JPH09161057A - Device for inspecting inside of hollow route - Google Patents

Device for inspecting inside of hollow route

Info

Publication number
JPH09161057A
JPH09161057A JP7320574A JP32057495A JPH09161057A JP H09161057 A JPH09161057 A JP H09161057A JP 7320574 A JP7320574 A JP 7320574A JP 32057495 A JP32057495 A JP 32057495A JP H09161057 A JPH09161057 A JP H09161057A
Authority
JP
Japan
Prior art keywords
hollow path
light
hollow
image
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7320574A
Other languages
Japanese (ja)
Other versions
JP3124218B2 (en
Inventor
Fumiaki Fukunaga
文昭 福永
Keisuke Sato
圭介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP07320574A priority Critical patent/JP3124218B2/en
Publication of JPH09161057A publication Critical patent/JPH09161057A/en
Application granted granted Critical
Publication of JP3124218B2 publication Critical patent/JP3124218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy of inspection by receiving light irregularly reflected in a hollow route and outgoing from the route, picking up an image of the received light and judging the existence of abnormality in the route by features such as the area value of a bright picture. SOLUTION: In the case of inspecting a head cylinder 1 of an engine as a subject, a supporting member 7 is elevated/revoluted by an elevating/revoluting mechanism and a projection part 8 and an image pickup part 9 are inserted into a pair of sand removing holes 4 e.g. Light is projected from the projection part 8 inside the hollow route 4a and diffused light irregularly reflected in the route 4a and going out from the route 4a is received on the two-dimensional plane by a microcamera built in an image pickup part 9 to obtain a plane image. Further, inspection is repeated by changing the image pickup direction or the inserting direction by revoluting the member 7 or rotating the image pickup part 9. Then, the area value or the like of a bright picture picked up by each camera is discriminated to judge the block or jamming of the route 4a. Since the inside of the route 4a is image-picked up in plural directions, the abnormality of the labyrinth-like hollow route can be inspected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、外から内部を観察
出来ない屈曲した中空経路を有する被検査体における内
部の異常有無を検査する中空経路の内部検査装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow path internal inspection device for inspecting the inside of an inspected object having a bent hollow path whose inside cannot be observed from the outside.

【0002】[0002]

【従来の技術】水冷式エンジンは、シリンダブロック及
びヘッドシリンダに燃焼室部の冷却水路(ウォータジャ
ケット)を有し、この部分に冷却水を循環供給してエン
ジンの焼き付きを防止しており、図4(a)(b)
(c)にヘッドシリンダ(1)の一例の下面図、部分垂
直断面図、及びヘッド上面側の部分水平断面図をそれぞ
れ示す。上記ヘッドシリンダ(1)は、図4(a)
(b)に示すように、シリンダ筒(2)…の周囲に沿っ
てヘッド下面側(シリンダブロック側)に複数の水穴
(3)…が形成され、又、ヘッド上面側の点火栓及び吸
排気バルブ周辺に砂抜き穴(4)…が形成されている。
上記水穴(3)…はヘッドシリンダ(1)がシリンダブ
ロックと結合することにより循環冷却水路を形成し、
又、隣接する水穴間に外から観察出来ない屈曲した冷却
水路用中空経路(3a)を形成する。更に、ヘッド上面側
においても砂抜き穴間に冷却水路用中空経路(4a)が形
成されている。上記ヘッドシリンダ(1)は、屈曲した
中空経路(3a)(4a)を有する被検査体の一例であり、
特に図4(c)に示すように、ヘッド上面側の中空経路
(4a)は網目状の複雑な屈曲迷路を形成している。
2. Description of the Related Art A water-cooled engine has a cooling water passage (water jacket) in a combustion chamber in a cylinder block and a head cylinder, and cooling water is circulated to this portion to prevent engine seizure. 4 (a) (b)
FIG. 3C shows a bottom view, a partial vertical cross-sectional view, and a partial horizontal cross-sectional view of the head upper surface side of an example of the head cylinder (1). The head cylinder (1) is shown in FIG.
As shown in (b), a plurality of water holes (3) are formed on the lower surface side of the head (cylinder block side) along the circumference of the cylinder tube (2), and the spark plug and the suction plug on the upper surface side of the head are formed. Sand removal holes (4) are formed around the exhaust valve.
The water holes (3) form a circulating cooling water passage by the head cylinder (1) being connected to the cylinder block,
In addition, a bent cooling water channel hollow path (3a) that cannot be observed from the outside is formed between adjacent water holes. Further, a hollow passage (4a) for a cooling water passage is formed between the sand removing holes on the upper surface side of the head. The head cylinder (1) is an example of an object to be inspected having curved hollow paths (3a) (4a),
In particular, as shown in FIG. 4C, the hollow path (4a) on the upper surface side of the head forms a mesh-like complicated bending labyrinth.

【0003】上記冷却水路用水穴(3)及び中空経路
(3a)(4a)を形成する場合、鋳型に中子をセットして
溶融金属(例えば溶融アルミ合金)を注湯し、凝固させ
た後、鋳型及び中子を除去して製品とするが、ヘッドシ
リンダ(1)の冷却水路は、シリンダブロックの冷却水
路に比べて形状が複雑となり、中子砂が除去されずに残
存し易い。特に、中空経路(3a)(4a)の内部は外から
観察出来ないため、中子砂が残存したまま最終工程まで
移行することが多々あり、その結果、最悪の場合、エン
ジンを不良品として処分せざるを得ないことがある。
When forming the water hole (3) for the cooling water passage and the hollow passages (3a) (4a), after setting the core in the mold and pouring molten metal (for example, molten aluminum alloy) and solidifying it Although the mold and the core are removed to obtain a product, the cooling water channel of the head cylinder (1) has a more complicated shape than the cooling water channel of the cylinder block, and the core sand is likely to remain without being removed. In particular, since the inside of the hollow paths (3a) and (4a) cannot be observed from the outside, the core sand often moves to the final process with the core sand remaining. As a result, in the worst case, the engine is disposed of as a defective product. There is something we cannot help but do.

【0004】又、中子の造形時や鋳型へのセット時、中
子が一部欠損していたり、亀裂個所がある場合、これを
そのまま鋳型にセットすると、注湯した溶融金属がこれ
らの欠損個所や亀裂個所にも流れ込んで鋳バリとして残
存する結果、冷却水路を閉塞させ、エンジンの冷却作用
が悪化する。
When the core is partially missing or has cracks at the time of molding the core or setting it in the mold, if the core is set as it is, the molten metal poured into the core will be damaged. As a result of casting burrs flowing into spots and cracks and remaining as casting burrs, the cooling water passages are blocked and the cooling effect of the engine deteriorates.

【0005】そこで、特に屈曲した中空経路(3a)(4
a)の内部を検査して、その形状異常や中子残存等の異
常の有無を検査する必要があり、その検査手段の一例を
図4(b)を参照して以下に示す。上記検査手段は、ヘ
ッドシリンダ(1)の下面側の水穴(3)…及び上面側
の砂抜き穴(4)…にそれぞれ挿入する一対の投受光用
第1、第2各光電センサ(5)(6)を具備する。そし
て、例えば各光電センサ(5)(6)をそれぞれ水穴
(3)…に挿入し、第1光電センサ(5)から投射した
光(La)を第2光電センサ(6)で受光した時、中空経
路(3a)の内部は正常であると判別する。
Therefore, the hollow path (3a) (4)
It is necessary to inspect the inside of a) to inspect for any abnormalities such as abnormal shapes and remaining cores. An example of the inspection means will be described below with reference to FIG. The inspection means includes a pair of first and second photoelectric sensors (5) for projecting and receiving light which are respectively inserted into the water holes (3) on the lower surface side of the head cylinder (1) and the sand removing holes (4) on the upper surface side. ) (6) is provided. Then, for example, when the photoelectric sensors (5) and (6) are inserted into the water holes (3), respectively, and the light (La) projected from the first photoelectric sensor (5) is received by the second photoelectric sensor (6). , The inside of the hollow path (3a) is determined to be normal.

【0006】[0006]

【発明が解決しようとする課題】解決しようとする課題
は、中空経路(3a)の内面は梨地状の細かい凹凸面を持
つため、光が乱反射して受光側の第2センサ(6)まで
正確に届かず、良品でも不良判定になって検査困難にな
ること、又、投光用第1光電センサ(5)の光は約1mm
径のスポット光のため、完全閉塞しか検出できず、図4
(b)に示すように、中子(m)が半詰まりの場合、ス
ポット光が半詰まり部をかすめて通ることにより検出不
能になる時があること、更に、図4(c)に示すよう
に、ヘッド上面側の点火栓周辺の中空経路(4a)は網目
状の複雑な屈曲迷路のため、網目(4c)内に中子(m)
が詰まっても、その検査は、目視検査は勿論のこと、光
電センサ方式でも実施不能である点である。
The problem to be solved is that the inner surface of the hollow path (3a) has a fine textured surface with a satin finish, so that the light is diffusely reflected and the second sensor (6) on the light receiving side is accurate. The quality of the light from the first photoelectric sensor (5) for light projection is about 1 mm.
Due to the spot light of the diameter, only complete occlusion can be detected.
When the core (m) is half clogged as shown in (b), the spot light sometimes passes through the half clogged portion and becomes undetectable, and further, as shown in FIG. 4 (c). In addition, since the hollow path (4a) around the spark plug on the upper surface side of the head is a complicated mesh-shaped bending maze, the core (m) is inside the mesh (4c).
Even if it is clogged, the inspection cannot be performed not only by visual inspection but also by a photoelectric sensor method.

【0007】[0007]

【課題を解決するための手段】本発明は、中央部に結合
された昇降旋回機構によって中空経路を有する被検査体
に対して昇降及び旋回可能な支持部材と、前記支持部材
の一端に突設され、発光源から射出された拡散光を上記
中空経路入口の中央部方向に投光可能な投光部と、前記
支持部材の他端に上記投光部に正対して突設され、投光
部から中空経路に入射して内部を乱反射して射出した拡
散光を二次元平面で受光して平面的に撮像する撮像部と
を具備し、上記撮像画像の特徴を識別して中空経路の内
部異常有無を判別することを特徴とする。
According to the present invention, there is provided a supporting member which can be raised and lowered and swung with respect to an object to be inspected having a hollow path by an ascending and descending swivel mechanism coupled to a central portion, and a projecting member at one end of the supporting member. And a light projecting portion capable of projecting the diffused light emitted from the light emitting source toward the central portion of the entrance of the hollow path, and the other end of the support member, which is provided so as to directly face the light projecting portion and project. And a diffused light that is diffusely reflected from the inside of the hollow path and emitted from the inside of the hollow path is received by a two-dimensional plane and imaged in a planar manner. It is characterized by determining whether or not there is an abnormality.

【0008】[0008]

【発明の実施の形態】本発明に係る中空経路の内部検査
装置の実施の形態を図1〜図3を参照して以下に説明す
る。図において(7)は支持部材、(8)は投光部、
(9)は撮像部である。上記支持部材(7)は、中央部
に結合された昇降旋回機構によって中空経路(4a)を有
する被検査体に対して昇降及び旋回可能に設けられる。
投光部(8)は、拡散光の発光源(図示せず)に接続し
た光ファイバ(導光体)と、光ファイバの出口に対向配
置した平面鏡(10)とを有し、支持部材(7)の一端に
突設される。そして、発光源から光ファイバを介して導
出された拡散光(Lb)を平面鏡(10)で反射させて中空
経路(4a)の入口の中央部方向に投光する。ここで、エ
ンジンのヘッドシリンダ(1)を被検査体として検査す
る場合、例えば砂抜き穴(4)に投光部(8)を挿入
し、屈曲した中空経路(4a)の入口に投光する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an internal inspection device for a hollow path according to the present invention will be described below with reference to FIGS. In the figure, (7) is a supporting member, (8) is a light projecting portion,
(9) is an imaging unit. The support member (7) is provided so as to be able to move up and down and rotate with respect to the object to be inspected having the hollow path (4a) by an elevating and rotating mechanism connected to the central portion.
The light projecting unit (8) has an optical fiber (light guide) connected to a light emitting source (not shown) of diffused light, and a plane mirror (10) arranged to face the exit of the optical fiber. 7) Projected at one end. Then, the diffused light (Lb) derived from the light emitting source through the optical fiber is reflected by the plane mirror (10) and projected toward the center of the entrance of the hollow path (4a). Here, when the head cylinder (1) of the engine is inspected as an object to be inspected, for example, the light projecting portion (8) is inserted into the sand removing hole (4) and light is projected to the inlet of the bent hollow path (4a). .

【0009】撮像部(9)は、投光部(8)の平面鏡
(10)に対向配置した曲面鏡(図示せず)と、曲面鏡か
ら反射した光を二次元平面で受光して撮像する撮像手
段、例えば超小型カメラ(図示せず)とを有する。そし
て、自転する保持台(11)に植立保持したまま支持部材
(7)の他端に投光部(8)に正対して自転可能に突設
され、保持台(11)を自転させて撮像方向を適宜、変え
ることが出来る。そこで、投光部(8)から射出して曲
面鏡に入反射した拡散光を超小型カメラにより二次元平
面で受光して平面的に撮像する。ここで、エンジンのヘ
ッドシリンダ(1)を被検査体として検査する場合、砂
抜き穴(4)に投光部(8)を介して撮像部(9)を挿
入し、中空経路(4a)に入射して内部を乱反射して射出
した拡散光を受光及び撮像する。
The imaging section (9) receives a curved mirror (not shown) arranged opposite to the plane mirror (10) of the light projecting section (8) and the light reflected from the curved mirror on a two-dimensional plane for imaging. It has an imaging means, for example, a micro camera (not shown). Then, while keeping it standing upright on the rotating support table (11), the other end of the support member (7) is provided so as to directly face the light projecting part (8) so as to be rotatable, and the support table (11) is rotated. The imaging direction can be changed appropriately. Therefore, the diffused light emitted from the light projecting unit (8) and reflected and reflected by the curved mirror is received by a two-dimensional plane by a microminiature camera and is planarly imaged. Here, when the head cylinder (1) of the engine is inspected as an object to be inspected, the image pickup section (9) is inserted into the sand removal hole (4) through the light projecting section (8), and the hollow path (4a) is inserted. The diffused light that has been incident, diffused and internally reflected is then received and imaged.

【0010】上記構成に基づき本発明の動作を次に説明
する。まず昇降旋回機構により支持部材(7)を昇降旋
回させて例えば一対の砂抜き穴(4)…に投光及び撮像
各部(8)(9)を挿入する。そして、投光部(8)か
ら中空経路(4a)内に投光し、経路内を乱反射して射出
した拡散光を撮像部(9)の超小型カメラにより二次元
平面で受光して平面的に撮像する。更に、支持部材
(7)を旋回したり、或いは撮像部(9)を自転させて
撮像方向や挿入位置を変えて検査を行なう。そこで、各
カメラが撮像した明るさ画像の面積値等を識別して中空
経路(4a)内の閉塞や半詰まりを判別する。
The operation of the present invention based on the above configuration will be described below. First, the support member (7) is rotated up and down by the up-and-down rotating mechanism to insert the light projecting and imaging portions (8) and (9) into, for example, the pair of sand removing holes (4). Then, the diffused light emitted from the light projecting unit (8) into the hollow path (4a), diffusely reflected in the path and emitted is received by the microminiature camera of the imaging unit (9) in a two-dimensional plane and is planar. Image. Further, the inspection is performed by rotating the support member (7) or rotating the imaging unit (9) to change the imaging direction and the insertion position. Therefore, the area value or the like of the brightness image captured by each camera is identified to determine blockage or half clogging in the hollow path (4a).

【0011】又、本発明の他の実施の形態として拡散光
の発光源に接続した光ファイバ(12)を投光部としてヘ
ッドシリンダ(1)の水穴(3)から直接、中空経路
(3a)内に投光する。そして、カメラ(13)を撮像部と
して中空経路(3a)内を乱反射して射出した光を撮像
し、上記同様、撮像画像から中空経路(3a)内の異常有
無を判別する。この時、撮像部(9)とカメラ(13)と
で同時に中空経路(3a)(4a)内を撮像すると、複数の
相異なる中空経路内を一度に検査出来る。
Further, as another embodiment of the present invention, an optical fiber (12) connected to a light source of diffused light is used as a light projecting portion directly from the water hole (3) of the head cylinder (1) to the hollow path (3a). ) Flood inside. Then, the light emitted from the hollow path (3a) is diffusedly reflected and emitted in the hollow path (3a) by using the camera (13) as an imaging unit, and similarly to the above, whether or not there is an abnormality in the hollow path (3a) is determined from the captured image. At this time, if the insides of the hollow paths (3a) and (4a) are simultaneously imaged by the imaging section (9) and the camera (13), the insides of a plurality of different hollow paths can be inspected at once.

【0012】更に、他の実施の形態として光ファイバ
(14)を拡散光の投光部として撮像部(9)に対向して
付加配置する。そして、撮像部(9)を自転させて撮像
方向を変えることにより光ファイバ(14)から隣接する
他の中空経路(4a)に入射して内部を乱反射して射出し
た拡散光を二次元平面で受光して平面的に撮像し、その
撮像画像の特徴を識別して中空経路の内部異常有無を判
別しても良い。
Further, as another embodiment, an optical fiber (14) is additionally disposed as a diffused light projecting portion so as to face the image pickup portion (9). Then, by rotating the image pickup section (9) to change the image pickup direction, the diffused light that is incident from the optical fiber (14) to the other adjacent hollow path (4a), diffusely reflects inside and is emitted in a two-dimensional plane. It is also possible to receive light, image it in a plane, and identify the characteristics of the captured image to determine the presence or absence of an internal abnormality in the hollow path.

【0013】ここで、上記判別検査を例えばファジィ推
論により行なう際、ファジィ推論に先立って撮像用の2
値化しきい値(H)を被検査物である中空経路に合わせ
て自動的に設定する。そして、撮像部(9)やカメラ
(13)による撮像画像から所定レベル以上の光度を持つ
2値化画像を取り出し、その画像の面積、周囲長等の特
徴量に基づき検査する。そこで、上記しきい値設定にお
いて、まず予め被検査物の複数の基準となる画像の面積
や周囲長等の特徴量の分布を計測してファジィ推論のメ
ンバーシップ関数を中空経路毎に作成しておく。又、図
2(a)(b)に示すように、撮像部(9)やカメラ
(13)による撮像画像の輝度分布図(Ba)(Bb)に対し
高い方から順に複数個の2値化しきい値(Ha)(Hb)
(Hc)を設定する。そうすると、良品の場合、しきい値
(H)のレベルが下がる程、各レベルの2値化画像面積
は次第に大きくなり、逆に、不良品の場合、2値化画像
面積は一定のままか、又は図2(d)に示すように、し
きい値(Ha)〜(Hc)で0のままとなる。
Here, when the discriminant check is performed by, for example, fuzzy inference, 2 for imaging is performed prior to fuzzy inference.
The threshold value (H) is automatically set according to the hollow path which is the inspection object. Then, a binarized image having a luminous intensity equal to or higher than a predetermined level is taken out from the image picked up by the image pickup section (9) or the camera (13), and is inspected based on the feature amount such as the area or the perimeter of the image. Therefore, in the above threshold setting, first, the distributions of the feature quantities such as the area and perimeter of the images that serve as a plurality of reference images of the object to be inspected are measured in advance, and the membership function of fuzzy reasoning is created for each hollow path. deep. Further, as shown in FIGS. 2A and 2B, a plurality of binarizations are performed in order from the highest luminance distribution diagram (Ba) (Bb) of the image captured by the image capturing unit (9) and the camera (13). Threshold (Ha) (Hb)
Set (Hc). Then, in the case of a non-defective product, the binarized image area of each level gradually increases as the level of the threshold (H) decreases, and conversely, in the case of a defective product, the binarized image area remains constant. Alternatively, as shown in FIG. 2D, the threshold values (Ha) to (Hc) remain 0.

【0014】そこで、撮像部(9)やカメラ(13)によ
る平面撮像画像を最初に最大しきい値(Ha)で2値化
し、図2(c)に示す2値化画像(Da)を取り出す。そ
の時の2値化画像面積(Sa)をファジィ推論等により対
応する基準面積に対する適合度を判定し、基準面積に略
一致していれば、しきい値(Ha)を最適しきい値(Ho)
として設定して次の内部異常有無の検査に移行する。
又、2値化画像面積(Sa)が基準面積よりも大きくなり
過ぎる場合、最大しきい値(Ha)のレベルを更に大きく
設定して再調整する。
Therefore, the plane image picked up by the image pickup section (9) and the camera (13) is first binarized by the maximum threshold value (Ha), and the binarized image (Da) shown in FIG. 2C is taken out. . The degree of suitability of the binarized image area (Sa) at that time to the corresponding reference area is determined by fuzzy reasoning, etc., and if it is approximately equal to the reference area, the threshold value (Ha) is set to the optimum threshold value (Ho).
Then, the process shifts to the next inspection for the presence / absence of an internal abnormality.
When the binarized image area (Sa) becomes too large than the reference area, the level of the maximum threshold value (Ha) is set to a larger value and readjustment is performed.

【0015】次に、2値化画像面積(Sa)が基準面積よ
りも小さくなる場合は、被検査体が不良品であるか、又
は図2(a)の点線に示す輝度分布のように、良品であ
っても中空経路内面がざらついていたり、或いは梨地状
のため、射出光量が減少する場合である。この場合、1
段レベルを下げて次に大きいしきい値(Hb)で2値化画
像面積を再計測する。その時の2値化画像面積(Sb)が
前回しきい値(Ha)による2値化画像面積(Sa)よりも
大きくなった時、又は対応する基準面積に略一致した
時、良品と判定し、その時のしきい値(Hb)を最適しき
い値(Ho)として設定する。又、大きくなり過ぎると、
しきい値(Hb)からやや上げたしきい値を最適値とす
る。そして、しきい値を下げても2値化画像面積(Sb)
が一定のままか、又は最初から0のままであれば、不良
品と判定する。以上の操作を複数回、例えば5回程度順
次、繰り返し、2値化画像面積が一定又は、0であれ
ば、不良品と判定する。このようにして2値化画像面積
を判定し、それに応じてしきい値レベルを適宜、自動調
整して最適の2値化しきい値(Ho)を設定する。
Next, when the binarized image area (Sa) is smaller than the reference area, the object to be inspected is defective, or the luminance distribution shown by the dotted line in FIG. Even if the product is a non-defective product, the inner surface of the hollow path is rough or has a satin finish, so that the amount of emitted light is reduced. In this case, 1
The step level is lowered and the binarized image area is remeasured at the next highest threshold value (Hb). When the binarized image area (Sb) at that time is larger than the binarized image area (Sa) by the previous threshold value (Ha), or when the binarized image area substantially matches the corresponding reference area, it is determined as a good product, The threshold value (Hb) at that time is set as the optimum threshold value (Ho). If it gets too big,
The optimum value is a threshold value slightly raised from the threshold value (Hb). And, even if the threshold is lowered, the binarized image area (Sb)
Is constant or 0 from the beginning, it is determined as a defective product. The above operation is repeated a plurality of times, for example, about 5 times in sequence, and if the binarized image area is constant or 0, it is determined as a defective product. In this way, the binarized image area is determined, and the threshold level is appropriately automatically adjusted accordingly to set the optimum binarized threshold value (Ho).

【0016】又、ファジィ推論の重心演算を用いて直
接、最適しきい値(Ho)を設定する手段もある。例えば
図3(a)に示すように、入出力部として2値化画像面
積及びしきい値の各メンバーシップ関数(Ma)(Mb)を
設定する。次に、図2(a)に示す輝度分布から所定の
しきい値により2値化画像面積(So)を取り出して入力
部のメンバーシップ関数(Ma)から適合度(Ta)(Tb)
を判定する。そして、その適合度(Ta)(Tb)を出力部
のメンバーシップ関数(Mb)に代入し、図3(b)に示
すように、対応する合成台形面積(斜線部)の重心演算
により最適しきい値(Ho)を算出する。
There is also a means for directly setting the optimum threshold value (Ho) by using the centroid calculation of fuzzy inference. For example, as shown in FIG. 3A, each membership function (Ma) (Mb) of the binarized image area and the threshold is set as the input / output unit. Next, the binarized image area (So) is extracted from the luminance distribution shown in FIG. 2 (a) by a predetermined threshold value, and the goodness of fit (Ta) (Tb) is calculated from the membership function (Ma) of the input section.
Is determined. Then, the conformity (Ta) (Tb) is substituted into the membership function (Mb) of the output part, and as shown in FIG. 3 (b), it is optimized by calculating the center of gravity of the corresponding combined trapezoidal area (hatched part). Calculate the threshold value (Ho).

【0017】上記最適の2値化しきい値(Ho)を設定す
ると、次に、図3(c)に示すように、しきい値(Ho)
に基づいて撮像部(9)やカメラ(13)による撮像画像
から2値化画像(Do)を取り出し、その画像(Do)の特
徴量、例えば面積や周囲長を計測する。そして、図3
(d)に示すように、予めファジィ推論のメンバーシッ
プ関数(Mc)を異なる中空経路毎に設定しておき、例え
ば計測した面積データをメンバーシップ関数(Mc)に代
入する。そこで、計測データの正常データに対する適合
度(α)をファジィ推論のメンバーシップ関数(Mc)か
ら導出する。そこで、その適合度(α)を基準値(A)
と比較判別し、α>Aの時、良品と判定して中空経路内
の異常有無を検査する。
When the optimum binarization threshold value (Ho) is set, next, as shown in FIG. 3 (c), the threshold value (Ho) is set.
A binarized image (Do) is taken out from the image picked up by the image pickup unit (9) or the camera (13) based on the above, and the characteristic amount of the image (Do), for example, the area or the perimeter is measured. And FIG.
As shown in (d), a fuzzy reasoning membership function (Mc) is set in advance for each different hollow path, and the measured area data is substituted into the membership function (Mc), for example. Therefore, the goodness of fit (α) of the measured data to the normal data is derived from the membership function (Mc) of fuzzy reasoning. Therefore, the goodness of fit (α) is set to the reference value (A).
When α> A, it is judged as a non-defective product and the presence or absence of abnormality in the hollow path is inspected.

【0018】上記メンバーシップ関数(Mc)は複数の良
品或いは不良品ワークの面積や周囲長等を計測し、(N
a)を正常領域、(Nb)(Nc)をそれぞれ異常領域とし
て確率分布を描いたもので、それを各中空経路毎に、且
つ、面積や周囲長等の各特徴量毎に作成する。例えば面
積分布において計測面積が(Pa)の場合、正常データに
対する適合度は(Qa)となり、そこから(Qa)と(A)
とを比較し、その大小に基づいて中空経路内の異常有無
を判別する。尚、領域(Nb)の内側は経路出口側或いは
中子により光量が減少して生じる異常領域を示し、領域
(Nc)の内側は経路中間或いは入口の閉塞鋳バリにより
光量が増大して生じる異常領域を示す。
The membership function (Mc) measures the area and perimeter of a plurality of non-defective or defective works,
Probability distribution is drawn with a) as the normal region and (Nb) and (Nc) as the abnormal regions, and it is created for each hollow path and for each feature quantity such as area and perimeter. For example, in the area distribution, if the measured area is (Pa), the goodness of fit for normal data is (Qa), and from that, (Qa) and (A)
And the presence / absence of abnormality in the hollow path is determined based on the magnitude. The inside of the area (Nb) indicates an abnormal area caused by a decrease in the light amount due to the exit side of the path or the core, and the inside of the area (Nc) indicates an abnormality caused by an increase in the light quantity due to a closed casting burr at the middle of the path or the entrance. Indicates the area.

【0019】或いは、複数の経路出口の場合、その複数
出口を一度に撮像し、一画像中に複数の各出口画像を含
んだ2値化画像を取り出す。そして、その画像データに
基づいて例えば複数画像の合計面積や各像の合計面積に
対する割合等をデータとしてファジィ推論により中空経
路内の異常有無を検査しても良い。又、複数の出口を一
度に撮像すると、各出口毎の複数画像の各適合度を組み
合わせ、例えばその乗算値から異常有無を判別しても良
い。又、面積、周囲長の他、更に、画像の重心位置等を
判別要素として付け加え、各適合度を乗算すると、良、
不良の境界のものに対し検査精度を向上させることが出
来る。
Alternatively, in the case of a plurality of route exits, the plurality of exits are imaged at once, and a binarized image including a plurality of each exit image in one image is taken out. Then, based on the image data, the presence / absence of an abnormality in the hollow path may be inspected by fuzzy reasoning using, for example, the total area of a plurality of images or the ratio of each image to the total area. Further, when a plurality of exits are imaged at once, the suitability of each of the plurality of images for each exit may be combined and, for example, the presence or absence of abnormality may be determined from the multiplication value. Further, in addition to the area and the perimeter, the position of the center of gravity of the image is added as a discriminant, and each fitness is multiplied.
It is possible to improve the inspection accuracy for a defective boundary.

【0020】又、図4(c)に示すように、屈曲した迷
路状の中空経路(4a)内を検査する場合、一方向からの
投光のみでは、網目(4c)内の異常が撮像画像に全く反
映されない場合があるため、十分に経路(4a)内の異常
有無を判別出来ない。そのため、例えば支持部材(7)
を旋回させたり、或いは投光部(8)を自転させること
で、複数の異なる角度から投光する。そこで、まず一方
向から中空経路(4a)内の一方の側面(4b)に向けて投
光し、経路(4a)内及びその網目(4c)内を通過した光
を撮像する。同様に、他方向から中空経路(4a)内の他
方の側面(4d)に向けて投光し、経路(4a)内及びその
網目(4c)内を通過した光を撮像する。そうすると、中
空経路(4a)の異なる2側面(4b)(4d)に投光するこ
とにより相異なる2個の撮像画像が得られ、且つ、各画
像に応じて明るさ面積値等に差異が生じる。そこで、そ
の各撮像画像を組合せて、明るさ面積値等の特徴を比較
判定して経路(4a)内の異常有無を判別する。或いは、
支持部材(7)を180°旋回させて投光部(8)と撮
像部(9)の各位置を反転させて上記同様、投光及び撮
像し、その各撮像画像から経路(4a)内の異常有無を判
別しても良い。
Further, as shown in FIG. 4 (c), when inspecting the inside of a bent labyrinthine hollow path (4a), an abnormality in the mesh (4c) can be picked up only by projecting light from one direction. It may not be reflected at all, so it is not possible to determine whether there is an abnormality in the route (4a) sufficiently. Therefore, for example, the support member (7)
The light is projected from a plurality of different angles by turning or rotating the light projecting portion (8). Therefore, first, light is projected from one direction toward one side surface (4b) of the hollow path (4a), and the light passing through the path (4a) and the mesh (4c) thereof is imaged. Similarly, the light is projected from the other direction toward the other side surface (4d) in the hollow path (4a), and the light passing through the path (4a) and the mesh (4c) is imaged. Then, two different picked-up images are obtained by projecting light on two different side surfaces (4b) and (4d) of the hollow path (4a), and a difference in brightness area value or the like occurs depending on each image. . Therefore, the respective captured images are combined and the characteristics such as the brightness area value are compared and determined to determine whether or not there is an abnormality in the path (4a). Or,
The support member (7) is turned by 180 ° to invert the respective positions of the light projecting section (8) and the image capturing section (9) to project and image in the same manner as above. The presence / absence of abnormality may be determined.

【0021】尚、被検査体としてヘッドシリンダの他、
シリンダブロックについても本発明装置により内部異常
を検査出来、他の中空経路を有する被検査体についても
同様に適用出来る。
In addition to the head cylinder as the object to be inspected,
The cylinder block can also be inspected for internal abnormality by the device of the present invention, and the invention can be similarly applied to other inspected objects having other hollow paths.

【0022】[0022]

【発明の効果】本発明によれば、外から内部を観察出来
ない屈曲した中空経路を有する被検査体の内部異常有無
を検査する際、昇降旋回可能な支持部材の一端に投光部
を、又、他端に自転可能に撮像部をそれぞれ突設し、中
空経路内に投光して経路内を乱反射して射出した光を二
次元平面で受光して撮像し、その明るさ画像の面積値等
の特徴より中空経路内の異常有無を判別したから、屈曲
した中空経路内でも乱反射した光を正確に受光でき、
又、明るさ等の乱反射光の特徴を識別して判別するた
め、完全閉塞だけでなく、半詰まりの場合も検出可能と
なり、検査精度が大幅に向上する。又、中空経路内が迷
路状に入り組んでいても、支持部材を適宜、旋回させて
投光部及び撮像部を変位させ、複数方向から撮像するこ
とにより迷路状中空経路内の異常有無を検査出来る。
又、中空経路に直接、挿入する投光部と、経路内を乱反
射して射出した光を撮像する撮像部を付加し、複数の中
空経路内の異常有無を一度に検査出来る。更に、支持部
材に突設した撮像部に対向して他の投光部を付加的に配
置すると、撮像部を自転させるだけで隣接する他の中空
経路内の検査も可能となり、作業性が向上する。
According to the present invention, when the presence or absence of an internal abnormality in an object to be inspected having a bent hollow path in which the inside cannot be observed from the outside, a light projecting portion is provided at one end of a support member that can be raised and lowered. In addition, an image pickup unit is rotatably provided at the other end, and the light projected into the hollow path, diffusely reflected in the path, and emitted is received by the two-dimensional plane and imaged. Since the presence / absence of abnormality in the hollow path is determined from the characteristics such as the value, it is possible to accurately receive diffusely reflected light even in the bent hollow path.
Further, since the characteristics of diffusely reflected light such as brightness are discriminated and discriminated, not only complete occlusion but also half-clogging can be detected, and the inspection accuracy is greatly improved. Further, even if the inside of the hollow path is complicated with a labyrinth, the support member is appropriately swung to displace the light projecting section and the imaging section, and the presence or absence of an abnormality in the labyrinth-like hollow path can be inspected by taking images from a plurality of directions. .
Further, by adding a light projecting section which is directly inserted into the hollow path and an imaging section which captures the light emitted by diffusely reflecting the inside of the path, it is possible to inspect at once the presence or absence of abnormality in the plurality of hollow paths. Furthermore, by additionally arranging another light projecting unit so as to face the image pickup unit projecting from the support member, it is possible to inspect other hollow passages adjacent to the image pickup unit by rotating the image pickup unit, improving workability. To do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る中空経路の内部検査装置の実施の
形態を示す要部の垂直断面図である。
FIG. 1 is a vertical sectional view of essential parts showing an embodiment of an internal inspection device for a hollow path according to the present invention.

【図2】(a)は本発明に係る中空経路の内部検査装置
における撮像画像の輝度分布の一例と数種類の各2値化
しきい値のグラフである。(b)は本発明に係る中空経
路の内部検査装置における撮像画像の輝度分布の他の一
例と数種類の各2値化しきい値のグラフである。(c)
は図2(a)(b)のしきい値で2値化した画像の一例
を示す図である。(d)は図2(a)(b)のしきい値
で画像を取り出せなかった場合を示す図である。
FIG. 2A is a graph showing an example of the luminance distribution of a captured image in the internal inspection device for a hollow path according to the present invention and several kinds of binarized threshold values. (B) is a graph of another example of the luminance distribution of the captured image in the hollow path internal inspection apparatus according to the present invention and several kinds of binarized threshold values. (C)
FIG. 3 is a diagram showing an example of an image binarized with the threshold values shown in FIGS. FIG. 2D is a diagram showing a case where an image could not be extracted with the threshold values of FIGS. 2A and 2B.

【図3】(a)はファジィ推論によるしきい値設定の入
出力部の各メンバーシップ関数である。(b)はファジ
ィ推論の重心演算例を示すメンバーシップ関数である。
(c)は2値化画像の一例を示す図である。(d)はフ
ァジィ判定用メンバーシップ関数の一例を示す波形図で
ある。
FIG. 3A is a membership function of an input / output unit for threshold setting by fuzzy inference. (B) is a membership function showing an example of a centroid calculation of fuzzy inference.
(C) is a figure which shows an example of a binarized image. (D) is a waveform diagram showing an example of a fuzzy determination membership function.

【図4】(a)はヘッドシリンダの一例を示す下面図で
ある。(b)はヘッドシリンダ及び従来の中空体の内部
検査方法の一例を示す部分垂直断面図である。(c)は
ヘッドシリンダ上面側の部分水平断面図である。
FIG. 4A is a bottom view showing an example of a head cylinder. (B) is a partial vertical sectional view showing an example of a method for inspecting a head cylinder and a conventional hollow body. (C) is a partial horizontal sectional view of the upper surface side of the head cylinder.

【符号の説明】[Explanation of symbols]

1 被検査体 3a、4a 中空経路 7 支持部材 8、12、14 投光部 9、13 撮像部 1 Inspected object 3a, 4a Hollow path 7 Support member 8, 12, 14 Light projecting section 9, 13 Imaging section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中央部に結合された昇降旋回機構によっ
て中空経路を有する被検査体に対して昇降及び旋回可能
な支持部材と、前記支持部材の一端に突設され、発光源
から射出された拡散光を上記中空経路入口の中央部方向
に投光可能な投光部と、前記支持部材の他端に上記投光
部に正対して突設され、投光部から中空経路に入射して
内部を乱反射して射出した拡散光を二次元平面で受光し
て平面的に撮像する撮像部とを具備し、上記撮像画像の
特徴を識別して中空経路の内部異常有無を判別すること
を特徴とする中空経路の内部検査装置。
1. A support member which can be raised and lowered and swung with respect to an object to be inspected having a hollow path by an ascending and descending swivel mechanism coupled to a central portion, and one end of the support member projecting from the light emitting source. A light projecting portion capable of projecting diffused light in the direction of the central portion of the hollow path entrance, and a projection provided at the other end of the support member so as to face the light projecting portion, and enter the hollow path from the light projecting portion. An image pickup unit for receiving diffused light that is diffusely reflected inside and emitted in a two-dimensional plane and imaged in a plane, and distinguishes the presence or absence of an internal abnormality in the hollow path by identifying the characteristics of the above-mentioned imaged image. Internal inspection device for hollow path.
【請求項2】 拡散光を中空経路入口に投光する投光部
と、上記各投光部から中空経路に入射して内部を乱反射
して射出した各拡散光を二次元平面で受光して平面的に
撮像する撮像部とを請求項1記載の中空経路の内部検査
装置に付加し、各投光部から相異なる中空経路入口に入
射して各内部を乱反射して射出した各拡散光を二次元平
面で受光して平面的に一度に撮像し、その各撮像画像の
特徴を識別して複数の相異なる中空経路の内部異常有無
を判別することを特徴とする中空経路の内部検査装置。
2. A light projecting unit for projecting diffused light to the entrance of the hollow path, and diffused light that is incident on the hollow path from each of the light projecting sections, diffusely reflects the inside, and exits on a two-dimensional plane. An image pickup section for planarly picking up images is added to the hollow path internal inspection apparatus according to claim 1, and diffused light emitted from each light projecting section entering different hollow path entrances and diffusely reflected inside is emitted. An internal inspection device for a hollow path, which is characterized by receiving light from a two-dimensional plane, imaging it at a time on a plane, and identifying the characteristics of each captured image to determine whether or not there is an internal abnormality in a plurality of different hollow paths.
【請求項3】 拡散光の投光部を請求項1又は2記載の
中空経路の内部検査装置にその撮像部に対向して付加配
置し、上記撮像部を自転させて撮像方向を変えることに
より上記投光部から中空経路入口に入射して内部を乱反
射して射出した拡散光を二次元平面で受光して平面的に
撮像し、その撮像画像の特徴を識別して中空経路の内部
異常有無を判別することを特徴とする中空経路の内部検
査装置。
3. A diffused light projecting unit is additionally arranged in the internal inspection device of the hollow path according to claim 1 so as to face the image pickup unit, and the image pickup unit is rotated to change the image pickup direction. The diffused light that has entered the hollow path inlet from the light projecting part, diffusedly reflected inside, and exited is received by a two-dimensional plane and imaged in a plane, and the features of the captured image are identified to determine whether there is an internal abnormality in the hollow path. An internal inspection device for a hollow path, which is characterized in that
JP07320574A 1995-12-08 1995-12-08 Hollow path internal inspection device Expired - Fee Related JP3124218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07320574A JP3124218B2 (en) 1995-12-08 1995-12-08 Hollow path internal inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07320574A JP3124218B2 (en) 1995-12-08 1995-12-08 Hollow path internal inspection device

Publications (2)

Publication Number Publication Date
JPH09161057A true JPH09161057A (en) 1997-06-20
JP3124218B2 JP3124218B2 (en) 2001-01-15

Family

ID=18122957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07320574A Expired - Fee Related JP3124218B2 (en) 1995-12-08 1995-12-08 Hollow path internal inspection device

Country Status (1)

Country Link
JP (1) JP3124218B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047534A (en) * 2010-08-25 2012-03-08 Ryoei Engineering Kk Flow channel hole inspection method and device thereof
CN116981934A (en) * 2021-03-16 2023-10-31 本田技研工业株式会社 Communication hole inspection device and communication hole inspection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5670161B2 (en) * 2010-11-25 2015-02-18 東洋ゴム工業株式会社 Tire inspection equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047534A (en) * 2010-08-25 2012-03-08 Ryoei Engineering Kk Flow channel hole inspection method and device thereof
CN116981934A (en) * 2021-03-16 2023-10-31 本田技研工业株式会社 Communication hole inspection device and communication hole inspection method

Also Published As

Publication number Publication date
JP3124218B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
US8948491B2 (en) Method and apparatus for detecting surface unevenness of object under inspection
TWI627399B (en) Surface defect inspection device and surface defect inspection method of molten-plated steel plate
US20090123032A1 (en) Measurement of gaps between valve seats and attachment parts
JP2006082129A (en) Method and device for evaluating quality of laser beam welding
WO2008075905A1 (en) Apparatus for detecting surface defect on slab
JPH07218451A (en) Device for optically inspecting steel plate for surface flaw
JPH09161057A (en) Device for inspecting inside of hollow route
JP3130460B2 (en) Internal inspection method for hollow paths
JP3112061B2 (en) Hollow path internal inspection device
JP3124219B2 (en) Internal inspection method for hollow paths
TWI391659B (en) Method for determination of non - metallic inclusions
JP3404715B2 (en) Internal inspection method for wide section hollow path
JP3124221B2 (en) Head cylinder blockage inspection device
JP2009236760A (en) Image detection device and inspection apparatus
US6836561B2 (en) Method and system for detecting a defect in projected portions of an object having the projected portions formed in the same shape with a predetermined pitch along an arc
JP3513903B2 (en) Inspection apparatus and method
JP3523764B2 (en) Foreign object detection device in nonmetallic inclusion measurement
JP2021190515A (en) Workpiece left-over determination system
JPH09196860A (en) Method for checking soldering state
JPH05203584A (en) Device for detecting characteristic amount on work surface
JPH0666528A (en) Visual inspecting method and apparatus
JP3372850B2 (en) Inspection method of borehole of cylinder block
JP3130462B2 (en) Passage obstruction inspection method
JPS6330164A (en) Detecting method for casting defect in continuous casting
JPH08235543A (en) Method and device for detecting defect, such as stain

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees