JPH09158767A - Fuel supply control device of internal combustion engine - Google Patents
Fuel supply control device of internal combustion engineInfo
- Publication number
- JPH09158767A JPH09158767A JP7316931A JP31693195A JPH09158767A JP H09158767 A JPH09158767 A JP H09158767A JP 7316931 A JP7316931 A JP 7316931A JP 31693195 A JP31693195 A JP 31693195A JP H09158767 A JPH09158767 A JP H09158767A
- Authority
- JP
- Japan
- Prior art keywords
- fuel supply
- fuel
- combustion
- internal combustion
- timing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3064—Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
- F02D41/307—Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes to avoid torque shocks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
- F02D41/3029—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内燃機関の燃料供
給制御装置の改良技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving a fuel supply control device for an internal combustion engine.
【0002】[0002]
【従来の技術】従来の内燃機関の燃料供給制御装置とし
ては、例えば、特開平4−231645号公報に開示さ
れるようなものがある(図8,図9参照)。このもの
は、リーンNOx触媒に良質のHCを供給できるように
してNOx浄化率を広範囲に亘って高めるべく、主燃料
噴射とは別に副燃料噴射を行なわせ、その副燃料噴射の
噴射タイミングを、排気温度が低いときには吸気行程か
ら圧縮行程初期の期間内に設定し、排気温度が高いとき
には燃焼期間の後半から排気行程の初期にかけての期間
内に設定するようにしている。これにより、低温時には
低沸点成分のHCを多量に供給できる一方、高温時には
高沸点成分のHCを多量に供給することができるように
なるので、リーンNOx触媒でのHCによるNOxの還
元反応(2HC+2NOx→2CO2 +H2 O+N2 )
特性を排気温度に応じて適正化することができ、延いて
はリーンNOx触媒のNOx浄化率を広範囲に亘って高
めることができるものである。2. Description of the Related Art As a conventional fuel supply control device for an internal combustion engine, there is, for example, one disclosed in JP-A-4-231645 (see FIGS. 8 and 9). In order to supply high-quality HC to the lean NOx catalyst and to raise the NOx purification rate over a wide range, this one causes the auxiliary fuel injection to be performed separately from the main fuel injection, and the injection timing of the auxiliary fuel injection is When the exhaust temperature is low, it is set within the period from the intake stroke to the initial stage of the compression stroke, and when the exhaust temperature is high, it is set within the period from the latter half of the combustion period to the early stage of the exhaust stroke. As a result, a large amount of low boiling point HC can be supplied at a low temperature, while a large amount of high boiling point HC can be supplied at a high temperature. → 2CO 2 + H 2 O + N 2 )
The characteristics can be optimized according to the exhaust gas temperature, and the NOx purification rate of the lean NOx catalyst can be increased over a wide range.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記特
開平4−231645号公報に記載された装置では、成
層燃焼時(例えばリーン〔希薄とも言う)燃焼時)の排
気エミッション(特に、NOx)の低減を主眼とし、主
燃料噴射時期を固定し、副燃料噴射時期を排気温度によ
って変更する制御となっていた。なお、成層(層状とも
言う)燃焼とは、軽負荷時等においてリーン燃焼させる
際等に有効な燃焼形態であり、燃焼室内混合気に層状に
変化する濃度分布を与え、この層状に変化する濃度分布
のうち可燃混合気層域を点火プラグ近傍に導いて点火
し、混合気全体へ燃焼を進行させていくようにした燃焼
形態である。当該成層燃焼によれば、局所的に可燃混合
気層域を形成すれば良いので、混合気全体として空燃比
(以下、A/Fとも言う)を極めてリーン化することが
できることになる。However, in the device described in Japanese Patent Laid-Open No. 4-231645, reduction of exhaust emission (particularly NOx) during stratified combustion (for example, during lean combustion). The main purpose is to fix the main fuel injection timing and change the sub fuel injection timing according to the exhaust gas temperature. Note that stratified (also referred to as stratified) combustion is a form of combustion that is effective when performing lean combustion at light loads, etc., and gives a concentration distribution that changes stratified in the combustion chamber mixture gas, and the concentration that changes to this stratified This is a combustion mode in which the combustible mixture layer region of the distribution is guided to the vicinity of the ignition plug and ignited, and combustion is advanced to the entire mixture. According to the stratified combustion, the combustible mixture layer region may be locally formed, so that the air-fuel ratio (hereinafter, also referred to as A / F) can be made extremely lean as the entire mixture.
【0004】ところが、例えば、機関の出力(高負荷)
領域では、煤排出量,空気利用率を改善する等の観点か
ら、燃焼形態(以下、燃焼状態とも言う)を成層燃焼か
ら比較的濃い混合気の均質燃焼(混合気全体を均一な空
燃比に形成して燃焼させる燃焼形態)へ切り換える必要
がある。その際、均質燃焼で要求される空燃比と、前述
した成層燃焼で要求される空燃比と、の間に差異がある
ため、燃焼形態の切り換え中には、燃焼形態にマッチし
ない空燃比特性となり燃焼が悪化する惧れがあり、同一
空気量であってもトルク段差が生じる惧れがある。However, for example, engine output (high load)
In the region, from the viewpoint of improving the soot emission amount and the air utilization rate, the combustion mode (hereinafter also referred to as the combustion state) is changed from stratified combustion to homogeneous combustion of a relatively rich air-fuel mixture (the entire air-fuel mixture has a uniform air-fuel ratio). It is necessary to switch to a combustion mode in which it is formed and burned. At that time, since there is a difference between the air-fuel ratio required for homogeneous combustion and the air-fuel ratio required for stratified combustion described above, the air-fuel ratio characteristics that do not match the combustion mode will be obtained during switching of the combustion mode. There is a fear that combustion will deteriorate, and a torque step may occur even if the amount of air is the same.
【0005】本発明は、かかる従来の実情に鑑みなされ
たもので、運転領域に応じ燃焼形態を成層燃焼と均質燃
焼との間で切り換えても、当該燃焼形態の切り換えに伴
う燃焼段差延いてはトルク段差を抑制でき、排気特性や
運転性を高く維持することができる内燃機関の燃料供給
制御装置を提供することを目的とする。The present invention has been made in view of such a conventional situation, and even if the combustion mode is switched between stratified combustion and homogeneous combustion depending on the operation region, the combustion step extension due to the switching of the combustion mode is not extended. An object of the present invention is to provide a fuel supply control device for an internal combustion engine, which can suppress a torque step and maintain high exhaust characteristics and drivability.
【0006】[0006]
【課題を解決するための手段】このため、請求項1に記
載の発明にかかる内燃機関の燃料供給制御装置は、図1
に示すように、1サイクル中の異なる時期に設定された
燃料供給時期を選択切り換えして、運転状態に応じた燃
焼状態を達成させるようにした内燃機関の燃料供給制御
装置において、運転状態に応じた燃焼状態が達成できる
ように、運転状態に応じて、一の燃料供給時期を選択し
て燃料供給する第1燃料供給手段と、燃焼状態が徐々に
変化されるように、少なくとも前記第1燃料供給手段に
より一の燃料供給時期が選択される運転状態から他の燃
料供給時期が選択される運転状態へ移行する間は、両方
の燃料供給時期で燃料を所定の分担率で分担して供給す
る第2燃料供給手段と、を含んで構成した。For this reason, the fuel supply control apparatus for an internal combustion engine according to the invention described in claim 1 is as follows.
In the fuel supply control device for the internal combustion engine, which selectively switches fuel supply timings set at different times in one cycle to achieve a combustion state according to the operating state, as shown in FIG. So that the combustion state can be achieved, the first fuel supply means for supplying fuel by selecting one fuel supply timing according to the operating state, and at least the first fuel so that the combustion state is gradually changed. During the transition from the operating state in which one fuel supply timing is selected by the supply means to the operating state in which another fuel supply timing is selected, the fuel is distributed and supplied at a predetermined sharing rate at both fuel supply timings. And a second fuel supply means.
【0007】上記構成によれば、1サイクル中の異なる
時期に設定された燃料供給時期を選択切り換えして、運
転状態(機関回転速度,負荷,目標空燃比等)に見合っ
た燃焼形態(燃焼状態)へ切り換えるようにした場合
に、当該燃焼形態の切り換えに際し、一方の燃料供給時
期(燃焼形態)から他方の燃料供給時期(燃焼形態)
へ、両方の燃料供給時期で燃料を所定の分担率で分担し
て供給する形態を経て徐々に移行させることができる。
これにより、燃焼形態の切り換えに伴う燃焼段差を最小
限に抑制することができ、以って同一空気量でのトルク
段差を抑制でき運転性を改善できると共に、燃費,排気
性能等の悪化も最小限に抑制することができることとな
る。According to the above construction, the fuel supply timings set at different timings in one cycle are selectively switched, and the combustion mode (combustion state) corresponding to the operating state (engine speed, load, target air-fuel ratio, etc.) is selected. ), When switching the combustion mode, one fuel supply timing (combustion mode) to the other fuel supply timing (combustion mode)
It is possible to gradually shift the fuel to the fuel supply timing in both fuel supply timings in a manner that the fuel is shared at a predetermined sharing ratio and supplied.
As a result, it is possible to minimize the combustion step due to the switching of the combustion mode, thereby suppressing the torque step with the same air amount, improving the drivability, and minimizing the deterioration of fuel consumption, exhaust performance, etc. It can be suppressed to the limit.
【0008】請求項2に記載の発明では、前記運転状態
に応じた燃焼状態が、運転領域に応じて設定された目標
空燃比に見合う均質燃焼形態或いは成層燃焼形態である
ように構成した。即ち、ガソリン機関における均質燃焼
形態と成層燃焼形態との間の燃焼形態の切り換えは、燃
焼段差が大きく排気特性や運転性等の悪化度合いが大き
いが、本発明によればこれを円滑に行なえることとな
る。換言すれば、当該ケースにおいて、本発明の作用効
果が最大限に発揮されることとなる。According to the second aspect of the present invention, the combustion state according to the operating state is configured to be a homogeneous combustion mode or a stratified combustion mode corresponding to the target air-fuel ratio set according to the operating range. That is, the switching of the combustion mode between the homogeneous combustion mode and the stratified combustion mode in a gasoline engine has a large combustion step and a large degree of deterioration of exhaust characteristics and drivability, but according to the present invention, this can be smoothly performed. It will be. In other words, in this case, the action and effect of the present invention are maximized.
【0009】請求項3に記載の発明では、前記内燃機関
が、直接筒内に燃料を供給する燃料供給装置を備えた内
燃機関であるように構成した。請求項4に記載の発明で
は、前記均質燃焼形態での燃料供給時期が吸気行程中に
設定され、前記成層燃焼形態での燃料供給時期が圧縮行
程中に設定されるように構成した。According to a third aspect of the present invention, the internal combustion engine is an internal combustion engine having a fuel supply device for directly supplying fuel into the cylinder. In the invention according to claim 4, the fuel supply timing in the homogeneous combustion mode is set during the intake stroke, and the fuel supply timing in the stratified combustion mode is set during the compression stroke.
【0010】請求項5に記載の発明では、前記第1燃料
供給手段が、低負荷領域において圧縮行程中の燃料供給
時期を選択して燃料供給を行なう一方、高負荷領域にお
いて吸気行程中の燃料供給時期を選択して燃料供給を行
ない、前記第2燃料供給手段が、中負荷領域において、
吸気行程中と圧縮行程中の両方の燃料供給時期で燃料を
供給するように構成するようにした。In the fifth aspect of the present invention, the first fuel supply means selects the fuel supply timing during the compression stroke in the low load region to supply fuel, while the fuel is in the intake stroke during the high load region. The fuel is supplied by selecting the supply time, and the second fuel supply means is arranged in the medium load region.
The fuel is supplied at both fuel supply timings during the intake stroke and the compression stroke.
【0011】請求項3,請求項4,請求項5の構成は、
比較的簡単な構成により、ガソリン機関における均質燃
焼形態と成層燃焼形態との間の燃焼形態の切り換えが行
なえ実車への搭載の可能性が高い一方、その結果燃焼形
態の切り換えに伴う運転性等の悪化等も問題とされ易く
なるので、本発明の活用が最も期待されるものである。The structures of claims 3, 4 and 5 are as follows:
With a relatively simple configuration, it is possible to switch the combustion mode between the homogeneous combustion mode and the stratified combustion mode in a gasoline engine, and it is highly possible to mount it on an actual vehicle. Deterioration and the like are likely to become a problem, and the utilization of the present invention is most expected.
【0012】請求項6に記載の発明では、前記第2燃料
供給手段が、一方の燃料供給時期での燃料供給量が最低
燃料供給量を確保できない場合に、前記所定の分担率に
拘わらず、最低燃料供給量を確保できる側の燃料供給時
期で全燃料を供給する最低燃料供給量確保手段を含んで
構成されるようにした。In the invention according to claim 6, when the second fuel supply means cannot secure the minimum fuel supply amount at one fuel supply timing, regardless of the predetermined share ratio, The minimum fuel supply amount securing means for supplying all fuel at the fuel supply timing on the side capable of securing the minimum fuel supply amount is included.
【0013】これにより、例えば、燃料供給装置(例え
ば、燃料噴射弁)が安定して燃料を供給することができ
る最低燃料供給量より少ない燃料供給量で燃料を供給し
なければならないという事態を回避することができるの
で、常に、燃料供給量の制御を高精度なものとすること
ができる。請求項7に記載の発明では、前記第1燃料供
給手段が、1サイクル中の異なる時期のうち先の時期に
燃料供給時期が設定されている状態において、当該先の
燃料供給時期での燃料供給終了後、後の燃料供給時期ま
でに、所定の加速要求があった場合には、当該所定の加
速要求に見合うように、後の燃料供時期に強制的に燃料
供給を行なわせる加速時燃料供給手段を含んで構成され
るようにした。Thus, for example, it is possible to avoid the situation where the fuel supply device (for example, the fuel injection valve) has to supply the fuel with a fuel supply amount smaller than the minimum fuel supply amount with which the fuel can be stably supplied. Therefore, the control of the fuel supply amount can always be made highly accurate. In the invention according to claim 7, in the state where the first fuel supply means sets the fuel supply timing to a later one of different timings in one cycle, the fuel supply at the previous fuel supply timing is performed. After the end, if there is a predetermined acceleration request by the later fuel supply timing, the fuel supply during acceleration is compulsorily supplied at the later fuel supply timing so as to meet the predetermined acceleration request. It is configured to include means.
【0014】これにより、例えば、先の燃料供給時期で
ある吸気行程中の燃料供給後、吸気弁が閉弁するまで
に、所定の加速要求(例えば、急加速要求)があった場
合に、後の燃料供給時期である圧縮行程中の燃料供給時
に、加速要求に見合った燃料量を直ちに供給することが
可能となるので、加速応答性を改善することが可能とな
る。なお、加速要求が継続されているときで、吸気行程
中の燃料供給量では要求燃料量を賄えないような場合に
は、燃料不足分を圧縮行程中の燃料供給で補うようにす
ることも可能であり、燃料供給装置等の小容量化を図る
ことができることにもなる。Thus, for example, when a predetermined acceleration request (for example, a rapid acceleration request) is made before the intake valve is closed after the fuel is supplied during the intake stroke which is the previous fuel supply timing, At the time of fuel supply during the compression stroke, which is the fuel supply timing of, it is possible to immediately supply the fuel amount corresponding to the acceleration request, and therefore it is possible to improve the acceleration response. If the required fuel amount cannot be covered by the fuel supply amount during the intake stroke while the acceleration request is being continued, the fuel shortage amount may be supplemented by the fuel supply during the compression stroke. This is also possible, and the capacity of the fuel supply device and the like can be reduced.
【0015】[0015]
【発明の実施の形態】以下に、本発明の実施の形態を、
添付の図面に基づき説明する。図2に示すように、本発
明の第1の実施形態における内燃機関(直列4気筒ガア
ソリン機関)1の吸気通路4の上流にはエアクリーナ3
が設けられている。そして、吸気通路4の下流側は、サ
ージタンク2に連結されている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
It will be described with reference to the accompanying drawings. As shown in FIG. 2, an air cleaner 3 is provided upstream of an intake passage 4 of an internal combustion engine (in-line four-cylinder Gaazoline engine) 1 according to the first embodiment of the present invention.
Is provided. The downstream side of the intake passage 4 is connected to the surge tank 2.
【0016】また、各気筒内に直接燃料を噴射供給する
(所謂直噴式)電磁燃料噴射弁5が、各気筒内に臨ませ
て設けられている。この燃料噴射弁5は、後述するコン
トロールユニット20からの運転状態に応じて設定され
た駆動信号を受け所定時期に所定時間開弁駆動されるこ
とで、所定量に調量された燃料を、気筒内に間欠的に噴
射供給できるようになっている。An electromagnetic fuel injection valve 5 for directly injecting fuel into each cylinder (so-called direct injection type) is provided so as to face each cylinder. The fuel injection valve 5 receives a drive signal set in accordance with an operating state from a control unit 20 described later and is driven to open at a predetermined time for a predetermined time, so that the fuel metered to a predetermined amount is supplied to the cylinder. It is designed to be able to intermittently supply and inject.
【0017】ところで、本実施形態においては、前記燃
料噴射弁5のそれぞれに枝管15が連結されており、当
該各枝管15は、機関1により駆動される高圧燃料ポン
プ8によって圧送供給される高圧燃料を高圧燃料通路9
を介して導き貯留する高圧燃料サージタンク7に連結さ
れている。前記高圧燃料ポンプ8は、逆止弁11、燃料
フィルタ12を介して、燃料タンク10から燃料を吸い
上げるようになっている。By the way, in the present embodiment, the branch pipes 15 are connected to each of the fuel injection valves 5, and each branch pipe 15 is pressure-fed and supplied by the high-pressure fuel pump 8 driven by the engine 1. High-pressure fuel is passed through the high-pressure fuel passage 9
It is connected to a high-pressure fuel surge tank 7 which is guided and stored via. The high-pressure fuel pump 8 sucks fuel from the fuel tank 10 via the check valve 11 and the fuel filter 12.
【0018】なお、高圧燃料サージタンク7内の燃料圧
力を、所望に維持できるように、前記高圧燃料サージタ
ンク7には、高圧レギュレータ,低圧レギュレータが連
通されており、これらの調圧作用により余剰となった燃
料が、燃料タンク10へリターンされるようになってい
る。これにより、前記燃料噴射弁5から、気筒内に直接
噴射供給可能に調整された高圧な燃料を噴射できること
になる。A high-pressure regulator and a low-pressure regulator are connected to the high-pressure fuel surge tank 7 so that the fuel pressure in the high-pressure fuel surge tank 7 can be maintained at a desired level. The fuel that has become is returned to the fuel tank 10. As a result, the fuel injection valve 5 can inject high-pressure fuel adjusted so as to be directly injected into the cylinder.
【0019】ところで、点火栓6が各気筒内に臨んで設
けられており、これにより気筒内の混合気は点火され着
火燃焼されるようになっている。この点火栓6の点火時
期は、コントロールユニット20により運転状態に応じ
て設定されるようになっている。なお、排気通路70に
は、排気浄化触媒71(三元触媒、リーンNOx触媒、
或いは酸化触媒等)が介装されている。By the way, an ignition plug 6 is provided facing each cylinder so that the air-fuel mixture in the cylinder is ignited and ignited and burned. The ignition timing of the spark plug 6 is set by the control unit 20 according to the operating state. In the exhaust passage 70, an exhaust purification catalyst 71 (three-way catalyst, lean NOx catalyst,
Alternatively, an oxidation catalyst or the like) is interposed.
【0020】コントロールユニット20は、デジタルコ
ンピュータからなり、双方向バス21によって相互に接
続されたROM22,RAM24,入力ポート25及び
出力ポート26を具備する。このコントロールユニット
20には、クランク角度センサ(図示せず)により検出
されるクランク角度信号29や気筒判別信号31が、前
記入力ポート25を介して入力されるようになってい
る。The control unit 20 comprises a digital computer and comprises a ROM 22, a RAM 24, an input port 25 and an output port 26 which are connected to each other by a bidirectional bus 21. A crank angle signal 29 and a cylinder discrimination signal 31 detected by a crank angle sensor (not shown) are input to the control unit 20 via the input port 25.
【0021】また、アクセルペダル(図示せず)の操作
量に応じた出力電圧を発生するアクセル開度センサ(図
示せず)からのアクセル開度信号(出力電圧)30は、
A/D変換器31を介してデジタル変換された後、前記
入力ポート25を介して入力されるようになっている。
ところで、各燃料噴射弁5は、各駆動回路34及び各カ
ウンタ35を介して出力ポート26に接続されており、
各点火栓6は、各駆動回路36及び各カウンタ37を介
して出力ポート26に接続されている。Further, an accelerator opening signal (output voltage) 30 from an accelerator opening sensor (not shown) which generates an output voltage according to an operation amount of an accelerator pedal (not shown) is
After being digitally converted through the A / D converter 31, it is inputted through the input port 25.
By the way, each fuel injection valve 5 is connected to the output port 26 via each drive circuit 34 and each counter 35,
Each spark plug 6 is connected to the output port 26 via each drive circuit 36 and each counter 37.
【0022】以上のような構成を備えた本実施形態で
は、以下のような作用を奏する。即ち、比較的濃い空燃
比が要求される機関の出力(高負荷)領域において、燃
費,排気エミッション(特にNOx)低減に効果が高い
成層燃焼(希薄燃焼にマッチした燃焼形態)で燃焼させ
ると、局所的に過濃混合気が形成され空気利用率が低下
した状態となり燃焼が却って不活性化し、以って煤(黒
煙等)や未燃成分(HC)等の排出量が増大しパティキ
ュレート等の排出量が増大するので、混合気全体で空燃
比を均一化して空気利用率を高めることができる均質燃
焼を行なわせた方が有利である。The present embodiment having the above-described structure has the following operation. That is, in the engine output (high load) region where a relatively rich air-fuel ratio is required, when combustion is performed in stratified combustion (a combustion mode that matches lean combustion) that is highly effective in reducing fuel consumption and exhaust emission (particularly NOx), A rich air-fuel mixture is locally formed and the air utilization rate drops, and combustion is rather deactivated, which increases the emission of soot (black smoke, etc.) and unburned components (HC), etc. Therefore, it is advantageous to carry out homogeneous combustion in which the air-fuel ratio can be made uniform in the entire air-fuel mixture to increase the air utilization rate.
【0023】一方、軽負荷領域では、元々燃料噴射量が
少ないので空気利用率の悪化はそれ程問題とならないの
で、均質燃焼を行なわせておくより、空燃比をでるだけ
希薄化し、燃費,排気エミッション(特にNOx)低減
に効果が高い成層燃焼で燃焼させた方が有利である。か
かる両者を両立させようとした場合、図4で示される成
層燃焼領域では、空燃比の希薄化要求があるので、従来
の均質燃焼のようにスロットル開度(換言すればエアフ
ローメータで検出される吸入空気流量Q)と出力(換言
すれば燃料噴射量〔=k・Q/Ne,kは定数,Neは
機関回転速度〕)とが対応しなくなり運転者に違和感を
与えることになるのを防止するため、運転者の要求する
負荷が得られるように、運転者の要求する負荷をアクセ
ル開度(操作量)から読み取り、かつ、目標の空燃比
(例えば、A/F>30)が達成できるように、スロッ
トル開度(換言すれば吸気通路断面積延いては吸入空気
流量Q)と燃料噴射量とを修正するようにしている。On the other hand, in the light load region, since the fuel injection amount is originally small, the deterioration of the air utilization rate does not pose a problem so much. Therefore, rather than performing homogeneous combustion, the air-fuel ratio is diluted as much as possible to improve fuel economy and exhaust emission. Combustion by stratified combustion, which is highly effective in reducing (particularly NOx), is advantageous. When trying to make both of them compatible, in the stratified charge combustion region shown in FIG. 4, there is a demand for leaning of the air-fuel ratio, so that the throttle opening (in other words, detected by an air flow meter) like the conventional homogeneous combustion. It prevents the intake air flow rate Q) and the output (in other words, the fuel injection amount [= k · Q / Ne, k is a constant, Ne is the engine speed]) from becoming unresponsive and giving the driver a feeling of strangeness. Therefore, in order to obtain the load required by the driver, the load required by the driver can be read from the accelerator opening (operation amount), and the target air-fuel ratio (for example, A / F> 30) can be achieved. Thus, the throttle opening (in other words, the cross-sectional area of the intake passage and thus the intake air flow rate Q) and the fuel injection amount are corrected.
【0024】このため、運転領域が変化し成層燃焼形態
から均質燃焼状態へ切り換える際に、成層燃焼形態と同
一スロットル開度状態で成層燃焼形態から均質燃焼状態
へ切り換えると、空燃比が均質燃焼形態に見合った空燃
比に対して希薄化する惧れが生じるが、均質燃焼形態
は、成層燃焼形態とは燃焼形態が異なるが故に空燃比の
希薄限界が成層燃焼形態より狭いため、燃焼そのものが
悪化(例えば、失火等)することにもなり、通常の(燃
焼形態を変化させない場合の)空燃比段差による運転
性,排気特性の悪化以上に運転性や排気特性が損なわれ
てしまう惧れがある。即ち、本実施形態では、燃焼形態
を切り換える際には、空燃比を切り換えることになる
が、この空燃比段差を抑制するように一方の空燃比から
他方の空燃比へ徐々に近づけて行くような制御をして
も、燃焼形態の切り換え自体に燃焼段差(変化)要因が
あり、これを解決できなければ、運転性,排気特性等を
効果的に改善することができないのである。For this reason, when the operating region changes and the stratified charge combustion mode is switched to the homogeneous combustion state, if the stratified charge combustion mode is switched to the homogeneous combustion state at the same throttle opening state as the stratified charge combustion mode, the air-fuel ratio becomes the homogeneous combustion mode. However, since the homogeneous combustion mode has a different combustion mode from the stratified combustion mode, the lean limit of the air-fuel ratio is narrower than that of the stratified combustion mode, and the combustion itself deteriorates. (For example, a misfire etc.), and there is a possibility that the operability and the exhaust characteristics are deteriorated more than the deterioration of the operability and the exhaust characteristics due to the normal air-fuel ratio step (when the combustion mode is not changed). . That is, in the present embodiment, when switching the combustion mode, the air-fuel ratio is switched, but one air-fuel ratio is gradually approached to the other air-fuel ratio so as to suppress this air-fuel ratio step. Even if control is performed, there is a combustion step (change) factor in the switching of the combustion mode itself, and if this cannot be solved, the drivability, exhaust characteristics, etc. cannot be effectively improved.
【0025】そこで、本実施形態では、空燃比延いては
燃焼形態の切り換えに伴う運転性,排気特性の悪化を改
善するために、燃料噴射弁5からの燃料噴射のさせ方を
最適に制御することにより、両燃焼形態をなだらかにつ
なぐようにする。ここで、本実施形態におけるコントロ
ールユニット20が行なう燃料供給制御(燃焼形態切換
制御)について、図3のフローチャートに従って説明す
ることにする。なお、当該コントロールユニット20
が、本発明にかかる第1燃料供給手段、第2燃料供給手
段、最低燃料供給量確保手段としての機能をソフトウェ
ア的に備えている。Therefore, in this embodiment, the method of injecting fuel from the fuel injection valve 5 is optimally controlled in order to improve the deterioration of drivability and exhaust characteristics due to the switching of the air-fuel ratio and thus the combustion mode. By doing so, both combustion modes are smoothly connected. Here, the fuel supply control (combustion mode switching control) performed by the control unit 20 in the present embodiment will be described with reference to the flowchart of FIG. The control unit 20
However, the software has the functions of the first fuel supply means, the second fuel supply means, and the minimum fuel supply amount securing means according to the present invention.
【0026】ステップ(図では、Sと記してある。以
下、同様)100では、機関回転数(速度)Ne,アク
セル開度を読み込む。ステップ101では、ステップ1
00で読み込んだ情報に基づいて、要求トルクTeを算
出する。ステップ102では、算出された要求トルクT
eと、機関回転速度Neと、に基づいて、図4に示すよ
うな要求A/Fマップを参照して、要求A/Fを算出す
る。In step (denoted by S in the figure, the same applies hereinafter) 100, the engine speed (speed) Ne and the accelerator opening degree are read. In step 101, step 1
The required torque Te is calculated based on the information read at 00. In step 102, the calculated required torque T
Based on e and the engine speed Ne, the required A / F is calculated by referring to the required A / F map as shown in FIG.
【0027】ステップ103では、算出された要求A/
Fと、機関回転速度Neと、エアフローメータ(図示せ
ず)から検出される吸入空気流量Qと、に基づいて、必
要な燃料噴射量(噴射パルス幅)TPを算出する。ステ
ップ104では、例えば、要求A/F>30であるか否
かを判別する。YESであれば、成層燃焼領域であると
判断し(図4の要求A/Fマップ参照)、ステップ10
5へ進む。NOであれば、その他の燃焼領域であると判
断して、ステップ106へ進ませる。In step 103, the calculated request A /
The required fuel injection amount (injection pulse width) TP is calculated based on F, the engine rotation speed Ne, and the intake air flow rate Q detected by an air flow meter (not shown). In step 104, for example, it is determined whether or not the request A / F> 30. If YES, it is determined to be in the stratified combustion region (see the request A / F map in FIG. 4), and step 10
Go to 5. If NO, it is determined that the combustion area is other, and the routine proceeds to step 106.
【0028】ステップ105では、成層燃焼領域である
ので、吸気行程での燃料噴射(以下、吸気行程噴射とも
言う)を停止して、圧縮行程での燃料噴射(以下、圧縮
行程噴射とも言う)のみを行なわせるようにする。即
ち、圧縮行程噴射の噴射パルス幅TP2に、ステップ1
03で求めた要求A/Fが得られる要求燃料噴射パルス
幅TPを最終的にセットして(吸気行程噴射の噴射パル
ス幅TP1=0とする)、即ち、燃料噴射を図5のの
状態で行なわせるようにして、本フローを終了する。In step 105, since it is in the stratified charge combustion region, fuel injection in the intake stroke (hereinafter, also referred to as intake stroke injection) is stopped, and only fuel injection in the compression stroke (hereinafter, also referred to as compression stroke injection) is performed. To perform. That is, in the injection pulse width TP2 of the compression stroke injection,
Finally, the required fuel injection pulse width TP with which the required A / F obtained in 03 is obtained (injection stroke injection injection pulse width TP1 = 0), that is, fuel injection is performed in the state of FIG. Then, the flow is finished.
【0029】一方、ステップ106へ進む場合には、成
層燃焼領域ではないので、ステップ106では、圧縮行
程噴射の噴射パルス幅TP2に、A/F=30となるT
P’をセットすると共に、要求A/Fを得るために必要
なTP(ステップ103で求めた必要燃料噴射パルス幅
TP)とTP2にセットしたTP’との差分を、吸気行
程噴射の噴射パルス幅TP1(=TP−TP2)にセッ
トしてみる。即ち、圧縮行程噴射での燃料噴射量変化
(換言すれば、燃焼形態の急激な変化)を極力抑えつ
つ、不足する燃料噴射量を吸気行程噴射で補わせること
を考えて、ステップ107へ進ませる。On the other hand, when the process proceeds to step 106, it is not in the stratified charge combustion region, so in step 106, the injection pulse width TP2 of the compression stroke injection is A / F = 30 T.
P'is set, and the difference between TP required to obtain the required A / F (the required fuel injection pulse width TP obtained in step 103) and TP 'set in TP2 is set to the injection pulse width of the intake stroke injection. Set it to TP1 (= TP-TP2). That is, the process proceeds to step 107 in consideration of supplementing the insufficient fuel injection amount with the intake stroke injection while suppressing the change in the fuel injection amount in the compression stroke injection (in other words, the rapid change of the combustion form) as much as possible. .
【0030】ステップ107では、ステップ106でセ
ットした吸気行程噴射の噴射パルス幅TP1が、吸気行
程噴射を良好に行なうことができる最小噴射パルス幅T
Pminより短いか否かを判断する。YESであれば、
吸気行程噴射の噴射パルス幅TP1が短か過ぎて、例え
ば安定した燃料噴射が行なえない等と判断し、ステップ
105へ進ませ、ステップ106でセットしてみたTP
2=TP’、TP1=TP−TP2の関係をキャンセル
して、TP2に、ステップ103で求めた要求A/Fが
得られる要求燃料噴射パルス幅TPを最終的にセットし
て(吸気行程噴射の噴射パルス幅TP1=0とする)、
即ち、燃料噴射を図5のの状態で行なわせるようにし
て、本フローを終了する。In step 107, the injection pulse width TP1 of the intake stroke injection set in step 106 is the minimum injection pulse width T with which the intake stroke injection can be satisfactorily performed.
It is determined whether it is shorter than Pmin. If yes,
It is judged that the injection pulse width TP1 of the intake stroke injection is too short, for example, stable fuel injection cannot be performed, and the process proceeds to step 105, and the TP set at step 106 is set.
The relationship of 2 = TP ', TP1 = TP-TP2 is canceled, and the required fuel injection pulse width TP at which the required A / F obtained in step 103 is obtained is finally set in TP2 (intake stroke injection Injection pulse width TP1 = 0),
That is, the fuel injection is performed in the state of FIG. 5, and this flow ends.
【0031】一方、NOであれば、吸気行程噴射の噴射
パルス幅TP1が短か過ぎることもなく、良好に吸気行
程噴射を行なわせることができると判断して、ステップ
108へ進ませる。ステップ108では、ステップ10
6でセットしてみたTP2=TP’、TP1=TP−T
P2の関係をそのまま最終的なものとし、即ち、燃料噴
射を図5の(或いは)の状態で行なわせるようにし
て、本フローを終了する。On the other hand, if NO, it is judged that the injection pulse width TP1 of the intake stroke injection is not too short, and the intake stroke injection can be satisfactorily performed, and the routine proceeds to step 108. In Step 108, Step 10
TP2 = TP ', TP1 = TP-T set in 6
The relationship of P2 is finalized as it is, that is, the fuel injection is performed in the state of (or) in FIG. 5, and this flow is ended.
【0032】なお、図5の(或いは)の状態は、圧
縮行程噴射が行なわれ、点火栓6の周りに過濃混合気が
存在するため、燃焼形態は成層燃焼形態であるが、吸気
行程噴射を併せて行なわせることにより、通常の成層燃
焼形態において本来希薄となる領域(気筒内の濃度分布
の希薄領域)にも、均質な混合気を存在させることがで
きるので、過濃領域で始まる燃焼を、希薄領域までゆっ
くりと進行させることができ、延いては気筒内略全域で
燃焼を行なわせることができる。In the state of FIG. 5 (or), since the compression stroke injection is performed and the rich mixture exists around the spark plug 6, the combustion mode is the stratified combustion mode, but the intake stroke injection is performed. By also performing the above, it is possible to allow a homogeneous air-fuel mixture to exist even in the region that is originally lean in the normal stratified charge combustion mode (the region where the concentration distribution in the cylinder is lean), so combustion that begins in the rich region Can be slowly advanced to a lean region, and combustion can be made to occur in substantially the entire region of the cylinder.
【0033】即ち、通常の成層燃焼形態において出力増
加要求に合わせて燃料噴射量を増加させた(空燃比をリ
ッチ化させた)場合には、濃い混合気が局所的に過濃混
合気状態で燃焼されるので燃焼自体が不活性化すると共
に、燃焼がその後気筒内全域に良好に進行することもな
いので、気筒内の空気を有効に利用した燃焼ができず、
以って燃焼が不活性化して煤やエミッション,運転性を
悪化させることになるが、本実施形態によれば、出力増
加要求に合わせて燃料噴射量を増加させても(空燃比を
リッチ化しても)、燃焼形態は圧縮行程噴射による成層
燃焼形態であるが、吸気行程噴射を併せて行なわせるこ
とにより、前述したように、過濃領域で始まる燃焼を、
希薄領域までゆっくりと進行させることができ、延いて
は気筒内略全域で燃焼を行なわせることができるので、
空気利用率を最大限高めることができ、以って煤やエミ
ッション,運転性の悪化を格段に改善することが可能と
なる。That is, when the fuel injection amount is increased (the air-fuel ratio is made rich) in accordance with the output increase request in the normal stratified charge combustion mode, the rich air-fuel mixture is locally in the rich air-fuel mixture state. Since it is burned, the combustion itself is deactivated, and since the combustion does not proceed satisfactorily throughout the cylinder thereafter, it is not possible to use the air in the cylinder effectively.
As a result, combustion is inactivated and soot, emissions, and drivability are deteriorated. However, according to the present embodiment, even if the fuel injection amount is increased according to the output increase request (the air-fuel ratio is made richer However, although the combustion form is a stratified combustion form by compression stroke injection, by causing the intake stroke injection to be performed together, as described above, the combustion starting in the rich region,
Since it can be slowly advanced to the lean region, and by extension, combustion can be performed in almost the entire region of the cylinder,
The air utilization rate can be maximized, and soot, emissions, and deterioration of drivability can be markedly improved.
【0034】なお、出力要求領域(A/F<14)の場
合には、吸気行程噴射の割合が極めて高くなり、均質燃
焼を達成できるものであるが、より一層完全な均質燃焼
を達成したい場合には、本フロー実行後に、運転状態が
安定した場合等において、吸気行程噴射のみを行なわせ
るように噴射形態を切り換えるようにしてもよい。これ
により、圧縮行程と吸気行程との両方で燃料噴射させる
場合に比べ、完全な均質燃焼が達成できるので、出力増
大や煤の低減をより一層促進することが可能となる。In the output required region (A / F <14), the proportion of intake stroke injection becomes extremely high, and homogeneous combustion can be achieved. However, when more complete homogeneous combustion is desired to be achieved. In addition, after the execution of this flow, the injection mode may be switched so that only the intake stroke injection is performed when the operating state is stable. As a result, complete homogeneous combustion can be achieved as compared with the case where fuel is injected in both the compression stroke and the intake stroke, so it is possible to further promote the increase in output and the reduction in soot.
【0035】このように、本実施形態では、1サイクル
中の異なる時期に設定された燃料供給時期を切り換える
ことにより、燃焼形態(燃焼状態)を切り換えるように
した場合に、当該燃焼形態の切り換えに際し、一方の燃
料供給時期(燃焼形態)から他方の燃料供給時期(燃焼
形態)へ、両方の燃料供給時期で燃料を所定の分担率で
分担して供給する形態を経て徐々に移行させることがで
きるようにしたので、燃焼形態の切り換えに伴う燃焼段
差を最小限に抑制することができるので、同一空気量で
のトルク段差を抑制でき運転性を改善できると共に、燃
費,排気性能等の悪化も最小限に抑制することができ
る。As described above, in the present embodiment, when the combustion mode (combustion state) is switched by switching the fuel supply timings set at different times in one cycle, the switching of the combustion mode is performed. , It is possible to gradually shift from one fuel supply timing (combustion mode) to the other fuel supply timing (combustion mode) through a mode in which the fuel is supplied in a predetermined sharing ratio at both fuel supply times. As a result, it is possible to minimize the combustion step due to the switching of the combustion mode, and it is possible to suppress the torque step at the same air amount, improve the drivability, and minimize the deterioration of fuel consumption, exhaust performance, etc. It can be suppressed to the limit.
【0036】次に、本発明の第2の実施形態について説
明する。この第2の実施形態は、システム構成は、第1
の実施形態の場合(図2)と同様であり、また、コント
ロールユニット20が行なう燃料供給(燃焼形態切換)
制御については図6のフローチャートに示すように、ス
テップ100〜ステップ107までは、第1の実施形態
の図3のフローチャートのステップ100〜ステップ1
07と同様であるので、説明を省略し、異なるステップ
109〜ステップ111について詳細に説明することと
する。Next, a second embodiment of the present invention will be described. The system configuration of the second embodiment is the first
Is similar to the case of the embodiment (FIG. 2), and the fuel supply (combustion mode switching) performed by the control unit 20 is performed.
As for control, as shown in the flowchart of FIG. 6, steps 100 to 107 are steps 100 to 1 of the flowchart of FIG. 3 of the first embodiment.
Since it is similar to 07, the description thereof will be omitted, and different steps 109 to 111 will be described in detail.
【0037】即ち、ステップ107で、ステップ106
でセットした吸気行程噴射の噴射パルス幅TP1が、吸
気行程噴射を良好に行なうことができる最小噴射パルス
幅TPminより短いか否かを判断し、YESであれ
ば、吸気行程噴射の噴射パルス幅TP1が短か過ぎて、
例えば安定した燃料噴射が行なえない等と判断し、ステ
ップ105へ進ませ、第1の実施形態と同様に、燃料噴
射を図5のの状態で行なわせるようにして、本フロー
を終了する。That is, in step 107, step 106
It is determined whether or not the injection pulse width TP1 of the intake stroke injection set in step 1 is shorter than the minimum injection pulse width TPmin with which the intake stroke injection can be satisfactorily performed. If YES, the injection pulse width TP1 of the intake stroke injection is determined. Is too short,
For example, it is determined that stable fuel injection cannot be performed, and the routine proceeds to step 105, where the fuel injection is performed in the state shown in FIG. 5 as in the first embodiment, and this flow ends.
【0038】一方、NOであれば、吸気行程噴射の噴射
パルス幅TP1が短か過ぎることもなく、良好に吸気行
程噴射を行なわせることができると判断して、ステップ
109へ進ませる。ステップ109では、要求A/F<
14であるか否かを判断する。YESであればステップ
110へ進み、NOであればステップ111へ進む。On the other hand, if NO, it is judged that the injection pulse width TP1 of the intake stroke injection is not too short and the intake stroke injection can be performed favorably, and the routine proceeds to step 109. At step 109, the request A / F <
It is determined whether it is 14. If YES, the process proceeds to step 110, and if NO, the process proceeds to step 111.
【0039】ステップ110では、要求A/F<14で
あり、出力要求領域であると判断し、圧縮行程での燃料
噴射(成層燃焼形態)を停止して、吸気行程のみでの燃
料噴射(均質燃焼形態)を行なわせる。これは、出力要
求領域(例えば、要求A/F<14)では、燃焼形態を
完全な均質燃焼形態に切り換えて出力要求領域に見合っ
た燃焼形態とすると共に、吸気行程噴射を行なわせるこ
とで、吸気弁の開いている間に燃料を吸気にぶつけ気化
促進を図ると共に燃料の気化潜熱を利用して吸気温度を
下げることで空気充填効率を向上させることができるの
で、燃焼形態の変更に伴う瞬間的なトルク段差を多少犠
牲にしても、応答性良く一層の出力向上を望めるからで
ある。In step 110, it is judged that the required A / F <14 and the output is in the required output region, the fuel injection in the compression stroke (stratified combustion mode) is stopped, and the fuel injection only in the intake stroke (homogeneous) is performed. Combustion mode). This is because, in the output request region (for example, the request A / F <14), the combustion form is switched to a completely homogeneous combustion form so that the combustion form matches the output request region, and the intake stroke injection is performed. While the intake valve is open, the fuel hits the intake air to promote vaporization and the latent heat of vaporization of the fuel can be used to lower the intake air temperature to improve the air filling efficiency. This is because even if a certain torque step is sacrificed to some extent, further improvement in output can be expected with good responsiveness.
【0040】ステップ111では、それ程出力向上要求
や応答性要求が強くないので、燃焼形態を切り換える際
のトルクショックを低減することを最優先すべく、ステ
ップ106でセットしてみたTP2=TP’、TP1=
TP−TP2の関係をそのまま最終的なものとし、即
ち、燃料噴射を図5の(或いは)の状態で行なわせ
るようにして、本フローを終了する。In step 111, the output improvement request and the responsiveness request are not so strong, so that the top priority is to reduce the torque shock when switching the combustion mode, TP2 = TP 'set in step 106, TP1 =
The relationship of TP-TP2 is made final as it is, that is, the fuel injection is performed in the state of (or) in FIG. 5, and this flow is ended.
【0041】なお、図5の(或いは)の状態は、前
述したように、圧縮行程噴射が行なわれ、点火栓6の周
りに過濃混合気が存在するため、燃焼形態は成層燃焼形
態であるが、吸気行程噴射を併せて行なわせることによ
り、通常の成層燃焼形態において本来希薄となる領域
(気筒内の濃度分布の希薄領域)にも、均質な混合気を
存在させることができるので、過濃領域で始まる燃焼
を、希薄領域までゆっくりと進行させることができ、延
いては気筒内略全域で燃焼を行なわせることができる。As described above, in the state of FIG. 5 (or), since the compression stroke injection is performed and the rich mixture exists around the spark plug 6, the combustion mode is the stratified combustion mode. However, since the intake stroke injection is also performed, a homogeneous air-fuel mixture can be made to exist even in the region that is normally lean in the normal stratified charge combustion mode (the region where the concentration distribution in the cylinder is lean). The combustion that starts in the rich region can be slowly advanced to the lean region, and by extension, the combustion can be performed in substantially the entire region of the cylinder.
【0042】このように、第2の実施形態では、燃焼形
態の切り換えに伴う燃焼段差によるトルクショックを低
減できると共に、出力要求領域(例えば、A/F<1
4)では、燃焼形態を完全な均質燃焼形態に切り換えら
れるようにしたので、運転者に出力増大要求がある場合
には、その出力増大要求に応答性よく応えることがで
き、以って運転者の出力増大要求を最優先させることが
可能となる。As described above, in the second embodiment, it is possible to reduce the torque shock due to the combustion step due to the switching of the combustion mode, and also the output required region (for example, A / F <1.
In 4), the combustion mode can be switched to a completely homogeneous combustion mode. Therefore, when the driver has a demand for increasing the output, the demand for increasing the output can be responded with good responsiveness. It becomes possible to give top priority to the output increase request of.
【0043】つづけて、第3の実施形態について説明す
る。この第3の実施形態は、システム構成は、第1の実
施形態の場合(図2)と同様であり、また、コントロー
ルユニット20が行なう燃料供給(燃焼形態切換)制御
については図7のフローチャートに示すように、ステッ
プ100〜ステップ107までは、第1の実施形態の図
3のフローチャートのステップ100〜ステップ107
と同様であるので、説明を省略し、異なるステップ11
2〜ステップ116について詳細に説明することとす
る。なお、第3の実施形態におけるコントロールユニッ
ト20が、本発明にかかる加速時燃料供給手段としの機
能を備えることとなる。Next, the third embodiment will be described. The system configuration of the third embodiment is similar to that of the first embodiment (FIG. 2), and the fuel supply (combustion mode switching) control performed by the control unit 20 is shown in the flowchart of FIG. As shown, steps 100 to 107 are steps 100 to 107 in the flowchart of FIG. 3 of the first embodiment.
Since it is similar to the above, the description is omitted and a different step 11
2 to step 116 will be described in detail. The control unit 20 in the third embodiment has the function of the fuel supply means for acceleration according to the present invention.
【0044】即ち、ステップ107で、ステップ106
でセットした吸気行程噴射の噴射パルス幅TP1が、吸
気行程噴射を良好に行なうことができる最小噴射パルス
幅TPminより短いか否かを判断し、YESであれ
ば、吸気行程噴射の噴射パルス幅TP1が短か過ぎて、
例えば安定した燃料噴射が行なえない等と判断し、ステ
ップ105へ進ませ、第1の実施形態と同様に、燃料噴
射を図5のの状態で行なわせるようにして、本フロー
を終了する。That is, in step 107, step 106
It is determined whether or not the injection pulse width TP1 of the intake stroke injection set in step 1 is shorter than the minimum injection pulse width TPmin with which the intake stroke injection can be satisfactorily performed. If YES, the injection pulse width TP1 of the intake stroke injection is determined. Is too short,
For example, it is determined that stable fuel injection cannot be performed, and the routine proceeds to step 105, where the fuel injection is performed in the state shown in FIG. 5 as in the first embodiment, and this flow ends.
【0045】一方、NOであれば、吸気行程噴射の噴射
パルス幅TP1が短か過ぎることもなく、良好に吸気行
程噴射を行なわせることができると判断して、ステップ
112へ進ませる。ステップ112では、要求A/F<
14であるか否かを判断する。YESであればステップ
113へ進み、NOであればステップ116へ進む。On the other hand, if NO, it is judged that the injection pulse width TP1 of the intake stroke injection is not too short, and the intake stroke injection can be satisfactorily performed, and the routine proceeds to step 112. At step 112, the request A / F <
It is determined whether it is 14. If YES, the process proceeds to step 113, and if NO, the process proceeds to step 116.
【0046】ステップ113では、吸気行程での噴射
後、同一サイクル内の圧縮行程での噴射が行なわれる時
期までに、加速判定(加速要求)があったか否かを判断
する。YESであればステップ114へ進み、NOであ
ればステップ115へ進む。当該加速判定は、アクセル
開度変化やTP変化、吸入空気流量変化等に基づいて行
なうことができる。In step 113, it is determined whether or not there is an acceleration determination (acceleration request) after the injection in the intake stroke and before the injection in the compression stroke in the same cycle. If YES, the process proceeds to step 114, and if NO, the process proceeds to step 115. The acceleration determination can be made based on a change in accelerator opening, a change in TP, a change in intake air flow rate, or the like.
【0047】ステップ114では、加速要求を、同一サ
イクル内において直後に行なわれる圧縮行程噴射に直ち
に反映させるべく、吸気行程で参照したTPをTPol
dし、圧縮行程で参照されたTPをTPnewとし、差
分(=TPnew−TPold)を圧縮行程で噴射させ
るようにする。即ち、燃料噴射を図5のの状態で行な
わせるようにして、本フローを終了する。In step 114, TPol referred to in the intake stroke is TPol so that the acceleration request is immediately reflected in the compression stroke injection performed immediately after in the same cycle.
Then, TP referred to in the compression stroke is TPnew, and the difference (= TPnew-TPold) is injected in the compression stroke. That is, the fuel injection is performed in the state of FIG. 5, and this flow ends.
【0048】一方、ステップ115では、吸気行程での
噴射後、同一サイクル内の圧縮行程での噴射が行なわれ
る時期までに、加速要求がないので、要求A/F<14
の出力要求領域に見合うように、第2の実施形態で説明
したと同様に、圧縮行程での燃料噴射(成層燃焼形態)
を停止して、吸気行程のみでの燃料噴射(均質燃焼形
態)を行なわせる。On the other hand, in step 115, since there is no acceleration request after the injection in the intake stroke and before the injection in the compression stroke in the same cycle, the request A / F <14.
The fuel injection in the compression stroke (stratified combustion mode) in the same manner as described in the second embodiment so as to meet the required output region of
Is stopped and fuel injection (homogeneous combustion mode) is performed only in the intake stroke.
【0049】また、ステップ116では、それ程出力向
上要求や応答性要求が強くないので、燃焼形態を切り換
える際のトルクショックを低減することを最優先すべ
く、ステップ106でセットしてみたTP2=TP’、
TP1=TP−TP2の関係をそのまま最終的なものと
し、即ち、燃料噴射を図5の(或いは)の状態で行
なわせるようにして、本フローを終了する。At step 116, the output improvement request and the responsiveness request are not so strong. Therefore, in order to give the highest priority to reducing the torque shock when switching the combustion mode, TP2 = TP set at step 106 is set. ',
The relationship of TP1 = TP-TP2 is finalized as it is, that is, the fuel injection is performed in the state of (or) in FIG. 5, and this flow is ended.
【0050】このように、第3の実施形態によれば、燃
焼形態の切り換えに伴う燃焼段差によるトルクショック
を低減できると共に、出力増大要求がある場合には、そ
の出力増大要求に応答性よく応えることができ、然も、
従来、加速要求があっても、次サイクル或いは他の気筒
における燃料噴射の時からしかその加速要求に追従した
燃料噴射を行なうことができず、加速要求に迅速に対応
することができなかったが、加速要求を同一サイクル内
の圧縮行程噴射に直ちに反映させることができるように
なるので、空燃比のリーン化を抑制でき加速要求に応答
性よく応えることができることとなる。即ち、加速要求
に対する応答性改善のための過渡時の空気計量の位相制
御や先取り補正を不要とすることができる。As described above, according to the third embodiment, it is possible to reduce the torque shock due to the combustion step due to the change of the combustion mode, and when the output increase request is made, the output increase request is responded with good responsiveness. You can, of course,
Conventionally, even if there is an acceleration request, fuel injection that follows the acceleration request can be performed only from the time of fuel injection in the next cycle or in another cylinder, and it has not been possible to quickly respond to the acceleration request. Since the acceleration request can be immediately reflected in the compression stroke injection in the same cycle, leaning of the air-fuel ratio can be suppressed and the acceleration request can be responded with good response. That is, it is possible to eliminate the need for phase control and pre-correction of air metering at the time of transition for improving the response to the acceleration request.
【0051】なお、加速要求が継続されているときで、
吸気行程中の燃料供給量では要求燃料量を賄えないよう
な場合にも、燃料不足分を圧縮行程中の燃料供給で補う
ようにすることも可能であり、燃料供給装置等の小容量
化を図ることができることにもなる。ところで、吸気行
程噴射と圧縮行程噴射との分担は、上記各実施形態にお
いて説明した例に限るものではなく、両燃焼形態をなだ
らかに繋げることができれば、他の所定の分担率で徐々
に分担度合いを変化させるようにすることも可能であ
る。When the acceleration request is continued,
Even when the required fuel amount cannot be covered by the fuel supply amount during the intake stroke, it is possible to make up for the fuel shortage with the fuel supply during the compression stroke, thus reducing the capacity of the fuel supply device, etc. It can also be achieved. By the way, the sharing of the intake stroke injection and the compression stroke injection is not limited to the example described in each of the above-described embodiments, and if both combustion modes can be smoothly connected, the sharing degree can be gradually increased at another predetermined sharing rate. It is also possible to change.
【0052】なお、上記各実施形態では、成層燃焼時に
は、圧縮行程(気筒内空気流動が減衰した状態)で燃料
を噴射し燃料の気化・拡散を抑えつつ、濃い混合気を点
火栓6の近傍に集められるようにして成層燃焼を達成す
るようにしているが、このとき、例えば、スワール制御
弁等を介して、吸気行程中に気筒内空気流動を均質燃焼
時に対して変化させておくようにしても良い。そして、
均質燃焼時には、吸気行程(筒内空気流動が促進された
状態)で燃料を噴射することで吸気流れに噴射燃料を乗
せて燃料の気化・拡散を促進し、気筒内全体に均一な混
合気を形成して均質燃焼を達成させるが、このとき、例
えば、スワール制御弁等を介して、気筒内空気流動を成
層燃焼時に対して変化させるようにしても良い。In each of the above-described embodiments, during stratified combustion, fuel is injected in the compression stroke (a state in which the air flow in the cylinder is attenuated) to suppress vaporization and diffusion of the fuel, and a rich air-fuel mixture near the spark plug 6. In order to achieve stratified charge combustion, the air flow in the cylinder is changed during the intake stroke, for example, via a swirl control valve. May be. And
During homogeneous combustion, by injecting fuel in the intake stroke (a state where the air flow in the cylinder is promoted), the injected fuel is placed on the intake flow to promote vaporization and diffusion of the fuel, and a uniform mixture is created in the entire cylinder. Although it is formed to achieve uniform combustion, at this time, for example, the air flow in the cylinder may be changed via the swirl control valve or the like with respect to the stratified charge combustion.
【0053】また、本発明は、燃料の供給のさせ方(例
えば、燃料噴射時期)を変更することにより燃焼形態
(燃焼状態)を異ならせることができるガソリン機関に
適用できることは勿論であるが、例えば、ディーゼル機
関等にあっても、1サイクル中に複数回に分けて燃料等
を噴射させる場合等(例えば、初期噴射率低減等のため
に複数回に分けて燃料を噴射させる場合、更にはNOx
低減のための水噴射等を行なわせるような場合をも含め
ることができる)に、各燃料噴射の分担率を徐々に変更
することで、両燃焼状態をなだらかに繋げるようにする
場合にも適用することができるものである。The present invention is of course applicable to a gasoline engine in which the combustion mode (combustion state) can be changed by changing the fuel supply method (for example, fuel injection timing). For example, even in a diesel engine or the like, when injecting fuel or the like in multiple times during one cycle (for example, in the case of injecting fuel in multiple times to reduce the initial injection rate, etc., NOx
It can also be applied to the case where water injection for reduction is performed), and it is also applicable to the case where both combustion states are smoothly connected by gradually changing the sharing ratio of each fuel injection. Is what you can do.
【0054】[0054]
【発明の効果】以上説明したように、請求項1に記載の
内燃機関の燃料供給制御装置によれば、1サイクル中の
異なる時期に設定された燃料供給時期を選択切り換えし
て、燃焼形態(燃焼状態)を切り換えるようにした場合
に、当該燃焼形態の切り換えに際し、一方の燃料供給時
期(燃焼形態)から他方の燃料供給時期(燃焼形態)
へ、両方の燃料供給時期で燃料を所定の分担率で分担し
て供給する形態を経て徐々に移行させることができるの
で、燃焼形態の切り換えに伴う燃焼段差を最小限に抑制
することができ、以って同一空気量でのトルク段差を抑
制でき運転性を改善できると共に、燃費,排気性能等の
悪化も最小限に抑制することができる。As described above, according to the fuel supply control device for the internal combustion engine of the first aspect, the fuel supply timings set at different timings in one cycle are selectively switched, and the combustion mode ( When the combustion state is switched, when switching the combustion mode, one fuel supply timing (combustion mode) to another fuel supply timing (combustion mode)
Since the fuel can be gradually transferred through a mode in which the fuel is shared and supplied at a predetermined sharing rate in both fuel supply timings, the combustion step difference due to the switching of the combustion modes can be suppressed to the minimum. As a result, it is possible to suppress a torque step with the same air amount, improve drivability, and suppress deterioration of fuel consumption, exhaust performance, etc. to a minimum.
【0055】請求項2,請求項3,請求項4,請求項5
の構成に、本発明を適用すれば、本発明の作用効果を最
大限に発揮できるものと期待される。請求項6に記載の
発明によれば、常に燃料供給量の制御を高精度なものと
することができる。請求項7に記載の発明によれば、加
速性を改善することができると共に、燃料供給装置等の
小容量化を図ることができる。Claims 2, Claim 3, Claim 4, and Claim 5
If the present invention is applied to the above configuration, it is expected that the effects of the present invention can be maximized. According to the invention described in claim 6, it is possible to always control the fuel supply amount with high accuracy. According to the invention described in claim 7, the acceleration performance can be improved, and the capacity of the fuel supply device and the like can be reduced.
【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.
【図2】本発明における第1の実施形態の全体構成図。FIG. 2 is an overall configuration diagram of a first embodiment of the present invention.
【図3】同上実施形態におけるコントロールユニット2
0が行なう燃料供給制御を説明するためのフローチャー
ト。FIG. 3 is a control unit 2 according to the embodiment.
The flowchart for demonstrating the fuel supply control which 0 performs.
【図4】同上実施形態における要求A/Fマップの一
例。FIG. 4 is an example of a request A / F map in the embodiment.
【図5】同上実施形態における各領域毎の燃料噴射パル
スの発生状態を説明するためのタイムチャート。FIG. 5 is a time chart for explaining a generation state of a fuel injection pulse for each area in the above embodiment.
【図6】本発明における第2の実施形態におけるコント
ロールユニット20が行なう燃料供給制御を説明するた
めのフローチャート。FIG. 6 is a flowchart for explaining fuel supply control performed by a control unit 20 according to the second embodiment of the present invention.
【図7】本発明における第3の実施形態におけるコント
ロールユニット20が行なう燃料供給制御を説明するた
めのフローチャート。FIG. 7 is a flowchart for explaining fuel supply control performed by a control unit 20 according to the third embodiment of the present invention.
【図8】従来装置の全体構成図。FIG. 8 is an overall configuration diagram of a conventional device.
【図9】従来装置の燃料供給制御を説明するためのフロ
ーチャート。FIG. 9 is a flowchart for explaining fuel supply control of a conventional device.
1 内燃機関 5 燃料噴射弁 20 コントロールユニット 29 クランク角度信号 30 アクセル開度信号 1 Internal combustion engine 5 Fuel injection valve 20 Control unit 29 Crank angle signal 30 Accelerator opening signal
Claims (7)
料供給時期を選択切り換えして、運転状態に応じた燃焼
状態を達成させるようにした内燃機関の燃料供給制御装
置において、 運転状態に応じた燃焼状態が達成できるように、運転状
態に応じて、一の燃料供給時期を選択して燃料供給する
第1燃料供給手段と、 燃焼状態が徐々に変化されるように、少なくとも前記第
1燃料供給手段により一の燃料供給時期が選択される運
転状態から他の燃料供給時期が選択される運転状態へ移
行する間は、両方の燃料供給時期で燃料を所定の分担率
で分担して供給する第2燃料供給手段と、 を含んで構成したことを特徴とする内燃機関の燃料供給
制御装置。1. A fuel supply control device for an internal combustion engine, wherein a fuel supply timing set at different times in one cycle is selectively switched to achieve a combustion state according to an operating state. A first fuel supply means for supplying fuel by selecting one fuel supply timing in accordance with the operating state so that the combustion state can be achieved, and at least the first fuel so that the combustion state is gradually changed. During the transition from the operating state in which one fuel supply timing is selected by the supply means to the operating state in which another fuel supply timing is selected, the fuel is distributed and supplied at a predetermined sharing rate at both fuel supply timings. A fuel supply control device for an internal combustion engine, comprising: a second fuel supply means.
域に応じて設定された目標空燃比に見合う均質燃焼形態
或いは成層燃焼形態であることを特徴とする請求項1に
記載の内燃機関の燃料供給制御装置。2. The internal combustion engine according to claim 1, wherein the combustion state according to the operating state is a homogeneous combustion mode or a stratified combustion mode corresponding to a target air-fuel ratio set according to an operating range. Fuel supply control device.
る燃料供給装置を備えた内燃機関であることを特徴とす
る請求項1又は請求項2に記載の内燃機関の燃料供給制
御装置。3. The fuel supply control device for an internal combustion engine according to claim 1, wherein the internal combustion engine is an internal combustion engine equipped with a fuel supply device for directly supplying fuel into a cylinder. .
行程中に設定され、前記成層燃焼形態での燃料供給時期
が圧縮行程中に設定されることを特徴とする請求項3に
記載の内燃機関の燃料供給制御装置。4. The fuel supply timing in the homogeneous combustion mode is set during an intake stroke, and the fuel supply timing in the stratified combustion mode is set during a compression stroke. Fuel supply control device for internal combustion engine.
いて圧縮行程中の燃料供給時期を選択して燃料供給を行
なう一方、高負荷領域において吸気行程中の燃料供給時
期を選択して燃料供給を行ない、 前記第2燃料供給手段が、中負荷領域において、吸気行
程中と圧縮行程中の両方の燃料供給時期で燃料を供給す
るように構成されたことを特徴とする請求項4に記載の
内燃機関の燃料供給制御装置。5. The first fuel supply means selects the fuel supply timing during the compression stroke in the low load range to supply fuel, while selecting the fuel supply timing during the intake stroke in the high load range to select the fuel supply timing. The supply is performed, and the second fuel supply means is configured to supply the fuel at a fuel supply timing during both the intake stroke and the compression stroke in the medium load region. Fuel control device for internal combustion engine.
確保できない場合に、前記所定の分担率に拘わらず、最
低燃料供給量を確保できる側の燃料供給時期で全燃料を
供給する最低燃料供給量確保手段を含んで構成されたこ
とを特徴とする請求項1〜請求項5の何れか1つに記載
の内燃機関の燃料供給制御装置。6. The second fuel supply means can secure the minimum fuel supply amount regardless of the predetermined share rate when the fuel supply amount at one fuel supply timing cannot secure the minimum fuel supply amount. 6. The fuel supply control device for an internal combustion engine according to claim 1, further comprising a minimum fuel supply amount securing means for supplying all fuel at a fuel supply timing on the side. .
期が設定されている状態において、当該先の燃料供給時
期での燃料供給終了後、後の燃料供給時期までに、所定
の加速要求があった場合には、当該所定の加速要求に見
合うように、後の燃料供時期に強制的に燃料供給を行な
わせる加速時燃料供給手段を含んで構成されたことを特
徴とする請求項1〜請求項6の何れか1つに記載の内燃
機関の燃料供給制御装置。7. The first fuel supply means, in a state in which the fuel supply timing is set to an earlier one of different timings in one cycle, after the fuel supply at the previous fuel supply timing is completed, and thereafter. If a predetermined acceleration request is made by the fuel supply timing of, the acceleration fuel supply means for forcibly supplying fuel at a later fuel supply time is included so as to meet the predetermined acceleration request. The fuel supply control device for an internal combustion engine according to any one of claims 1 to 6, which is configured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31693195A JP3711602B2 (en) | 1995-12-05 | 1995-12-05 | Fuel supply control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31693195A JP3711602B2 (en) | 1995-12-05 | 1995-12-05 | Fuel supply control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09158767A true JPH09158767A (en) | 1997-06-17 |
JP3711602B2 JP3711602B2 (en) | 2005-11-02 |
Family
ID=18082529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31693195A Expired - Lifetime JP3711602B2 (en) | 1995-12-05 | 1995-12-05 | Fuel supply control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3711602B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000591A1 (en) * | 1997-06-27 | 1999-01-07 | Robert Bosch Gmbh | System for operating an internal combustion engine with direct injection, specially in a motor vehicle |
US6237561B1 (en) | 1998-10-19 | 2001-05-29 | Nissan Motor Co., Ltd. | Direct injection engine fuel injection control apparatus and method |
JP2001248482A (en) * | 2000-02-29 | 2001-09-14 | Hitachi Ltd | Control device for cylinder injection type internal combustion engine |
JP2002013428A (en) * | 2000-06-30 | 2002-01-18 | Mitsubishi Motors Corp | Cylinder injection internal combustion engine |
WO2005075803A1 (en) * | 2004-02-09 | 2005-08-18 | Hitachi, Ltd. | Engine controller |
JP2008014162A (en) * | 2006-07-03 | 2008-01-24 | Mazda Motor Corp | Control device for dual fuel engine |
-
1995
- 1995-12-05 JP JP31693195A patent/JP3711602B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000591A1 (en) * | 1997-06-27 | 1999-01-07 | Robert Bosch Gmbh | System for operating an internal combustion engine with direct injection, specially in a motor vehicle |
US6202624B1 (en) | 1997-06-27 | 2001-03-20 | Robert Bosch Gmbh | System for operating an internal combustion engine with direct injection, specially in a motor vehicle |
US6237561B1 (en) | 1998-10-19 | 2001-05-29 | Nissan Motor Co., Ltd. | Direct injection engine fuel injection control apparatus and method |
JP2001248482A (en) * | 2000-02-29 | 2001-09-14 | Hitachi Ltd | Control device for cylinder injection type internal combustion engine |
JP2002013428A (en) * | 2000-06-30 | 2002-01-18 | Mitsubishi Motors Corp | Cylinder injection internal combustion engine |
WO2005075803A1 (en) * | 2004-02-09 | 2005-08-18 | Hitachi, Ltd. | Engine controller |
US8001767B2 (en) | 2004-02-09 | 2011-08-23 | Hitachi, Ltd. | Engine controller |
JP2008014162A (en) * | 2006-07-03 | 2008-01-24 | Mazda Motor Corp | Control device for dual fuel engine |
Also Published As
Publication number | Publication date |
---|---|
JP3711602B2 (en) | 2005-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100314515B1 (en) | Controller for an internal combustion engine | |
US6708668B2 (en) | Control system and method for direct-injection spark-ignition engine | |
JP4148233B2 (en) | Engine fuel injection control device | |
US7198031B2 (en) | Control device of internal combustion engine | |
JP3815006B2 (en) | Control device for internal combustion engine | |
EP1859140B1 (en) | Control apparatus for internal combustion engine | |
JP2006138252A (en) | Control device for internal combustion engine | |
JPH1122533A (en) | Control device for direct injection spark ignition internal combustion engine | |
JP3971004B2 (en) | Combustion switching control device for internal combustion engine | |
JPH10339202A (en) | Cylinder-injection type fuel control device | |
US6990948B2 (en) | Direct injection engine system and start-up method for direct injection engine | |
JP3774992B2 (en) | Engine intake control device | |
JP3711602B2 (en) | Fuel supply control device for internal combustion engine | |
JP2004507654A (en) | Method for heating catalyst in exhaust gas of internal combustion engine | |
JP4506595B2 (en) | Control device for internal combustion engine | |
US6408816B1 (en) | Control apparatus and method for direct-injection spark-ignition internal combustion engine | |
JPH0972229A (en) | Controller for internal combustion engine whose power is assisted with electric motor | |
JP3175549B2 (en) | Control device for internal combustion engine assisted by electric motor | |
JP4339599B2 (en) | In-cylinder injection internal combustion engine control device | |
JP3962920B2 (en) | Fuel injection control device for in-cylinder internal combustion engine | |
JP2002097980A (en) | Exhaust emission control device | |
JP3677947B2 (en) | Fuel injection control device for internal combustion engine | |
JP4581889B2 (en) | Engine control device | |
JP3680245B2 (en) | Fuel injection control device for internal combustion engine | |
JP4123093B2 (en) | Fuel injection control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040514 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050518 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050808 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080826 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090826 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090826 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100826 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110826 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120826 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120826 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130826 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |