and second holes 116 and 118 and the active storage 10 and the passive storage 40 are 30: 1. .
【請求項11】 第1項において、 上記の能動貯蔵庫10と受動貯蔵庫40の両端のヒータ
12,14に電源を供給する第1配線60と第2配線7
0が追加で形成されていることを特徴とするラッチ型熱
駆動マイクローリレー素子。
11. The first wiring 60 and the second wiring 7 according to claim 1, which supply power to the heaters 12 and 14 at both ends of the active storage 10 and the passive storage 40.
A latch-type thermally actuated micro-relay element, wherein 0 is additionally formed.
JP8163401A 1995-12-13 1996-06-24 Latching type heat driven micro relay device Expired - Fee Related JP3050526B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR95-49249 1995-12-13
KR1019950049249A KR0174871B1 (en) 1995-12-13 1995-12-13 Thermally driven micro relay device with latching characteristics

Publications (2)

Publication Number Publication Date
JPH09161640A true JPH09161640A (en) 1997-06-20
JP3050526B2 JP3050526B2 (en) 2000-06-12

Family

ID=19439595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8163401A Expired - Fee Related JP3050526B2 (en) 1995-12-13 1996-06-24 Latching type heat driven micro relay device

Country Status (2)

Country Link
JP (1) JP3050526B2 (en)
KR (1) KR0174871B1 (en)

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041198A1 (en) * 1998-12-30 2000-07-13 Agilent Technologies, Inc. Electrical contact breaker switch, integrated electrical contact breaker switch, and electrical contact switching method
WO2001046974A1 (en) * 1999-12-22 2001-06-28 Agilent Technolgies Liquid conductor switch device
WO2001046975A1 (en) * 1999-12-22 2001-06-28 Agilent Technologies, Inc. Switch device and method for manufacturing the same
US6323447B1 (en) 1998-12-30 2001-11-27 Agilent Technologies, Inc. Electrical contact breaker switch, integrated electrical contact breaker switch, and electrical contact switching method
EP1179829A1 (en) * 1998-12-30 2002-02-13 Agilent Technologies Inc. (a Delaware Corporation) Electrical contact breaker switch, integrated electrical contact breaker switch, and electrical contact switching method
US6407401B1 (en) 2000-06-16 2002-06-18 Agilent Technologies, Inc. Photoconductive relay and method of making same
EP1235238A2 (en) * 2001-02-23 2002-08-28 Agilent Technologies, Inc. (a Delaware corporation) Latching switch device
EP1235242A2 (en) * 2001-02-23 2002-08-28 Agilent Technologies, Inc. (a Delaware corporation) Multi-pole switch device
JP2002260498A (en) * 2001-02-28 2002-09-13 Agilent Technol Inc Switch device
US6586269B2 (en) 1999-06-18 2003-07-01 Agilent Technologies, Inc. Photo-conductive relay and method of making same
US6689976B1 (en) 2002-10-08 2004-02-10 Agilent Technologies, Inc. Electrically isolated liquid metal micro-switches for integrally shielded microcircuits
US6730866B1 (en) 2003-04-14 2004-05-04 Agilent Technologies, Inc. High-frequency, liquid metal, latching relay array
US6740829B1 (en) 2003-04-14 2004-05-25 Agilent Technologies, Inc. Insertion-type liquid metal latching relay
US6741767B2 (en) 2002-03-28 2004-05-25 Agilent Technologies, Inc. Piezoelectric optical relay
US6743990B1 (en) 2002-12-12 2004-06-01 Agilent Technologies, Inc. Volume adjustment apparatus and method for use
US6743991B1 (en) 2003-04-14 2004-06-01 Agilent Technologies, Inc. Polymeric liquid metal switch
US6747222B1 (en) 2003-02-04 2004-06-08 Agilent Technologies, Inc. Feature formation in a nonphotoimagable material and switch incorporating same
US6750594B2 (en) 2002-05-02 2004-06-15 Agilent Technologies, Inc. Piezoelectrically actuated liquid metal switch
US6750413B1 (en) 2003-04-25 2004-06-15 Agilent Technologies, Inc. Liquid metal micro switches using patterned thick film dielectric as channels and a thin ceramic or glass cover plate
US6756551B2 (en) 2002-05-09 2004-06-29 Agilent Technologies, Inc. Piezoelectrically actuated liquid metal switch
US6759611B1 (en) 2003-06-16 2004-07-06 Agilent Technologies, Inc. Fluid-based switches and methods for producing the same
US6759610B1 (en) 2003-06-05 2004-07-06 Agilent Technologies, Inc. Multi-layer assembly of stacked LIMMS devices with liquid metal vias
US6762378B1 (en) 2003-04-14 2004-07-13 Agilent Technologies, Inc. Liquid metal, latching relay with face contact
US6765161B1 (en) 2003-04-14 2004-07-20 Agilent Technologies, Inc. Method and structure for a slug caterpillar piezoelectric latching reflective optical relay
US6768068B1 (en) 2003-04-14 2004-07-27 Agilent Technologies, Inc. Method and structure for a slug pusher-mode piezoelectrically actuated liquid metal switch
US6774325B1 (en) 2003-04-14 2004-08-10 Agilent Technologies, Inc. Reducing oxides on a switching fluid in a fluid-based switch
US6774324B2 (en) 2002-12-12 2004-08-10 Agilent Technologies, Inc. Switch and production thereof
US6777630B1 (en) 2003-04-30 2004-08-17 Agilent Technologies, Inc. Liquid metal micro switches using as channels and heater cavities matching patterned thick film dielectric layers on opposing thin ceramic plates
US6781074B1 (en) 2003-07-30 2004-08-24 Agilent Technologies, Inc. Preventing corrosion degradation in a fluid-based switch
US6787719B2 (en) 2002-12-12 2004-09-07 Agilent Technologies, Inc. Switch and method for producing the same
US6787720B1 (en) 2003-07-31 2004-09-07 Agilent Technologies, Inc. Gettering agent and method to prevent corrosion in a fluid switch
US6794591B1 (en) 2003-04-14 2004-09-21 Agilent Technologies, Inc. Fluid-based switches
US6798937B1 (en) 2003-04-14 2004-09-28 Agilent Technologies, Inc. Pressure actuated solid slug optical latching relay
US6803842B1 (en) 2003-04-14 2004-10-12 Agilent Technologies, Inc. Longitudinal mode solid slug optical latching relay
US6806431B2 (en) 2002-08-13 2004-10-19 Agilent Technologies, Inc. Liquid metal micro-relay with suspended heaters and multilayer wiring
EP1469497A1 (en) * 2003-04-14 2004-10-20 Agilent Technologies, Inc. Formation of signal paths to increase maximum signal-carrying frequency of a fluid-based switch
US6816641B2 (en) 2003-04-14 2004-11-09 Agilent Technologies, Inc. Method and structure for a solid slug caterpillar piezoelectric optical relay
US6818844B2 (en) 2003-04-14 2004-11-16 Agilent Technologies, Inc. Method and structure for a slug assisted pusher-mode piezoelectrically actuated liquid metal optical switch
US6825429B2 (en) 2003-03-31 2004-11-30 Agilent Technologies, Inc. Hermetic seal and controlled impedance RF connections for a liquid metal micro switch
US6831532B2 (en) 2003-04-14 2004-12-14 Agilent Technologies, Inc. Push-mode latching relay
US6833520B1 (en) 2003-06-16 2004-12-21 Agilent Technologies, Inc. Suspended thin-film resistor
US6838959B2 (en) 2003-04-14 2005-01-04 Agilent Technologies, Inc. Longitudinal electromagnetic latching relay
US6841746B2 (en) 2003-04-14 2005-01-11 Agilent Technologies, Inc. Bent switching fluid cavity
US6849144B2 (en) 2002-12-12 2005-02-01 Agilent Technologies, Inc. Method for making switch with ultrasonically milled channel plate
US6855898B2 (en) 2002-12-12 2005-02-15 Agilent Technologies, Inc. Ceramic channel plate for a switch
US6870111B2 (en) 2003-04-14 2005-03-22 Agilent Technologies, Inc. Bending mode liquid metal switch
US6872904B2 (en) 2003-04-14 2005-03-29 Agilent Technologies, Inc. Fluid-based switch
US6876133B2 (en) 2003-04-14 2005-04-05 Agilent Technologies, Inc. Latching relay with switch bar
US6876131B2 (en) 2003-04-14 2005-04-05 Agilent Technologies, Inc. High-frequency, liquid metal, latching relay with face contact
US6876130B2 (en) 2003-04-14 2005-04-05 Agilent Technologies, Inc. Damped longitudinal mode latching relay
US6876132B2 (en) 2003-04-14 2005-04-05 Agilent Technologies, Inc. Method and structure for a solid slug caterpillar piezoelectric relay
US6879089B2 (en) 2003-04-14 2005-04-12 Agilent Technologies, Inc. Damped longitudinal mode optical latching relay
US6879088B2 (en) 2003-04-14 2005-04-12 Agilent Technologies, Inc. Insertion-type liquid metal latching relay array
US6882088B2 (en) 2003-04-14 2005-04-19 Agilent Technologies, Inc. Bending-mode latching relay
US6885133B2 (en) 2003-04-14 2005-04-26 Agilent Technologies, Inc. High frequency bending-mode latching relay
US6888977B2 (en) 2003-04-14 2005-05-03 Agilent Technologies, Inc. Polymeric liquid metal optical switch
US6891116B2 (en) 2003-04-14 2005-05-10 Agilent Technologies, Inc. Substrate with liquid electrode
US6894424B2 (en) 2003-04-14 2005-05-17 Agilent Technologies, Inc. High frequency push-mode latching relay
US6897387B2 (en) 2003-01-13 2005-05-24 Agilent Technologies, Inc. Photoimaged channel plate for a switch
US6900578B2 (en) 2003-04-14 2005-05-31 Agilent Technologies, Inc. High frequency latching relay with bending switch bar
US6903492B2 (en) 2003-04-14 2005-06-07 Agilent Technologies, Inc. Wetting finger latching piezoelectric relay
US6903493B2 (en) 2003-04-14 2005-06-07 Agilent Technologies, Inc. Inserting-finger liquid metal relay
US6903490B2 (en) 2003-04-14 2005-06-07 Agilent Technologies, Inc. Longitudinal mode optical latching relay
US6903287B2 (en) 2003-04-14 2005-06-07 Agilent Technologies, Inc. Liquid metal optical relay
US6920259B2 (en) 2003-04-14 2005-07-19 Agilent Technologies, Inc. Longitudinal electromagnetic latching optical relay
US6925223B2 (en) 2003-04-14 2005-08-02 Agilent Technologies, Inc. Pressure actuated optical latching relay
US6924443B2 (en) 2003-04-14 2005-08-02 Agilent Technologies, Inc. Reducing oxides on a switching fluid in a fluid-based switch
US6927529B2 (en) 2002-05-02 2005-08-09 Agilent Technologies, Inc. Solid slug longitudinal piezoelectric latching relay
US6927350B2 (en) 2003-01-21 2005-08-09 Agilent Technologies, Inc Multi-substrate liquid metal high-frequency switching device
US6946775B2 (en) 2003-04-14 2005-09-20 Agilent Technologies, Inc. Method and structure for a slug assisted longitudinal piezoelectrically actuated liquid metal optical switch
US6946776B2 (en) 2003-04-14 2005-09-20 Agilent Technologies, Inc. Method and apparatus for maintaining a liquid metal switch in a ready-to-switch condition
US6956990B2 (en) 2003-04-14 2005-10-18 Agilent Technologies, Inc. Reflecting wedge optical wavelength multiplexer/demultiplexer
US6961487B2 (en) 2003-04-14 2005-11-01 Agilent Technologies, Inc. Method and structure for a pusher-mode piezoelectrically actuated liquid metal optical switch
US7012354B2 (en) 2003-04-14 2006-03-14 Agilent Technologies, Inc. Method and structure for a pusher-mode piezoelectrically actuated liquid metal switch
US7048519B2 (en) 2003-04-14 2006-05-23 Agilent Technologies, Inc. Closed-loop piezoelectric pump
US7070908B2 (en) 2003-04-14 2006-07-04 Agilent Technologies, Inc. Feature formation in thick-film inks
US7071432B2 (en) 2003-04-14 2006-07-04 Agilent Technologies, Inc. Reduction of oxides in a fluid-based switch
US7078849B2 (en) 2001-10-31 2006-07-18 Agilent Technologies, Inc. Longitudinal piezoelectric optical latching relay
JP2013511125A (en) * 2009-11-12 2013-03-28 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート RF MEMS switch using shape change of fine liquid metal droplet
JP2013516636A (en) * 2009-12-31 2013-05-13 ビーエーエスエフ ソシエタス・ヨーロピア Electronic fluid indicator and notification method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780838B1 (en) * 2006-08-16 2007-11-30 광주과학기술원 Thermal switch
CN114758488B (en) * 2022-03-17 2023-02-24 江苏大学 Passive switch device

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323447B1 (en) 1998-12-30 2001-11-27 Agilent Technologies, Inc. Electrical contact breaker switch, integrated electrical contact breaker switch, and electrical contact switching method
EP1179829A1 (en) * 1998-12-30 2002-02-13 Agilent Technologies Inc. (a Delaware Corporation) Electrical contact breaker switch, integrated electrical contact breaker switch, and electrical contact switching method
WO2000041198A1 (en) * 1998-12-30 2000-07-13 Agilent Technologies, Inc. Electrical contact breaker switch, integrated electrical contact breaker switch, and electrical contact switching method
US6586269B2 (en) 1999-06-18 2003-07-01 Agilent Technologies, Inc. Photo-conductive relay and method of making same
EP1406274A2 (en) * 1999-12-22 2004-04-07 Agilent Technologies Inc. (a Delaware Corporation) Switch device and method for manufacturing the same
WO2001046974A1 (en) * 1999-12-22 2001-06-28 Agilent Technolgies Liquid conductor switch device
WO2001046975A1 (en) * 1999-12-22 2001-06-28 Agilent Technologies, Inc. Switch device and method for manufacturing the same
US6822175B2 (en) 1999-12-22 2004-11-23 Agilent Technologies, Inc. Liquid conductor switch device
US6797901B2 (en) 1999-12-22 2004-09-28 Agilent Technologies, Inc. Switch device and method of making same
EP1406274A3 (en) * 1999-12-22 2004-04-14 Agilent Technologies Inc. (a Delaware Corporation) Switch device and method for manufacturing the same
US6407401B1 (en) 2000-06-16 2002-06-18 Agilent Technologies, Inc. Photoconductive relay and method of making same
US6717495B2 (en) 2001-02-23 2004-04-06 Agilent Technologies, Inc. Conductive liquid-based latching switch device
EP1235238A2 (en) * 2001-02-23 2002-08-28 Agilent Technologies, Inc. (a Delaware corporation) Latching switch device
US6756552B2 (en) 2001-02-23 2004-06-29 Agilent Technologies, Inc. Multi-pole conductive liquid-based switch device
EP1235242A3 (en) * 2001-02-23 2003-08-20 Agilent Technologies, Inc. (a Delaware corporation) Multi-pole switch device
EP1235238A3 (en) * 2001-02-23 2003-08-13 Agilent Technologies, Inc. (a Delaware corporation) Latching switch device
JP2002260499A (en) * 2001-02-23 2002-09-13 Agilent Technol Inc Switch device using conductive fluid
EP1235242A2 (en) * 2001-02-23 2002-08-28 Agilent Technologies, Inc. (a Delaware corporation) Multi-pole switch device
JP2002260498A (en) * 2001-02-28 2002-09-13 Agilent Technol Inc Switch device
US7078849B2 (en) 2001-10-31 2006-07-18 Agilent Technologies, Inc. Longitudinal piezoelectric optical latching relay
US6741767B2 (en) 2002-03-28 2004-05-25 Agilent Technologies, Inc. Piezoelectric optical relay
US6750594B2 (en) 2002-05-02 2004-06-15 Agilent Technologies, Inc. Piezoelectrically actuated liquid metal switch
US6927529B2 (en) 2002-05-02 2005-08-09 Agilent Technologies, Inc. Solid slug longitudinal piezoelectric latching relay
US6756551B2 (en) 2002-05-09 2004-06-29 Agilent Technologies, Inc. Piezoelectrically actuated liquid metal switch
US6806431B2 (en) 2002-08-13 2004-10-19 Agilent Technologies, Inc. Liquid metal micro-relay with suspended heaters and multilayer wiring
SG146419A1 (en) * 2002-08-13 2008-10-30 Agilent Technologies Inc Liquid metal micro-relay with suspended heaters and multilayer wiring
US6689976B1 (en) 2002-10-08 2004-02-10 Agilent Technologies, Inc. Electrically isolated liquid metal micro-switches for integrally shielded microcircuits
SG120114A1 (en) * 2002-10-08 2006-03-28 Agilent Technologies Inc Electrically isolated liquid metal micro-switches for integrally shielded microcircuits
US6781075B2 (en) 2002-10-08 2004-08-24 Agilent Technologies, Inc. Electrically isolated liquid metal micro-switches for integrally shielded microcircuits
US6743990B1 (en) 2002-12-12 2004-06-01 Agilent Technologies, Inc. Volume adjustment apparatus and method for use
US6924444B2 (en) 2002-12-12 2005-08-02 Agilent Technologies, Inc. Ceramic channel plate for a fluid-based switch, and method for making same
US6855898B2 (en) 2002-12-12 2005-02-15 Agilent Technologies, Inc. Ceramic channel plate for a switch
US6774324B2 (en) 2002-12-12 2004-08-10 Agilent Technologies, Inc. Switch and production thereof
US6849144B2 (en) 2002-12-12 2005-02-01 Agilent Technologies, Inc. Method for making switch with ultrasonically milled channel plate
US7022926B2 (en) 2002-12-12 2006-04-04 Agilent Technologies, Inc. Ultrasonically milled channel plate for a switch
US6787719B2 (en) 2002-12-12 2004-09-07 Agilent Technologies, Inc. Switch and method for producing the same
US6897387B2 (en) 2003-01-13 2005-05-24 Agilent Technologies, Inc. Photoimaged channel plate for a switch
US7098413B2 (en) 2003-01-13 2006-08-29 Agilent Technologies, Inc. Photoimaged channel plate for a switch, and method for making a switch using same
US6927350B2 (en) 2003-01-21 2005-08-09 Agilent Technologies, Inc Multi-substrate liquid metal high-frequency switching device
US6747222B1 (en) 2003-02-04 2004-06-08 Agilent Technologies, Inc. Feature formation in a nonphotoimagable material and switch incorporating same
US6825429B2 (en) 2003-03-31 2004-11-30 Agilent Technologies, Inc. Hermetic seal and controlled impedance RF connections for a liquid metal micro switch
US6768068B1 (en) 2003-04-14 2004-07-27 Agilent Technologies, Inc. Method and structure for a slug pusher-mode piezoelectrically actuated liquid metal switch
US6876132B2 (en) 2003-04-14 2005-04-05 Agilent Technologies, Inc. Method and structure for a solid slug caterpillar piezoelectric relay
US6794591B1 (en) 2003-04-14 2004-09-21 Agilent Technologies, Inc. Fluid-based switches
EP1469497A1 (en) * 2003-04-14 2004-10-20 Agilent Technologies, Inc. Formation of signal paths to increase maximum signal-carrying frequency of a fluid-based switch
US6816641B2 (en) 2003-04-14 2004-11-09 Agilent Technologies, Inc. Method and structure for a solid slug caterpillar piezoelectric optical relay
US6818844B2 (en) 2003-04-14 2004-11-16 Agilent Technologies, Inc. Method and structure for a slug assisted pusher-mode piezoelectrically actuated liquid metal optical switch
US6900578B2 (en) 2003-04-14 2005-05-31 Agilent Technologies, Inc. High frequency latching relay with bending switch bar
US6730866B1 (en) 2003-04-14 2004-05-04 Agilent Technologies, Inc. High-frequency, liquid metal, latching relay array
US6831532B2 (en) 2003-04-14 2004-12-14 Agilent Technologies, Inc. Push-mode latching relay
US6740829B1 (en) 2003-04-14 2004-05-25 Agilent Technologies, Inc. Insertion-type liquid metal latching relay
US6838959B2 (en) 2003-04-14 2005-01-04 Agilent Technologies, Inc. Longitudinal electromagnetic latching relay
US6841746B2 (en) 2003-04-14 2005-01-11 Agilent Technologies, Inc. Bent switching fluid cavity
US6743991B1 (en) 2003-04-14 2004-06-01 Agilent Technologies, Inc. Polymeric liquid metal switch
US6774325B1 (en) 2003-04-14 2004-08-10 Agilent Technologies, Inc. Reducing oxides on a switching fluid in a fluid-based switch
US6870111B2 (en) 2003-04-14 2005-03-22 Agilent Technologies, Inc. Bending mode liquid metal switch
US6872904B2 (en) 2003-04-14 2005-03-29 Agilent Technologies, Inc. Fluid-based switch
US6876133B2 (en) 2003-04-14 2005-04-05 Agilent Technologies, Inc. Latching relay with switch bar
US6876131B2 (en) 2003-04-14 2005-04-05 Agilent Technologies, Inc. High-frequency, liquid metal, latching relay with face contact
US6876130B2 (en) 2003-04-14 2005-04-05 Agilent Technologies, Inc. Damped longitudinal mode latching relay
US6903492B2 (en) 2003-04-14 2005-06-07 Agilent Technologies, Inc. Wetting finger latching piezoelectric relay
US6879089B2 (en) 2003-04-14 2005-04-12 Agilent Technologies, Inc. Damped longitudinal mode optical latching relay
US6879088B2 (en) 2003-04-14 2005-04-12 Agilent Technologies, Inc. Insertion-type liquid metal latching relay array
US6882088B2 (en) 2003-04-14 2005-04-19 Agilent Technologies, Inc. Bending-mode latching relay
US6885133B2 (en) 2003-04-14 2005-04-26 Agilent Technologies, Inc. High frequency bending-mode latching relay
US6888977B2 (en) 2003-04-14 2005-05-03 Agilent Technologies, Inc. Polymeric liquid metal optical switch
US6891116B2 (en) 2003-04-14 2005-05-10 Agilent Technologies, Inc. Substrate with liquid electrode
US6894424B2 (en) 2003-04-14 2005-05-17 Agilent Technologies, Inc. High frequency push-mode latching relay
US6894237B2 (en) 2003-04-14 2005-05-17 Agilent Technologies, Inc. Formation of signal paths to increase maximum signal-carrying frequency of a fluid-based switch
US6798937B1 (en) 2003-04-14 2004-09-28 Agilent Technologies, Inc. Pressure actuated solid slug optical latching relay
US7071432B2 (en) 2003-04-14 2006-07-04 Agilent Technologies, Inc. Reduction of oxides in a fluid-based switch
US6803842B1 (en) 2003-04-14 2004-10-12 Agilent Technologies, Inc. Longitudinal mode solid slug optical latching relay
US6903493B2 (en) 2003-04-14 2005-06-07 Agilent Technologies, Inc. Inserting-finger liquid metal relay
US6903490B2 (en) 2003-04-14 2005-06-07 Agilent Technologies, Inc. Longitudinal mode optical latching relay
US6903287B2 (en) 2003-04-14 2005-06-07 Agilent Technologies, Inc. Liquid metal optical relay
US6906271B2 (en) 2003-04-14 2005-06-14 Agilent Technologies, Inc. Fluid-based switch
US6920259B2 (en) 2003-04-14 2005-07-19 Agilent Technologies, Inc. Longitudinal electromagnetic latching optical relay
US6925223B2 (en) 2003-04-14 2005-08-02 Agilent Technologies, Inc. Pressure actuated optical latching relay
US6765161B1 (en) 2003-04-14 2004-07-20 Agilent Technologies, Inc. Method and structure for a slug caterpillar piezoelectric latching reflective optical relay
US6924443B2 (en) 2003-04-14 2005-08-02 Agilent Technologies, Inc. Reducing oxides on a switching fluid in a fluid-based switch
US6762378B1 (en) 2003-04-14 2004-07-13 Agilent Technologies, Inc. Liquid metal, latching relay with face contact
US7070908B2 (en) 2003-04-14 2006-07-04 Agilent Technologies, Inc. Feature formation in thick-film inks
US6946775B2 (en) 2003-04-14 2005-09-20 Agilent Technologies, Inc. Method and structure for a slug assisted longitudinal piezoelectrically actuated liquid metal optical switch
US6946776B2 (en) 2003-04-14 2005-09-20 Agilent Technologies, Inc. Method and apparatus for maintaining a liquid metal switch in a ready-to-switch condition
US6956990B2 (en) 2003-04-14 2005-10-18 Agilent Technologies, Inc. Reflecting wedge optical wavelength multiplexer/demultiplexer
US6961487B2 (en) 2003-04-14 2005-11-01 Agilent Technologies, Inc. Method and structure for a pusher-mode piezoelectrically actuated liquid metal optical switch
US7012354B2 (en) 2003-04-14 2006-03-14 Agilent Technologies, Inc. Method and structure for a pusher-mode piezoelectrically actuated liquid metal switch
US7048519B2 (en) 2003-04-14 2006-05-23 Agilent Technologies, Inc. Closed-loop piezoelectric pump
US6750413B1 (en) 2003-04-25 2004-06-15 Agilent Technologies, Inc. Liquid metal micro switches using patterned thick film dielectric as channels and a thin ceramic or glass cover plate
US6777630B1 (en) 2003-04-30 2004-08-17 Agilent Technologies, Inc. Liquid metal micro switches using as channels and heater cavities matching patterned thick film dielectric layers on opposing thin ceramic plates
US6759610B1 (en) 2003-06-05 2004-07-06 Agilent Technologies, Inc. Multi-layer assembly of stacked LIMMS devices with liquid metal vias
US6759611B1 (en) 2003-06-16 2004-07-06 Agilent Technologies, Inc. Fluid-based switches and methods for producing the same
US6833520B1 (en) 2003-06-16 2004-12-21 Agilent Technologies, Inc. Suspended thin-film resistor
US6781074B1 (en) 2003-07-30 2004-08-24 Agilent Technologies, Inc. Preventing corrosion degradation in a fluid-based switch
US6787720B1 (en) 2003-07-31 2004-09-07 Agilent Technologies, Inc. Gettering agent and method to prevent corrosion in a fluid switch
JP2013511125A (en) * 2009-11-12 2013-03-28 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート RF MEMS switch using shape change of fine liquid metal droplet
US8704117B2 (en) 2009-11-12 2014-04-22 Electronics And Telecommunications Research Institute RF MEMS switch using change in shape of fine liquid metal droplet
JP2013516636A (en) * 2009-12-31 2013-05-13 ビーエーエスエフ ソシエタス・ヨーロピア Electronic fluid indicator and notification method

Also Published As

Publication number Publication date
JP3050526B2 (en) 2000-06-12
KR0174871B1 (en) 1999-02-01
KR970054597A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JPH09161640A (en) Latch ( latching ) type heat-driven microrelay device
US6882264B2 (en) Electrothermal self-latching MEMS switch and method
EP0923099B1 (en) Micro-relay and method for manufacturing the same
US4570139A (en) Thin-film magnetically operated micromechanical electric switching device
US6897537B2 (en) Micro-electro-mechanical system (MEMS) variable capacitor apparatuses and related methods
KR100785084B1 (en) Piezoelectric mems switch and manufacturing method for the same
JP2004055549A (en) Liquid separator in liquid metal microswitch
US7122942B2 (en) Electrostatic RF MEMS switches
US7346981B2 (en) Method for fabricating microelectromechanical system (MEMS) devices
KR20090042173A (en) Electrical connection through a substrate to a microelectromechanical device
JP2002537630A (en) Micro relay
US20020190267A1 (en) Electrostatically actuated microswitch
JP2000195389A (en) Electrical contact switching device, electrical contact switching device assembled body and electrical contact switching method
JP2005142142A (en) Relay
JP2006294505A (en) Relay
JP2713801B2 (en) Electrostatic relay and method of manufacturing the same
JP2004319488A (en) Electric relay
JP2003062798A (en) Actuator and switch
KR0160913B1 (en) Micro-relay
KR0160912B1 (en) Micro-relay and manufacturing method thereof
JP4386014B2 (en) Contact switchgear
US6989513B2 (en) Heat-generating element, heat-generating substrates, heat-generating substrate manufacturing method, microswitch, and flow sensor
JP2007066734A (en) Electric contact switching device
JP2007299630A (en) Contact switching device
JPH11191505A (en) Sensor having heating-type thin-film element and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000307

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees