JP3680245B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP3680245B2
JP3680245B2 JP03583499A JP3583499A JP3680245B2 JP 3680245 B2 JP3680245 B2 JP 3680245B2 JP 03583499 A JP03583499 A JP 03583499A JP 3583499 A JP3583499 A JP 3583499A JP 3680245 B2 JP3680245 B2 JP 3680245B2
Authority
JP
Japan
Prior art keywords
engine
air
fuel ratio
fuel
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03583499A
Other languages
Japanese (ja)
Other versions
JP2000234541A (en
Inventor
純一 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP03583499A priority Critical patent/JP3680245B2/en
Publication of JP2000234541A publication Critical patent/JP2000234541A/en
Application granted granted Critical
Publication of JP3680245B2 publication Critical patent/JP3680245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、要求機関負荷に応じて内燃機関の燃焼空燃比を制御する内燃機関の燃料噴射制御装置に関する。
【0002】
【従来の技術】
機関の各気筒内に直接燃料を噴射する筒内燃料噴射弁を備え、必要に応じて機関の運転空燃比をリーン空燃比とリッチ空燃比とに制御するとともに、機関燃焼モードをリーン空燃比成層燃焼と均質混合気燃焼とに切り換える内燃機関が知られている。
【0003】
このような筒内噴射式内燃機関では、例えば機関の軽中負荷運転時等には各気筒の圧縮行程に筒内燃料噴射弁から燃料噴射を行い、可燃混合気を点火プラグ付近に成層させることにより全体として極めてリーンな空燃比で機関を運転することを可能としている。また、これらの機関では高負荷運転時には各気筒の吸気行程に燃料噴射を行い燃焼室全体に均質な可燃空燃比の混合気を形成する均質混合気燃焼を行うことにより機関出力の増大を可能としている。すなわち、これらの筒内燃料噴射機関では、機関負荷条件に応じて機関の運転モードがリーン空燃比の成層燃焼モードと均質混合気燃焼モードとの間で切り換えられる。
【0004】
一方、リーン空燃比の排気中のNOX を浄化するNOX 吸蔵還元触媒を備えた排気浄化装置が知られている。NOX 吸蔵還元触媒は流入する排気の空燃比がリーンのときに排気中のNOX を吸収し、流入する排気の空燃比が理論空燃比、またはそれ以下のリッチ空燃比になると吸収したNOX を放出し、還元浄化する性質を有する。このようなNOX 吸蔵還元触媒を用いた排気浄化装置では、リーン空燃比での運転を続けた後、機関に要求される負荷とは無関係に機関をリッチ空燃比で運転してNOX 吸蔵還元触媒から吸収したNOX を放出させ、還元浄化する必要がある。
【0005】
この種の筒内燃料噴射式内燃機関の例としては、例えば特開平7−332071号公報に記載されたものがある。
同公報の機関は排気通路にNOX 吸蔵還元触媒を備えており、極めてリーンな空燃比の成層燃焼からリッチ空燃比の均質混合気燃焼まで機関運転状態に応じて広い空燃比範囲で運転される。また、同公報の機関はリーン空燃比運転中にNOX 吸蔵還元触媒に吸収されたNOX を放出、還元浄化するために、リーン空燃比運転がある程度の時間継続すると機関に要求される負荷(機関運転状態)とは無関係に所定時間だけ機関運転モードをリッチ空燃比の均質混合気燃焼モードに切り換えるリッチスパイク操作を行う。
【0006】
ところで、同公報の機関は運転者のアクセルペダル操作とは独立して作動する電子制御スロットル弁を備えており、機関の成層燃焼モードではスロットル弁開度はほぼ全開に近い開度に維持される。このため、同公報の機関は成層燃焼モードでは機関運転状態を制御する制御量(例えば点火時期、燃料噴射量、燃料噴射時期、スロットル弁開度等)を運転者のアクセルペダル踏込み量(アクセル開度)と機関回転数とを用いて予め定めた関係に基づいて設定し機関の運転状態を制御している。また、リッチスパイク時には、リーン空燃比の成層燃焼モードからリッチ空燃比の均質混合気燃焼モードに急激に運転モードを切り換えると燃焼モードの相違と空燃比の変化とにより機関出力トルクの急変が生じる場合がある。このため、同公報の機関ではトルク変動が発生することを防止するために、リッチスパイク操作時にはリッチ空燃比均質燃焼モードに移行後も含めて成層燃焼モードと同様にアクセル開度と機関回転数とに基づいて上記制御量を設定するとともに、成層燃焼モード時の値からリッチ空燃比均質混合気燃焼モードの値まで上記制御量を徐々に変化させるようにしている。
【0007】
【発明が解決しようとする課題】
ところが、上記前記特開平7−332071号公報の機関ではリッチスパイク操作時に機関の制御量、特に燃料噴射量をアクセル開度と機関回転数とに基づいて設定しているため問題が生じる場合がある。
すなわち、同公報ではリッチスパイク操作時の燃料噴射量、スロットル弁開度等を含めた機関の制御量はアクセル開度と機関回転数とに基づいて予め準備された数値マップから決定される。また、この制御量決定に使用する数値マップとしてはリーン空燃比成層燃焼モード用マップとリッチ空燃比均質混合気燃焼モード用マップ、及び中間の空燃比での運転モード用マップが準備されており、空燃比切り換え時には順次使用するマップを切り換えることにより制御量を時間とともに変化させてリーン空燃比成層燃焼モードからリッチ空燃比均質混合気燃焼モードに移行するようにしている。
【0008】
このため、例えば機関がリーン空燃比運転からリッチ空燃比均質混合気燃焼モードに移行したときにはスロットル弁開度と燃料噴射量とはリッチ空燃比均質混合気燃焼モード用の数値マップからアクセル開度と機関回転数とに基づいて決定される値に直ちに変更されることになる。ところが、実際の運転ではスロットル弁開度は比較的急速に変化して短時間で設定値になるが、実際に機関に吸入される空気量はスロットル弁開度の変化に対して遅れるためスロットル弁開度変化直後は機関吸入空気量はスロットル弁開度に対応した値になっていない場合がある。例えば、リーン空燃比運転からリッチ空燃比均質混合気燃焼モードに運転が切り換わるとスロットル弁開度はアクセル開度と機関回転数とに基づいてリッチ空燃比均質混合気燃モード用マップから定まる値まで低減され、同様に燃料噴射量はマップに基づいて増量されて所定のリッチ空燃比が達成される。しかし、切り換え直後は実際の機関吸入空気量は変化後のスロットル弁開度に対応した値まで充分に低下していない場合があり、切り換え直後はマップから定まる燃料噴射量では所定のリッチ空燃比を得ることはできず、一時的に機関の実際の燃焼空燃比が理論空燃比近傍のリーン空燃比になってしまう場合が生じる。NOX 吸蔵還元触媒は、リーン空燃比領域では排気空燃比が理論空燃比に近づくほどNOX の吸蔵能力が低下するため、リッチスパイク操作時のリッチ空燃比均質混合気燃焼モード移行直後に上記のように一時的に機関空燃比が理論空燃比近傍のリーン空燃比で運転される状態が生じると吸収されていたNOX の一部が浄化されないまま放出されてしまう場合がある。
【0009】
このため、上記公報の機関ではリッチスパイク操作実施毎に未浄化のNOX が大気に放出され排気性状が悪化する問題が生じる。
また、上記公報の機関では、リッチスパイク操作時に成層燃焼モードと均質混合気燃焼モードとの間で機関運転モードを切り換えているが、機関運転モードの切り換えを伴わないリッチスパイク操作(例えばリーン空燃比運転時に機関が均質混合気燃焼モードで運転されている場合)においても機関燃焼空燃比がリッチ空燃比に変化したときにアクセル開度と機関回転数とに基づいて燃料噴射量を決定していると同様に機関吸入空気量の変化遅れによる排気性状の悪化等の問題が生じる。
【0010】
また、機関のリッチスパイク操作はNOX 吸蔵還元触媒からNOX を放出させるべきとき以外にも、後述するブレーキ作動負圧確保の必要がある場合にも実行されるため、この場合にもNOX 吸蔵還元触媒には理論空燃比近傍のリーン空燃比排気が流入し未浄化のNOX が大気に放出されるようになるおそれがある。
本発明は上記問題に鑑み、リッチスパイク操作時に短時間で実際の機関燃焼空燃比をリッチ空燃比に移行させNOX 吸蔵還元触媒を使用した場合にも排気性状の悪化を防止可能な内燃機関の燃料噴射制御装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
請求項1に記載の発明によれば、要求機関負荷に応じて機関燃焼空燃比を制御する内燃機関の燃料噴射制御装置であって、機関の燃料噴射を機関吸入空気量と機関回転数とに基づいて制御する第1の燃料噴射制御手段と、機関の燃料噴射を要求機関負荷と機関回転数とに基づいて設定する第2の燃料噴射制御手段とを備え、機関がリーン空燃比で運転されているときに、要求機関負荷とは無関係に機関補機の要求により機関をリッチ空燃比で運転するリッチスパイク操作を行い、前記リッチスパイク操作における空燃比の切り換え時に、機関をリーン空燃比で運転する間は前記第2の燃料噴射制御手段により機関燃料噴射を制御し、機関リッチ空燃比で運転する間は前記第1の燃料噴射制御手段により機関の燃料噴射を制御する内燃機関の燃料噴射制御装置が提供される。
【0012】
すなわち、請求項1の発明ではリッチスパイク操作実施時には機関をリーン空燃比で運転する間は従来と同様に機関燃料噴射は要求機関負荷(例えばアクセル開度)と機関回転数とに基づいて制御されるが、機関の燃焼空燃比がリッチ空燃比に切り換えられると機関の燃料噴射は吸入空気量と機関回転数とに基づいて制御されるようになる。このため、リッチ空燃比運転に移行後は機関燃料噴射量も実際の吸入空気量に応じて設定されるようになる。従って、リッチ空燃比均質混合気燃焼モードに移行直後で実際の機関吸入空気量がスロットル弁開度に対応した値になっていない場合にも燃料噴射量は実際の吸入空気量に基づいて機関燃焼空燃比を所定のリッチ空燃比にする値に設定されるようになり、機関燃焼空燃比をリッチ空燃比に切り換え直後から所定のリッチ空燃比を得ることができる。
【0013】
請求項2に記載の発明によれば、筒内に直接燃料を噴射する筒内燃料噴射弁を備え、各気筒の圧縮行程中に燃料を噴射してリーン空燃比成層燃焼を行う成層燃焼モードと、各気筒の吸気行程中に燃料を噴射して均質混合気燃焼を行う均質混合気燃焼モードとを切り換えて運転する内燃機関の燃料噴射制御装置であって、機関の燃料噴射を機関吸入空気量と機関回転数とに基づいて制御する第1の燃料噴射制御手段と、機関の燃料噴射を要求機関負荷と機関回転数とに基づいて設定する第2の燃料噴射制御手段とを備え、要求機関負荷に応じて前記成層燃焼モードと前記均質混合気燃焼モードとの運転切り換えを行うとともに、要求機関負荷とは無関係に機関補機の要求によりリッチ空燃比の均質混合気燃焼モードで機関を運転するリッチスパイク操作を行い、機関がリーン空燃比成層燃焼モードで運転されているときの前記リッチスパイク操作実施中には、機関をリーン空燃比で運転する間は前記第2の燃料噴射制御手段により機関燃料噴射を制御し、機関リッチ空燃比の均質混合気燃焼モードで運転する間は前記第1の燃料噴射制御手段により機関の燃料噴射を制御する内燃機関の燃料噴射制御装置が提供される。
【0014】
すなわち、請求項2の発明ではリッチスパイク操作実施時には機関をリーン空燃比で運転する間は従来と同様に機関燃料噴射は要求機関負荷(例えばアクセル開度)と機関回転数とに基づいて制御されるが、機関の運転がリッチ空燃比均質混合気燃焼モードに切り換えられると機関の燃料噴射は吸入空気量と機関回転数とに基づいて制御されるようになる。このため、リッチ空燃比均質混合気燃焼モードに移行後は機関燃料噴射量も実際の吸入空気量に応じて設定されるようになる。従って、リッチ空燃比均質混合気燃焼モードに移行直後で実際の機関吸入空気量がスロットル弁開度に対応した値になっていない場合にも燃料噴射量は実際の吸入空気量に基づいて機関燃焼空燃比を所定のリッチ空燃比にする値に設定されるようになり、リッチ空燃比均質燃焼モード切り換え直後から所定のリッチ空燃比を得ることができる。
【0015】
請求項3に記載の発明によれば、前記機関補機は、機関排気通路に配置され流入する排気空燃比がリーンの時に排気中のNOX を吸収し流入する排気空燃比がリッチになったときに吸収したNOX を放出、還元浄化するNOX 吸蔵還元触媒であり、前記リッチスパイク操作はNOX 吸蔵還元触媒から吸収したNOX を放出させ、還元浄化するときに実行される請求項1または請求項2に記載の内燃機関の燃料噴射制御装置が提供される。
【0016】
すなわち、請求項3の発明ではNOX 吸蔵還元触媒から吸収したNOX を放出させるためにリッチスパイク操作を行う場合にも、リッチ空燃比均質混合気燃焼モードへの切り換え直後から実際の機関燃焼空燃比が所定のリッチ空燃比となるため、理論空燃比近傍のリーン空燃比排気がNOX 吸蔵還元触媒に流入することがなくなり未浄化のNOX の大気への放出が防止される。
【0017】
請求項4に記載の発明によれば、更に、機関排気通路に配置され排気の空燃比を検出する空燃比センサを備え、前記リッチスパイク操作時に前記空燃比センサ出力に基づいて機関燃焼空燃比を予め定めた空燃比に制御する請求項1または請求項2に記載の内燃機関の燃料噴射制御装置が提供される。
すなわち、請求項4の発明ではリッチスパイク操作時に排気空燃比センサで検出された実際の排気空燃比(機関燃焼空燃比)に基づいて機関の燃焼空燃比が制御されるため、リッチスパイク操作時の空燃比制御の精度が向上する。
【0018】
【発明の実施の形態】
以下、添付図面を用いて本発明の実施形態について説明する。
図1は本発明を自動車用内燃機関に適用した場合の実施形態の概略構成を示す図である。
図1において、1は自動車用内燃機関を示す。本実施形態では、機関1は#1から#4の4つの気筒を備えた4気筒ガソリン機関とされ、各気筒には気筒内に直接燃料を噴射する筒内燃料噴射弁111から114が設けられている。後述するように、本実施形態の内燃機関1は、理論空燃比より高い(リーン)空燃比から理論空燃比より低い(リッチ)空燃比までの広い範囲の空燃比で運転可能な機関とされている。
【0019】
また、本実施形態では#1から#4の気筒は互いに点火時期が連続しない2つの気筒からなる2つの気筒群にグループ分けされている。(例えば、図1の実施形態では、気筒点火順序は1−3−4−2であり、#1、#4の気筒と#2、#3の気筒とがそれぞれ気筒群を構成している。)また、各気筒の排気ポートは気筒群毎に排気マニホルドに接続され、気筒群毎の排気通路に接続されている。図1において、21aは#1、#4気筒からなる気筒群の排気ポートを個別排気通路2aに接続する排気マニホルド、21bは#2、#4気筒からなる気筒群の排気ポートを個別排気通路2bに接続する排気マニホルドである。本実施形態では、個別排気通路2a、2b上には、公知の三元触媒からなるスタートキャタリスト(以下「SC」と呼ぶ)5aと5bがそれぞれ配置されている。また、個別排気通路2a、2bはSC下流側で共通の排気通路2に合流している。
【0020】
共通排気通路2上には、後述するNOX 吸蔵還元触媒7が配置されている。図1に29a、29bで示すのは、個別排気通路2a、2bのスタートキャタリスト5a、5b上流側に配置された空燃比センサ、31で示すのは、排気通路2のNOX 吸蔵還元触媒7下流側に配置された空燃比センサである。空燃比センサ29a、29b及び31は、広い空燃比範囲で排気空燃比に対応する電圧信号を出力する、いわゆるリニア空燃比センサとされている。
【0021】
図1に10bで示すのは機関各気筒の吸気ポートを吸気通路10に接続する吸気マニホルド、10aは吸気通路10に設けられたサージタンクである。
また、本実施形態では#2、#3気筒の個別排気通路2bのSC5b上流側と機関吸気通路10のサージタンク10aとはEGR通路43で接続されている。更に、EGR通路43上にはEGR通路を通って排気通路2bから吸気通路10に還流する排気流量を制御する流量制御弁からなるEGR弁41が設けられている。EGR弁41は後述するECU30からの制御信号に応じて作動するステッパモータ、負圧アクチュエータ等の適宜な形式のアクチュエータ41aを備え、ECU30からの制御信号に応じた開度をとる。
【0022】
更に、本実施形態では吸気通路10上にはスロットル弁15が設けられている。本実施形態のスロットル弁15はいわゆる電子制御スロットル弁とされており、ステッパモータ等の適宜な形式のアクチュエータ15aにより駆動され後述するECU30からの制御信号に応じた開度をとる。
図1に30で示すのは機関1の電子制御ユニット(ECU)である。ECU30は、本実施形態ではRAM、ROM、CPUを備えた公知の構成のマイクロコンピュータとされ、機関1の点火時期制御や燃料噴射制御等の基本制御を行なっている。また、本実施形態では、ECU30は上記の基本制御を行う他に、後述するように機関運転状態に応じて筒内噴射弁111から114の燃料噴射モードを変更し機関の運転空燃比を変更する制御を行なうとともに、更にNOX 吸蔵還元触媒7からのNOX 放出操作やブレーキ負圧確保のために機関のリーン空燃比運転中に運転空燃比をリッチ空燃比に切り換えるリッチスパイク操作を行なっている。
【0023】
ECU30の入力ポートには、空燃比センサ29a、29bからスタートキャタリスト5a、5b入口における排気空燃比を表す信号と、空燃比センサ31からNOX 吸蔵還元触媒7出口における排気空燃比を表す信号が、また、図示しない機関吸気マニホルドに設けられた吸気圧センサ35から機関の吸気管圧力に対応する信号がそれぞれ入力されている他、機関クランク軸(図示せず)近傍に配置された回転数センサ33から機関クランク軸一定回転角毎にパルス信号が入力されている。更に、本実施形態では、ECU30の入力ポートには機関1のアクセルペダル(図示せず)近傍に配置したアクセル開度センサ37から運転者のアクセルペダル踏込み量(アクセル開度)を表す信号が入力されている。ECU30は、所定間隔毎に吸気圧センサ35出力とアクセル開度センサ37出力とをAD変換して吸気管圧力PMとアクセル開度ACCPとしてECU30のRAMの所定領域に格納するとともに、回転数センサ33からのパルス信号の間隔から機関回転数NEを算出し、RAMの所定の領域に格納している。また、ECU30の出力ポートは、各気筒への燃料噴射量及び燃料噴射時期を制御するために、図示しない燃料噴射回路を介して各気筒の燃料噴射弁111から114に接続されている他、スロットル弁15のアクチュエータ15bに図示しない駆動回路を介して接続されスロットル弁15の開度を制御している。
【0024】
また、ECU30はEGR弁41のアクチュエータ41aに図示しない駆動回路介して接続されEGR弁41開度を制御して、機関運転状態に応じて排気通路2bの排気の一部を吸気通路10に還流するEGR操作を実施する。
本実施形態では、機関1の通常の運転時(後述するリッチスパイク操作が実施されていない時)にはECU30は運転条件に応じて機関1を以下の5つのモードのいずれかで運転する。
【0025】
▲1▼ リーン空燃比成層燃焼(圧縮行程1回噴射)
▲2▼ リーン空燃比弱成層燃焼(吸気行程/圧縮行程2回噴射)
▲3▼ リーン空燃比均質混合気燃焼(吸気行程1回噴射)
▲4▼ 理論空燃比均質混合気燃焼(吸気行程1回噴射)
▲5▼ リッチ空燃比均質混合気燃焼(吸気行程1回噴射)
すなわち、機関1の軽負荷運転領域では、上記モード▲1▼のリーン空燃比成層燃焼が行なわれる。機関1は気筒内に吸入空気のスワール(旋回流)を生じさせるスワールポートを有する吸気弁と通常のストレートポートを有する吸気弁との2つの吸気弁を備えており、ストレートポートに連通する吸気通路に設けられたスワールコントロールバルブ(SCV)(図示せず)の開度を調節することによりスワールポートから気筒内に流入する吸気量を制御することが可能となっている。成層燃焼を行なう場合には、SCV開度は全閉とされスワールポートからの吸気量を増大し、気筒内に強いスワールを生成させる。また、この状態では筒内燃料噴射は各気筒の圧縮行程後半に1回のみ行なわれ、噴射された燃料は気筒点火プラグ近傍に可燃混合気の層を形成する。また、この運転状態での燃料噴射量は極めて少なく、気筒内の全体としての空燃比は25から30程度もしくはそれ以上になる。
【0026】
また、上記モード▲1▼の状態から負荷が増大して低負荷運転領域になると、上記モード▲2▼のリーン空燃比弱成層燃焼が行なわれる。機関負荷が増大するにつれて気筒内に噴射する燃料は増量されるが、この負荷領域では圧縮行程後半の燃料噴射に加えて、予め吸気行程前半に燃料を噴射することにより目標量の燃料を気筒に供給するようにしている。吸気行程前半に気筒内に噴射された燃料は着火時までに極めてリーンな均質混合気を生成する。圧縮行程後半ではこの極めてリーンな均質混合気中に更に燃料が噴射され点火プラグ近傍に着火可能な可燃混合気の層が生成される。着火時にはこの可燃混合気層が燃焼を開始し周囲の希薄な混合気層に火炎が伝播するため安定した燃焼が行なわれるようになる。この状態では吸気行程と圧縮行程での噴射により供給される燃料量はモード▲1▼より増量されるが、全体としての空燃比はやや低いリーン(例えば空燃比で20から30程度)になる。
【0027】
更に機関負荷が増大すると、機関1では上記モード▲3▼のリーン空燃比均質混合気燃焼が行なわれる。この状態ではSCVは全開とされ吸気の大部分はストレートポートから気筒内に流入する。また、この状態では燃料噴射は吸気行程前半に1回のみ実行され、燃料噴射量は上記モード▲2▼より更に増量される。この状態で気筒内に生成される均質混合気は理論空燃比に比較的近いリーン空燃比(例えば空燃比で15から25程度)となる。
【0028】
更に機関負荷が増大して機関高負荷運転領域になると、モード▲3▼の状態から更に燃料が増量され、上記モード▲4▼の理論空燃比均質混合気運転が行なわれる。この状態では、気筒内には理論空燃比の均質な混合気が生成されるようになり、機関出力が増大する。また、更に機関負荷が増大して機関の全負荷運転になると、モード▲4▼の状態から燃料噴射量が更に増量されモード▲5▼のリッチ空燃比均質混合気運転が行なわれる。この状態では、気筒内に生成される均質混合気の空燃比はリッチ(例えば空燃比で12から14程度)になる。
【0029】
本実施形態では、アクセル開度(運転者のアクセルペダル踏込み量)と機関回転数とに応じて予め実験等に基づいて最適な運転モード(上記▲1▼から▲5▼)が設定されており、ECU30のROMにアクセル開度と機関回転数とを用いたマップとして格納してある。機関1の運転中、ECU30はアクセル開度センサ37で検出したアクセル開度と機関回転数とに基づいて、現在上記▲1▼から▲5▼のいずれの運転モードを選択すべきかを決定し、それぞれのモードに応じて燃料噴射量、燃料噴射時期及び回数、点火時期、スロットル弁開度、EGR量(EGR弁開度)等の機関の運転状態を制御する制御量を決定する。
【0030】
また、モード▲4▼(理論空燃比均質混合気燃焼)が選択された場合には、ECU30は更に上記により算出した燃料噴射量を、機関排気空燃比が理論空燃比となるように空燃比センサ29a、29bの出力に基づいてフィードバック補正する空燃比制御を行なう。
より詳細には、上記▲1▼から▲3▼のモード(リーン空燃比燃焼)が選択された場合、ECU30は上記▲1▼から▲3▼のモード毎に予め準備されたマップに基づいて、アクセル開度と機関回転数とから燃料噴射量、燃料噴射時期、スロットル開度、EGR量及び点火時期等の制御量を決定する。アクセル開度は運転者の要求する機関負荷を表している。従って、モード▲1▼から▲3▼では燃料噴射量等の各制御量の値は要求機関負荷と機関回転数とに基づいて設定される。
【0031】
また、上記▲4▼と▲5▼のモード(理論空燃比またはリッチ空燃比均質混合気燃焼)が選択された場合には、ECU30は上記▲4▼と▲5▼のモード毎に予め準備されたマップに基づいて、スロットル弁開度と機関回転数、及び吸気圧センサ35で検出した吸気管圧力とに基づいて燃料噴射量等の制御量を設定する。一般に、機関吸入空気量は機関回転数と吸気管負圧との関数として表される。また、機関吸入空気量と機関回転数とは機関負荷状態を表すパラメータとして使用される。このため、モード▲4▼と▲5▼とでは、燃料噴射量等の各制御量は機関回転数と吸気管負圧とから定まる機関吸入空気量に更に機関回転数を考慮して所望の空燃比を得るのに必要な値に設定される。すなわち、本実施形態ではモード▲4▼、▲5▼の均質混合気燃焼運転では燃料噴射量等の各制御量の値は機関吸入空気量と機関回転数とに基づいて設定される。
【0032】
また、スロットル弁15開度はモード▲1▼から▲3▼では全開に近い領域でアクセル開度に応じて制御される。この領域ではアクセル開度が低下するとスロットル弁開度も低減されるが、スロットル弁全開相当の領域であるためスロットル弁開度が変化しても吸気管圧力は略一定になり、ほとんど吸気絞りは生じない。
一方モード▲4▼、▲5▼ではスロットル弁開度はアクセル開度に略等しい開度に制御される。すなわち、アクセル開度(アクセルペダル踏込み量)が0のときにはスロットル開度も0(全閉)に、アクセル開度が100パーセントのとき(アクセルペダルがいっぱいに踏み込まれたとき)にはスロットル開度も100パーセント(全開)にセットされる。
【0033】
また、EGR弁41開度は、モード▲1▼では比較的多量のEGRガスを還流させるように設定され、モード▲2▼から▲3▼になるにつれてEGRガス量が低下するように制御される。また、モード▲4▼、▲5▼ではEGRはほぼ停止される。
次に、本実施形態のNOX 吸蔵還元触媒7について説明する。
本実施形態のNOX 吸蔵還元触媒7は、例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa 、リチウムLi 、セシウムCs のようなアルカリ金属、バリウムBa 、カルシウムCa のようなアルカリ土類、ランタンLa 、セリウムCe、イットリウムYのような希土類から選ばれた少なくとも一つの成分と、白金Ptのような貴金属とを担持したものである。NOX 吸蔵還元触媒は流入する排気ガスの空燃比がリーンのときに、排気中のNOX (NO2 、NO)を硝酸イオンNO3 - の形で吸収し、流入排気ガスがリッチになると吸収したNOX を放出するNOX の吸放出作用を行う。
【0034】
本実施形態では、リーン空燃比運転可能な機関1が使用されており、機関1がリーン空燃比で運転されているときにはNOX 吸蔵還元触媒は流入する排気中のNOX を吸収する。また、機関1がリッチ空燃比で運転されると、NOX 吸蔵還元触媒7は吸収したNOX を放出し、リッチ空燃比の排気中のHC、CO成分を用いて放出したNOX を還元浄化する。本実施形態では、リーン空燃比運転中にNOX 吸蔵還元触媒7に吸収されたNOX 量が増大すると、短時間機関空燃比をリーン空燃比からリッチ空燃比に切り換えるリッチスパイク運転を行い、NOX 吸蔵還元触媒からのNOX の放出と還元浄化とを行なうようにしている。
【0035】
次に、本実施形態の機関1のリッチスパイク操作について説明する。
本実施形態では、ECU30はNOX カウンタの値を増減することによりNOX 吸蔵還元触媒7が吸収保持しているNOX 量を推定する。NOX 吸蔵還元触媒7に単位時間当たりに吸収されるNOX の量はNOX 吸蔵還元触媒に単位時間当たりに流入する排気中のNOX 量、すなわち機関1で単位時間当たりに生成されるNOX 量に比例している。一方、機関で単位時間当たりに発生するNOX の量は機関への燃料供給量、空燃比、排気流量等によって定まるため、機関運転条件が定まればNOX 吸蔵還元触媒に吸収されるNOX 量を知ることができる。本実施形態では、予め機関運転条件(アクセル開度、機関回転数、吸入空気量、吸気管圧力、空燃比、燃料供給量、EGR量など)を変えて機関が単位時間当たりに発生するNOX 量を実測し、NOX 吸蔵還元触媒7に単位時間当たりに吸収されるNOX 量を、例えば機関負荷(燃料噴射量)と機関回転数とを用いた数値マップの形でECU30のROMに格納している。ECU30は一定時間毎(上記の単位時間毎)に機関負荷(燃料噴射量)と機関回転数とからこのマップを用いて単位時間当たりにNOX 吸蔵還元触媒に吸収されたNOX 量を算出し、NOX カウンタをこのNOX 吸収量だけ増大させる。これによりNOX カウンタの値は常にNOX 吸蔵還元触媒7に吸収されたNOX の量を表すようになる。ECU30は、機関のリーン空燃比運転中に、上記NOX カウンタの値が所定値以上に増大したときに、短時間機関を前述の▲5▼のモード(リッチ空燃比均質混合気燃焼)で運転するリッチスパイク操作を行なう。これにより、NOX 吸蔵還元触媒から吸収したNOX が放出され、還元浄化される。なお、機関がリッチ空燃比運転されると排気中のHC、COの量が増大し、NOX 吸蔵還元触媒からはNOX が放出され、排気中のHC、COにより還元される。ここで、単位時間当たりにNOX 吸蔵還元触媒から放出されて排気中のHC、COにより還元されるNOX の量は、排気の空燃比(排気中のHC、CO量)、排気流量により定まる。本実施形態では、予め機関運転条件(アクセル開度、機関回転数、吸入空気量、吸気管圧力、空燃比、燃料供給量、EGR量など)を変えて機関をリッチ空燃比で運転し、NOX 吸蔵還元触媒7から単位時間当たりに放出、還元浄化されるNOX 量を実測し、機関のリッチ空燃比運転時にNOX 吸蔵還元触媒7から単位時間当たり放出されるNOX 量を、例えば機関負荷(燃料噴射量)と機関回転数とを用いた数値マップの形でECU30のROMに格納している。ECU30は機関のリッチ空燃比運転時に一定時間毎(上記の単位時間毎)に機関負荷(燃料噴射量)と機関回転数とからこのマップを用いて単位時間当たりにNOX 吸蔵還元触媒から放出されるNOX 量を算出し、NOX カウンタをこのNOX 吸収量だけ減少させる。そして、リッチスパイク操作時には、このNOX カウンタの値が0になった時にリッチスパイク操作を終了する。
【0036】
すなわち、本実施形態では機関1のリーン空燃比運転が続きNOX吸蔵還元触媒7に吸蔵されたNOX量が所定量まで増大すると機関運転状態から要求される機関負荷とは無関係に機関をリッチ空燃比で運転するリッチスパイク操作が行われる。また、リッチスパイク操作はNOX吸蔵還元触媒の吸蔵したNOX量とは別に行われる場合がある。すなわち、本実施形態の機関ではモード(1)から(3)のリーン空燃比運転ではスロットル弁15は全開に近い開度とされているため吸気管の負圧が低く(絶対圧力が高く)なっている。一方、車両ブレーキに負圧を用いた倍力装置を使用するような場合には、常に倍力装置作動用の負圧を確保しておく必要があるが、リーン空燃比運転中は吸気管負圧が低くなっているためスロットル弁下流側の吸気通路から倍力装置に負圧を導入することができない。そこで、本実施形態では倍力装置に負圧タンクを設け、リーン空燃比運転中はこの負圧タンクに蓄えた負圧を用いて倍力装置を作動させるようにしている。また、倍力装置の作動により負圧タンク内の圧力が上昇(負圧が低下)した場合には上記と同様なリッチスパイク操作を行う。リーン空燃比運転が行われる負荷領域でリッチスパイク操作が行われるとスロットル弁15開度は低下しスロットル弁15下流側に大きな負圧が発生するようになる。本実施形態では倍力装置に負圧を供給する負圧タンク等の負圧が低下した場合にも機関の要求負荷とは無関係にリッチスパイク操作が行われる。
通常の運転中にモード(1)のリーン空燃比成層燃焼運転から加速等で機関負荷が増大する場合にはある程度の時間をかけて機関運転モードが(1)から(2)(3)(4)のモードを経て(5)のリッチ空燃比モードに切り換えられる。リッチスパイク操作時にはできるだけ早く空燃比をリッチに切り換えることが必要とされるが、モード(1)のリーン空燃比成層燃焼運転から直接モード(5)のリッチ空燃比均質混合気燃焼に切り換えると、燃焼モードの変化(成層燃焼から均質混合気燃焼)と空燃比の変化(リーン空燃比からリッチ空燃比)との両方が同時に生じるため機関の出力トルクが大きく変動してしまう。そこで、通常、リーン空燃比成層燃焼運転(モード(1))からのリッチスパイク操作時にもリッチ空燃比均質混合気燃焼運転(モード(5))に至るまでにモード(2)(3)で機関数回転程度の運転を行って徐々に空燃比と運転モードとを切り換えるようにしている。また、前述したように通常運転時のモード(5)(リッチ空燃比均質混合気燃焼)では機関の燃料噴射量等の制御量は機関吸入空気量と機関回転数(機関吸気管負圧と機関回転数)とに基づいて設定されているが、通常リッチスパイク操作時のモード(5)の運転時間は短いため、リッチスパイク操作時のモード(5)運転では、モード(1)から(3)と同様に要求機関負荷と機関回転数(アクセル開度と機関回転数)とに基づいて設定するようにして制御の簡素化が図られている。すなわち、従来はリッチスパイク操作時のモード(5)リッチ空燃比均質混合気空燃比燃焼)用に別途数値マップが準備されており、リッチスパイク中にモード(3)からモード(5)への切り換えが行われると引き続き要求機関負荷と機関回転数(アクセル開度と機関回転数)とに基づいて燃料噴射量をはじめとする各制御量が決定されていた。
【0037】
ところが、この場合燃料噴射量とスロットル弁開度とは要求機関負荷と機関回転数とに基づいて予め準備された数値マップから決定される値に直ちに変化することになるが、実際に機関に吸入される空気量はスロットル弁開度変化より遅れて変化するので変化後のスロットル弁開度に対応した値になるまでに多少の時間遅れが生じることになる。このため、モード▲5▼への切り換え時にはスロットル弁開度は直ちに低下しても実際の機関吸入空気量は直ちには低下しない。一方、燃料噴射量はモード▲5▼への切り換え直後からスロットル弁開度に対応した値に変更されるため、切り換え直後は燃料噴射量より実際の機関吸入空気量が多くなってしまい実際の機関空燃比が目標値(リッチ空燃比)よりリーン側にずれる問題が生じる。
【0038】
このため、従来リッチスパイク操作時に機関空燃比がリッチ空燃比(モード▲5▼)に切り換えられた直後に機関空燃比が理論空燃比近傍のリーン空燃比領域(例えば空燃比で20以下)で運転され、NOX 吸蔵還元触媒の吸蔵能力低下のために未浄化のNOX が大気に放出される場合が生じていた。
本実施形態では、リッチスパイク操作時のリッチ空燃比均質混合気燃焼モード時には燃料噴射量を機関吸入空気量と機関回転数とに基づいて設定することによりこの問題を解決している。すなわち、本実施形態ではリッチスパイク操作時に機関運転モードがモード▲5▼のリッチ空燃比均質混合気燃焼モードに切り換えられると燃料噴射量が吸気圧センサで検出された吸気管圧力と機関回転数とから定まる実際の機関吸入空気量と機関回転数とに基づいて所定のリッチ空燃比(例えば空燃比で12から14)を得る値に設定される。このため、機関運転モードがリッチ空燃比均質混合気燃焼モードに切り換えられた直後から燃料噴射量は実際の機関吸入空気量に対して所定のリッチ空燃比が得られる値に設定されるようになり、切り換え直後から安定したリッチ空燃比が得られるようになる。
【0039】
図2は、本実施形態のリッチスパイク操作時のスロットル弁開度TA、吸気管圧力PM、燃料噴射量QINJ及び機関燃焼空燃比A/Fの変化を示すタイミング図である。図2に示すようにモード▲1▼(リーン空燃比成層燃焼)の状態からリッチスパイク操作が開始されると、運転モードはモード▲2▼、モード▲3▼を経てモード▲5▼に切り換えられる。このときスロットル弁開度TAはモード▲2▼、モード▲3▼に切り換わったときにリッチスパイク操作時のそれぞれの運転モード用の数値マップに基づいてアクセル開度と機関回転数(要求機関負荷と機関回転数)とから定まる値に切り換えられる。この場合図2に示すように吸入空気量(吸気管圧力PM)はスロットル弁開度TAが変化しても直ちに変化後のスロットル弁開度に対応した値にはならず比較的緩やかに変化して、モード▲5▼の定常状態における空気量に到達する。
【0040】
また、本実施形態にもおいても燃料噴射量QINJはモード▲1▼から▲3▼ではアクセル開度と機関回転数とに基づいて設定されるため、図2に示すように運転モードが▲2▼、▲3▼に切り換えられる毎にスロットル弁開度TAと同様にステップ状に変化する。しかし、本実施形態ではモード▲3▼からモード▲5▼に運転状態が切り換えられると燃料噴射量QINJは機関吸入空気量と機関回転数(吸気管負圧と機関回転数)とに応じて設定されるようになるため、モード▲5▼切り換え直後は実際の吸入空気量に応じた値まで一旦急増し、その後吸入空気量(PM)の低下に合わせて減少する。このため、機関燃焼空燃比A/Fはモード▲3▼からモード▲5▼に運転モードが切り換えられると直ちに所定のリッチ空燃比(12から14程度)に変化するようになる。
【0041】
一方、図2の点線は従来のようにリッチスパイク時のモード▲5▼での運転時に要求機関負荷と機関回転数とに基づいて燃料噴射量を設定した場合のモード▲5▼開始直後における燃料噴射量QINJと機関空燃比A/Fとの変化を示している。この場合には図2に点線で示すように、モード▲3▼から▲5▼に切り換えが行われると燃料噴射量QINJはスロットル弁開度TAの変化に応じてステップ状に変化しモード▲5▼の運転の間一定値に維持される。ところが、前述したように実際には機関吸入空気量はスロットル弁開度TAの変化に対して遅れて変化するため、モード▲5▼の運転開始直後は充分に吸入空気量が減少していない。このため、燃料噴射量に対して吸入空気量が過大となり、吸入空気量が充分に低減してスロットル弁開度に対応した値になるまでの間機関空燃比A/Fは充分なリッチ空燃比にならない。このため、機関空燃比が理論空燃比近傍のリーン空燃比領域にとどまる時間が長くなり、NOX 吸蔵還元触媒から未浄化のNOX が放出されるようになる。
【0042】
図3は上述した燃料噴射量QINJの算出操作を示すフローチャートである。本操作はECU30により一定時間毎に実行されるルーチンとして行われる。
図3において、ステップ301では現在の機関の運転モード(モード▲1▼〜▲5▼)が読み込まれる。そして、ステップ303ではステップ301で読み込まれた現在の運転モードが通常運転時(リッチスパイク操作実行時以外の運転時)のモード▲4▼(理論空燃比均質混合気燃焼)かモード▲5▼(リッチ空燃比均質混合気燃焼)のいずれかであるか否かが判定され、いずれでもない場合には次にステップ305で現在のモードがリッチスパイク操作中のモード▲5▼(リッチ空燃比均質混合気燃焼)であるか否かが判定される。
【0043】
ステップ303で現在の機関運転モードが通常運転時のモード▲4▼または▲5▼、またはステップ305で現在の運転モードがリッチスパイク操作中のモード▲5▼であった場合にはステップ307が実行され、燃料噴射量QINJの値が吸気圧センサ35(図1)で検出された吸気管圧力PMと機関回転数NEとに基づいて予め準備された数値マップから決定される。これにより、燃料噴射量QINJは実際の機関回転数と実際の機関吸入空気量とに基づいて所定のリッチ空燃比を得ることができる値に設定され、機関空燃比は直ちに所定のリッチ空燃比に変化する。
【0044】
一方、ステップ303、305で現在の機関運転モードが通常運転時のモード▲4▼、▲5▼及びリッチスパイク操作中のモード▲5▼のいずれでもない場合には、ステップ309が実行され、燃料噴射量QINJはアクセル開度センサ37で検出されたアクセル開度ACCPと機関回転数とに基づいて設定される。これにより、モード▲1▼から▲3▼では常に燃料噴射量QINJは要求機関負荷と機関回転数とに応じた値に設定されるようになる。
【0045】
本実施形態では、上述したようにリッチスパイク操作時にモード▲5▼の運転が行われると直ちに機関空燃比は所定のリッチ空燃比に変化するため、NOX 吸蔵還元触媒から未浄化のNOX が放出されることが防止される。また、例えばNOX 吸蔵還元触媒の劣化は、NOX 吸蔵還元触媒に流入する排気空燃比がリーンからリッチに変化した時からNOX 吸蔵還元触媒出口での排気空燃比がリッチに変化するまでに要する時間に基づいて判定することができる。すなわち、リッチスパイク操作時にNOX 吸蔵還元触媒から吸収したNOX が放出されると排気中のHC、CO成分が放出されたNOX により酸化されるため、NOX 吸蔵還元触媒出口での排気空燃比は直ちにはリッチ空燃比に変化せず、NOX 吸蔵還元触媒からのNOX 放出が生じている間は理論空燃比近傍に維持され、NOX の放出が完了すると同時にリッチ空燃比に変化する。このため、リッチスパイク操作時に機関空燃比がリーンからリッチに切り換えられた時から、NOX 吸蔵還元触媒7下流側の空燃比センサ31で検出された排気空燃比がリッチ空燃比に変化するまでの時間を測定することにより、NOX 吸蔵還元触媒に吸収されたNOX 量を算出することができ、更に算出したNOX 吸蔵還元触媒の吸収NOX 量が所定値より低下した場合にはNOX 吸蔵還元触媒のNOX 吸蔵能力が低下、すなわちNOX 吸蔵還元触媒が劣化したと判定することができる。
【0046】
ところが、従来のようにリッチスパイク操作時に全て要求機関負荷と機関回転数とに基づいて燃料噴射量を設定していると、機関の運転モードがリッチ空燃比均質混合気燃焼モードに切り換えられても直ちには実際の空燃比はリッチ空燃比に変化せず、NOX 吸蔵還元触媒に流入する排気の空燃比にばらつきを生じるようになる。このため、上記の方法でNOX 吸蔵還元触媒の劣化を判定していると劣化の判定に誤差を生じる問題がある。
【0047】
これに対して、本実施形態ではリッチスパイク操作中のリッチ空燃比均質混合気運転時に直ちにNOX 吸蔵還元触媒に流入する排気空燃比が安定したリッチ空燃比に変化するため上記劣化判定の誤差を防止することが可能となっている。
なお、本実施形態では実際の機関吸入空気量を吸気管圧力と機関回転数とに基づいて求めているが、例えば吸気通路にエアフローメータを有する場合には、エアフローメータで直接検出した吸入空気量と機関回転数とに基づいてリッチスパイク操作中のリッチ空燃比均質混合気燃焼運転時の燃料噴射量を決定するようにしてもよい。
【0048】
また、本実施形態ではリッチスパイク操作中のリッチ空燃比均質混合気燃焼時には燃料噴射量は機関吸入空気量と機関回転数とに基づいて設定されるが、NOX 吸蔵還元触媒7上流側の排気通路の空燃比センサ29a、29bで検出した排気空燃比が所定のリッチ空燃比になるように、機関吸入空気量と機関回転数とに基づいて設定された燃料噴射量を更に空燃比センサ29a、29bの出力に基づいて補正するようにすれば、リッチスパイク操作時に空燃比を正確に所定のリッチ空燃比に制御することが可能となる。
【0049】
上述のように、上記実施形態ではリッチスパイク操作中のリッチ空燃比均質混合気燃焼時に燃料噴射量を機関吸入空気量と機関回転数とに基づいて設定することにより、リーン空燃比からリッチ空燃比への切り換え時に機関空燃比が所定のリッチ空燃比に変化する時間を短縮している。しかし、従来のように要求機関負荷と機関回転数とに基づいて燃料噴射量を設定しながら、上記時間を短縮することも可能である。
【0050】
前述したようにリーン空燃比からリッチ空燃比への切り換え時に所定のリッチ空燃比への到達が遅れる原因はスロットル弁開度変化に対して実際の機関吸入空気量変化の追従が遅れることによっている。このため、例えばリッチスパイク操作中のスロットル弁開度変化時(モード▲3▼から▲5▼への切り換え時)にスロットル弁開度の変化速度に応じて燃料を増量するようにしてもよい。この場合、例えばスロットル弁開度の変化速度(減少速度)が大きい場合には変化直後の実際の吸入空気量とスロットル弁開度に対応した吸入空気量との差が大きくなるため、スロットル弁開度の変化速度が大きいほど燃料を増量するようにすればよい。
【0051】
図4は、スロットル弁開度変化速度に応じた燃料の増量補正を行う場合の燃料噴射量補正操作を説明するフローチャートである。本操作はECU30により一定時間毎に実行される。
図4において操作がスタートすると、ステップ401ではスロットル弁開度TA、機関回転数NE及び現在の機関運転モード(モード▲1▼から▲5▼)が読み込まれ、ステップ403ではステップ401で読み込まれた現在の機関運転モードがリッチスパイク操作中のモード▲5▼(リッチ空燃比均質混合気燃焼モード)か否かが判定される。現在リッチスパイク操作中ののモード▲5▼で運転が行われている場合には次にステップ405に進み現在のスロットル弁開度TAの前回操作実行時からの変化量ΔTAが、ΔTA=TA−TAOLD として算出される。TAOLD は前回操作実行時にステップ401で読み込んだスロットル弁開度である。そして、ステップ407では燃料噴射量の増量係数fdltaがΔTAと機関回転数NEとに基づいて予め準備した数値マップから設定され、ステップ419ではアクセル開度と機関回転数とから定まる燃料噴射量QINJに増量係数fdltaを乗じた値が新たにQINJとして設定される。前述したように、増量係数fdltaはΔTAが負の大きな値になるほど大きな正の値かつfdlta>1となるように設定される。また、ΔTAが同一であればfdltaの値は機関回転数が高い程大きな値となる。
【0052】
上記によりQINJを補正後、ステップ411では現在のTAの値を用いてTAOLD の値を更新して操作を終了する。
図4の操作を行うことにより、リッチスパイク操作中にリッチ空燃比均質混合気燃焼モードになりスロットル弁開度TAが絞られると燃料噴射量が増量されるため、実際の機関吸入空気量が充分に減少していない場合でも機関の実際の空燃比は直ちにリッチ空燃比に変化するようになり、NOX 吸蔵還元触媒から未浄化のNOX が放出されることが防止される。
【0053】
なお、上記のようにスロットル弁開度変化量ΔTAに応じて燃料を増量する代りにリッチスパイク操作中に運転モードがリッチ空燃比均質混合気燃焼モードに切り換えられた直後所定時間だけ目標空燃比を更にリッチ側に設定するようにしてもよい。リッチ空燃比均質混合気燃焼モード変化直後の所定時間目標空燃比を更にリッチに設定することにより、吸入空気量変化が充分に低下しない間も機関空燃比が理論空燃比近傍のリーン空燃比になることが防止されるため、NOX 吸蔵還元触媒から未浄化のNOX が放出されることが防止される。
【0054】
【発明の効果】
各請求項に記載の発明によれば、リッチスパイク操作時に短時間で機関空燃比をリーン空燃比からリッチ空燃比に変化させることが可能となるため、NOX 吸蔵還元触媒を用いた場合にもリッチスパイク操作初期に未浄化のNOX が大気に放出されることを防止することが可能となる。
【図面の簡単な説明】
【図1】本発明を自動車用筒内噴射式内燃機関に適用した実施形態の概略構成を説明する図である。
【図2】本発明のリッチスパイク操作の一例を説明するタイミング図である。
【図3】図2のリッチスパイク操作を説明するフローチャートである。
【図4】リッチスパイク操作の他の例を説明するフローチャートである。
【符号の説明】
1…内燃機関
2…排気通路
7…NOX 吸蔵還元触媒
15…電子制御スロットル弁
111〜114…筒内噴射弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control device for an internal combustion engine that controls a combustion air-fuel ratio of the internal combustion engine in accordance with a required engine load.
[0002]
[Prior art]
In-cylinder fuel injection valve that directly injects fuel into each cylinder of the engine, and controls the engine operating air-fuel ratio to a lean air-fuel ratio and a rich air-fuel ratio as needed, and engine combustion mode to lean air-fuel ratio stratification Internal combustion engines that switch between combustion and homogeneous mixture combustion are known.
[0003]
In such an in-cylinder injection type internal combustion engine, for example, during light and medium load operation of the engine, fuel is injected from the in-cylinder fuel injection valve during the compression stroke of each cylinder, and the combustible mixture is stratified in the vicinity of the spark plug. This makes it possible to operate the engine with a very lean air-fuel ratio as a whole. Also, in these engines, during high-load operation, fuel injection is performed during the intake stroke of each cylinder, and homogeneous combustion is performed to form a homogeneous combustible air-fuel ratio mixture in the entire combustion chamber, thereby increasing engine output. Yes. That is, in these in-cylinder fuel injection engines, the operation mode of the engine is switched between the stratified combustion mode with the lean air-fuel ratio and the homogeneous mixture combustion mode in accordance with the engine load condition.
[0004]
On the other hand, NO in the exhaust of lean air-fuel ratioXNO to purifyXAn exhaust emission control device provided with an occlusion reduction catalyst is known. NOXThe NOx in the exhaust is reduced when the air-fuel ratio of the inflowing exhaust is lean.XNO is absorbed when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or a rich air-fuel ratio lower than that.XIt has the property of releasing and reducing and purifying. NO like thisXIn an exhaust purification system using an occlusion reduction catalyst, after continuing operation at a lean air-fuel ratio, the engine is operated at a rich air-fuel ratio regardless of the load required for the engine.XNO absorbed from the storage reduction catalystXNeeds to be released and reduced and purified.
[0005]
An example of this type of in-cylinder fuel injection internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-332071.
The engine of the publication is NO in the exhaust passage.XIt is equipped with an occlusion reduction catalyst and is operated in a wide air-fuel ratio range depending on the engine operating condition, from extremely lean air-fuel ratio stratified combustion to rich air-fuel ratio homogeneous mixture combustion. In addition, the engine disclosed in the publication discloses NO during the lean air-fuel ratio operation.XNO absorbed by the storage reduction catalystXIn order to release and reduce purification, when the lean air-fuel ratio operation continues for a certain period of time, the engine operation mode is changed to a rich air-fuel ratio homogeneous mixture combustion mode for a predetermined time regardless of the load required for the engine (engine operation state) Rich spike operation to switch to.
[0006]
By the way, the engine of the publication is provided with an electronically controlled throttle valve that operates independently of the driver's accelerator pedal operation, and the throttle valve opening degree is maintained at an almost nearly fully opened position in the stratified combustion mode of the engine. . For this reason, in the stratified combustion mode of the publication, the engine controls the amount of control (for example, ignition timing, fuel injection amount, fuel injection timing, throttle valve opening, etc.) for controlling the engine operating state. Degree) and the engine speed are set based on a predetermined relationship to control the operating state of the engine. Also, during a rich spike, when the operation mode is suddenly switched from the lean air-fuel ratio stratified combustion mode to the rich air-fuel ratio homogeneous mixture combustion mode, a sudden change in the engine output torque occurs due to the difference in the combustion mode and the change in the air-fuel ratio There is. For this reason, in order to prevent torque fluctuations in the engine disclosed in the publication, the accelerator opening and the engine speed are determined during the rich spike operation in the same manner as in the stratified combustion mode, including after the transition to the rich air-fuel ratio homogeneous combustion mode. The control amount is set based on the above, and the control amount is gradually changed from the value in the stratified combustion mode to the value in the rich air-fuel ratio homogeneous mixture combustion mode.
[0007]
[Problems to be solved by the invention]
However, in the engine disclosed in Japanese Patent Laid-Open No. 7-332071, a problem may occur because the engine control amount, particularly the fuel injection amount, is set based on the accelerator opening and the engine speed during the rich spike operation. .
That is, in this publication, the control amount of the engine including the fuel injection amount, the throttle valve opening, etc. at the time of the rich spike operation is determined from a numerical map prepared in advance based on the accelerator opening and the engine speed. In addition, as a numerical map used for determining the control amount, a lean air-fuel ratio stratified combustion mode map, a rich air-fuel ratio homogeneous mixture combustion mode map, and an operation mode map at an intermediate air-fuel ratio are prepared, When the air-fuel ratio is switched, the control amount is changed with time by switching the map to be used in sequence, so that the lean air-fuel ratio stratified combustion mode is shifted to the rich air-fuel ratio homogeneous mixture combustion mode.
[0008]
For this reason, for example, when the engine shifts from lean air-fuel ratio operation to rich air-fuel ratio homogeneous mixture combustion mode, the throttle valve opening and the fuel injection amount are determined from the numerical map for the rich air-fuel ratio homogeneous mixture combustion mode and the accelerator opening. The value is immediately changed to a value determined based on the engine speed. However, in actual operation, the throttle valve opening changes relatively rapidly and reaches the set value in a short time. However, since the amount of air actually drawn into the engine is delayed with respect to the change in the throttle valve opening, the throttle valve Immediately after the opening change, the engine intake air amount may not be a value corresponding to the throttle valve opening. For example, when the operation is switched from the lean air-fuel ratio operation to the rich air-fuel ratio homogeneous mixture combustion mode, the throttle valve opening is a value determined from the rich air-fuel ratio homogeneous mixture combustion mode map based on the accelerator opening and the engine speed. Similarly, the fuel injection amount is increased based on the map to achieve a predetermined rich air-fuel ratio. However, immediately after switching, the actual engine intake air amount may not be sufficiently reduced to a value corresponding to the throttle valve opening after the change. Immediately after switching, the predetermined rich air-fuel ratio is maintained at the fuel injection amount determined from the map. In some cases, the actual combustion air-fuel ratio of the engine temporarily becomes a lean air-fuel ratio near the stoichiometric air-fuel ratio. NOXIn the lean air-fuel ratio region, the NOx storage reduction catalyst becomes more NO as the exhaust air-fuel ratio approaches the stoichiometric air-fuel ratio.XAs a result, the engine air-fuel ratio is temporarily operated at a lean air-fuel ratio in the vicinity of the theoretical air-fuel ratio immediately after shifting to the rich air-fuel ratio homogeneous mixture combustion mode during the rich spike operation. NO absorbedXMay be released without being purified.
[0009]
For this reason, in the engine of the above publication, unpurified NO is obtained every time the rich spike operation is performed.XIs released into the atmosphere, and the exhaust properties deteriorate.
Further, in the engine of the above publication, the engine operation mode is switched between the stratified combustion mode and the homogeneous mixture combustion mode during the rich spike operation, but the rich spike operation (for example, lean air-fuel ratio) without switching the engine operation mode is performed. The fuel injection amount is determined based on the accelerator opening and the engine speed when the engine combustion air-fuel ratio changes to the rich air-fuel ratio even when the engine is operated in the homogeneous mixture combustion mode during operation. Similarly, problems such as deterioration of exhaust properties due to a delay in the change of the engine intake air amount occur.
[0010]
Also, rich spike operation of the engine is NOXNO from the storage reduction catalystXThis is also executed when it is necessary to secure the brake operating negative pressure, which will be described later, in addition to the time when the pressure should be released.XThe lean air-fuel ratio exhaust near the stoichiometric air-fuel ratio flows into the storage reduction catalyst and unpurified NOXMay be released into the atmosphere.
In view of the above-described problems, the present invention shifts the actual engine combustion air-fuel ratio to the rich air-fuel ratio in a short time during the rich spike operation, so that NO.XIt is an object of the present invention to provide a fuel injection control device for an internal combustion engine that can prevent deterioration of exhaust properties even when an occlusion reduction catalyst is used.
[0011]
[Means for Solving the Problems]
  According to the first aspect of the present invention, there is provided a fuel injection control device for an internal combustion engine that controls an engine combustion air-fuel ratio in accordance with a required engine load, wherein the fuel injection of the engine is made into an engine intake air amount and an engine speed. And a second fuel injection control means for setting the fuel injection of the engine based on the required engine load and the engine speed, and the engine is operated at a lean air-fuel ratio. A rich spike operation for operating the engine at a rich air-fuel ratio at the request of the engine auxiliary machine regardless of the required engine load, and when the air-fuel ratio is switched in the rich spike operation,While operating with a lean air-fuel ratioThe engine fuel injection is controlled by the second fuel injection control means, and the engineTheOperation with rich air-fuel ratioDoIn the meantime, a fuel injection control device for an internal combustion engine is provided which controls fuel injection of the engine by the first fuel injection control means.
[0012]
  That is, according to the first aspect of the present invention, when the rich spike operation is performed, the engineWhile operating with a lean air-fuel ratioAs in the prior art, engine fuel injection is controlled based on the required engine load (for example, accelerator opening) and the engine speed, but when the combustion air-fuel ratio of the engine is switched to the rich air-fuel ratio, the engine fuel injection is performed as intake air. It is controlled based on the amount and the engine speed. For this reason, after shifting to the rich air-fuel ratio operation, the engine fuel injection amount is also set according to the actual intake air amount. Therefore, even if the actual engine intake air amount does not correspond to the throttle valve opening immediately after shifting to the rich air-fuel ratio homogeneous mixture combustion mode, the fuel injection amount is based on the actual intake air amount. The air-fuel ratio is set to a value that makes the predetermined rich air-fuel ratio, and the predetermined rich air-fuel ratio can be obtained immediately after switching the engine combustion air-fuel ratio to the rich air-fuel ratio.
[0013]
  According to the second aspect of the present invention, the stratified charge combustion mode includes the in-cylinder fuel injection valve that directly injects fuel into the cylinder, and injects fuel during the compression stroke of each cylinder to perform lean air-fuel ratio stratified combustion, and A fuel injection control device for an internal combustion engine that operates by switching between a homogeneous mixture combustion mode in which fuel is injected during each intake stroke of each cylinder to perform homogeneous mixture combustion. And a first fuel injection control means for controlling the engine based on the engine speed, and a second fuel injection control means for setting the fuel injection of the engine based on the required engine load and the engine speed. The operation is switched between the stratified charge combustion mode and the homogeneous mixture combustion mode according to the load, and the engine is operated in the rich air / fuel ratio homogeneous mixture combustion mode at the request of the engine auxiliary equipment regardless of the required engine load. Rich Spa Perform click operation, it is in said rich spike operation performed when the engine is operated at a lean air-fuel ratio stratified charge combustion mode, engineWhile operating with lean air-fuel ratioControls engine fuel injection by the second fuel injection control means,TheOperates in rich air-fuel ratio homogeneous combustion modeDoIn the meantime, a fuel injection control device for an internal combustion engine is provided which controls fuel injection of the engine by the first fuel injection control means.
[0014]
  That is, in the invention of claim 2, when the rich spike operation is performed, the engineWhile operating with lean air-fuel ratioAs in the prior art, engine fuel injection is controlled based on the required engine load (for example, accelerator opening) and the engine speed, but when the engine operation is switched to the rich air-fuel ratio homogeneous mixture combustion mode, the engine fuel is injected. The injection is controlled based on the intake air amount and the engine speed. For this reason, after the shift to the rich air-fuel ratio homogeneous mixture combustion mode, the engine fuel injection amount is also set according to the actual intake air amount. Therefore, even if the actual engine intake air amount does not correspond to the throttle valve opening immediately after shifting to the rich air-fuel ratio homogeneous mixture combustion mode, the fuel injection amount is based on the actual intake air amount. The air-fuel ratio is set to a value that makes the predetermined rich air-fuel ratio, and the predetermined rich air-fuel ratio can be obtained immediately after switching to the rich air-fuel ratio homogeneous combustion mode.
[0015]
According to a third aspect of the present invention, the engine auxiliary device is disposed in the engine exhaust passage, and the NO in the exhaust is exhausted when the inflowing exhaust air-fuel ratio is lean.XAbsorbed when the exhaust air-fuel ratio that flows in becomes rich.XNO is released and reduced and purified.XIt is an occlusion reduction catalyst, and the rich spike operation is NOXNO absorbed from the storage reduction catalystXA fuel injection control device for an internal combustion engine according to claim 1 or 2 executed when reducing and purifying the fuel.
[0016]
That is, in the invention of claim 3, NO is determined.XNO absorbed from the storage reduction catalystXEven when a rich spike operation is performed to release the engine, the actual engine combustion air-fuel ratio becomes the predetermined rich air-fuel ratio immediately after switching to the rich air-fuel ratio homogeneous mixture combustion mode. Fuel ratio exhaust is NOXUnpurified NO, no longer flowing into the storage reduction catalystXIs prevented from being released into the atmosphere.
[0017]
According to the fourth aspect of the present invention, an air-fuel ratio sensor that is disposed in the engine exhaust passage and detects the air-fuel ratio of the exhaust is further provided, and the engine combustion air-fuel ratio is determined based on the air-fuel ratio sensor output during the rich spike operation. The fuel injection control device for an internal combustion engine according to claim 1 or 2, wherein the fuel injection control device is controlled to a predetermined air-fuel ratio.
That is, according to the fourth aspect of the invention, the engine combustion air-fuel ratio is controlled based on the actual exhaust air-fuel ratio (engine combustion air-fuel ratio) detected by the exhaust air-fuel ratio sensor during the rich spike operation. The accuracy of air-fuel ratio control is improved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of an embodiment when the present invention is applied to an automobile internal combustion engine.
In FIG. 1, reference numeral 1 denotes an automobile internal combustion engine. In this embodiment, the engine 1 is a four-cylinder gasoline engine having four cylinders # 1 to # 4, and each cylinder is provided with in-cylinder fuel injection valves 111 to 114 for directly injecting fuel into the cylinder. ing. As will be described later, the internal combustion engine 1 of the present embodiment is an engine that can be operated in a wide range of air-fuel ratios from a lean air-fuel ratio higher than the stoichiometric air-fuel ratio to an air-fuel ratio lower than the stoichiometric air-fuel ratio (rich). Yes.
[0019]
Further, in the present embodiment, the cylinders # 1 to # 4 are grouped into two cylinder groups including two cylinders whose ignition timings are not continuous with each other. (For example, in the embodiment of FIG. 1, the cylinder firing order is 1-3-4-2, and the cylinders # 1 and # 4 and the cylinders # 2 and # 3 each constitute a cylinder group. In addition, the exhaust port of each cylinder is connected to an exhaust manifold for each cylinder group, and is connected to an exhaust passage for each cylinder group. In FIG. 1, reference numeral 21a denotes an exhaust manifold for connecting the exhaust ports of the cylinder group consisting of # 1 and # 4 cylinders to the individual exhaust passage 2a, and 21b denotes the exhaust port of the cylinder group consisting of # 2 and # 4 cylinders to the individual exhaust passage 2b. Is an exhaust manifold connected to In this embodiment, start catalysts (hereinafter referred to as “SC”) 5a and 5b made of a known three-way catalyst are arranged on the individual exhaust passages 2a and 2b, respectively. Further, the individual exhaust passages 2a and 2b merge with the common exhaust passage 2 on the downstream side of the SC.
[0020]
On the common exhaust passage 2, NO, which will be described later, is provided.XAn occlusion reduction catalyst 7 is arranged. In FIG. 1, 29a and 29b indicate air-fuel ratio sensors disposed upstream of the start catalyst 5a and 5b of the individual exhaust passages 2a and 2b, and 31 indicates the NO in the exhaust passage 2.XIt is an air-fuel ratio sensor arranged on the downstream side of the storage reduction catalyst 7. The air-fuel ratio sensors 29a, 29b, and 31 are so-called linear air-fuel ratio sensors that output a voltage signal corresponding to the exhaust air-fuel ratio in a wide air-fuel ratio range.
[0021]
In FIG. 1, reference numeral 10 b denotes an intake manifold that connects an intake port of each cylinder of the engine to the intake passage 10, and reference numeral 10 a denotes a surge tank provided in the intake passage 10.
In the present embodiment, the SC2b upstream side of the individual exhaust passages 2b of the # 2 and # 3 cylinders and the surge tank 10a of the engine intake passage 10 are connected by an EGR passage 43. Further, an EGR valve 41 is provided on the EGR passage 43. The EGR valve 41 is a flow rate control valve that controls an exhaust flow rate that flows back from the exhaust passage 2b to the intake passage 10 through the EGR passage. The EGR valve 41 includes an actuator 41a of an appropriate type such as a stepper motor or a negative pressure actuator that operates according to a control signal from the ECU 30, which will be described later, and takes an opening degree according to the control signal from the ECU 30.
[0022]
Further, in the present embodiment, a throttle valve 15 is provided on the intake passage 10. The throttle valve 15 of the present embodiment is a so-called electronically controlled throttle valve, which is driven by an actuator 15a of an appropriate type such as a stepper motor and has an opening corresponding to a control signal from an ECU 30 described later.
An electronic control unit (ECU) of the engine 1 is indicated by 30 in FIG. In this embodiment, the ECU 30 is a microcomputer having a known configuration including a RAM, a ROM, and a CPU, and performs basic control such as ignition timing control and fuel injection control of the engine 1. In the present embodiment, the ECU 30 performs the basic control described above, and changes the fuel injection mode of the in-cylinder injection valves 111 to 114 in accordance with the engine operating state to change the operating air-fuel ratio of the engine, as will be described later. In addition to controlling, NOXNO from the storage reduction catalyst 7XA rich spike operation for switching the operating air-fuel ratio to the rich air-fuel ratio is performed during the lean air-fuel ratio operation of the engine in order to ensure the release operation and brake negative pressure.
[0023]
The input port of the ECU 30 includes a signal indicating the exhaust air / fuel ratio at the inlets of the start catalyst 5a and 5b from the air / fuel ratio sensors 29a and 29b, and the NO / NO from the air / fuel ratio sensor 31.XIn addition to a signal representing the exhaust air-fuel ratio at the outlet of the storage reduction catalyst 7 and a signal corresponding to the intake pipe pressure of the engine from an intake pressure sensor 35 provided in an unillustrated engine intake manifold, the engine crankshaft A pulse signal is input at every engine crankshaft rotation angle from a rotation speed sensor 33 arranged in the vicinity (not shown). Furthermore, in the present embodiment, a signal representing the accelerator pedal depression amount (accelerator opening) of the driver is input to an input port of the ECU 30 from an accelerator opening sensor 37 disposed in the vicinity of an accelerator pedal (not shown) of the engine 1. Has been. The ECU 30 AD-converts the intake pressure sensor 35 output and the accelerator opening sensor 37 output at predetermined intervals and stores them in a predetermined area of the RAM of the ECU 30 as the intake pipe pressure PM and the accelerator opening ACCP. The engine speed NE is calculated from the interval of the pulse signals from and stored in a predetermined area of the RAM. The output port of the ECU 30 is connected to the fuel injection valves 111 to 114 of each cylinder through a fuel injection circuit (not shown) in order to control the fuel injection amount and fuel injection timing to each cylinder. The opening of the throttle valve 15 is controlled by being connected to the actuator 15b of the valve 15 via a drive circuit (not shown).
[0024]
Further, the ECU 30 is connected to the actuator 41a of the EGR valve 41 via a drive circuit (not shown) and controls the opening degree of the EGR valve 41 so that a part of the exhaust gas in the exhaust passage 2b is returned to the intake passage 10 according to the engine operating state. Perform EGR operation.
In the present embodiment, during normal operation of the engine 1 (when a rich spike operation described later is not performed), the ECU 30 operates the engine 1 in one of the following five modes according to operating conditions.
[0025]
(1) Lean air-fuel ratio stratified combustion (injection once in the compression stroke)
(2) Lean air-fuel ratio weak stratified combustion (intake stroke / injection stroke twice)
(3) Lean air-fuel ratio homogeneous mixture combustion (intake stroke one injection)
(4) Theoretical air-fuel ratio homogeneous mixture combustion (intake stroke one injection)
(5) Rich air-fuel ratio homogeneous mixture combustion (intake stroke one injection)
That is, in the light load operation region of the engine 1, the lean air-fuel ratio stratified combustion in the mode (1) is performed. The engine 1 includes two intake valves, an intake valve having a swirl port for generating a swirl (swirl flow) of intake air in the cylinder, and an intake valve having a normal straight port, and an intake passage communicating with the straight port The amount of intake air flowing into the cylinder from the swirl port can be controlled by adjusting the opening degree of a swirl control valve (SCV) (not shown) provided in the cylinder. When stratified combustion is performed, the SCV opening is fully closed, the amount of intake air from the swirl port is increased, and a strong swirl is generated in the cylinder. In this state, in-cylinder fuel injection is performed only once in the latter half of the compression stroke of each cylinder, and the injected fuel forms a combustible mixture layer in the vicinity of the cylinder spark plug. Further, the fuel injection amount in this operation state is extremely small, and the air-fuel ratio as a whole in the cylinder is about 25 to 30 or more.
[0026]
Further, when the load increases from the state of the mode (1) to enter the low load operation region, the lean air-fuel ratio weak stratified combustion in the mode (2) is performed. As the engine load increases, the amount of fuel injected into the cylinder increases. In this load region, in addition to fuel injection in the latter half of the compression stroke, fuel is injected into the cylinder in the first half of the intake stroke in advance. I am trying to supply. The fuel injected into the cylinder in the first half of the intake stroke generates a very lean homogeneous mixture by the time of ignition. In the latter half of the compression stroke, further fuel is injected into this extremely lean homogeneous mixture to generate a combustible mixture layer that can be ignited in the vicinity of the spark plug. At the time of ignition, the combustible air-fuel mixture layer starts to burn, and the flame propagates to the surrounding lean air-fuel mixture layer, so that stable combustion is performed. In this state, the amount of fuel supplied by the injection in the intake stroke and the compression stroke is increased from mode (1), but the overall air-fuel ratio is slightly low (for example, about 20 to 30 in the air-fuel ratio).
[0027]
When the engine load further increases, the engine 1 performs lean air-fuel ratio homogeneous mixture combustion in the mode (3). In this state, the SCV is fully opened, and most of the intake air flows into the cylinder from the straight port. In this state, the fuel injection is executed only once in the first half of the intake stroke, and the fuel injection amount is further increased from that in the mode (2). In this state, the homogeneous air-fuel mixture generated in the cylinder has a lean air-fuel ratio that is relatively close to the stoichiometric air-fuel ratio (for example, about 15 to 25 as the air-fuel ratio).
[0028]
When the engine load further increases and the engine high load operation region is reached, the fuel is further increased from the state of mode (3), and the stoichiometric air-fuel ratio homogeneous mixture operation of mode (4) is performed. In this state, a homogeneous air-fuel mixture having a stoichiometric air-fuel ratio is generated in the cylinder, and the engine output increases. Further, when the engine load further increases and the engine is fully loaded, the fuel injection amount is further increased from the state of mode (4), and the rich air-fuel ratio homogeneous mixture operation of mode (5) is performed. In this state, the air-fuel ratio of the homogeneous mixture generated in the cylinder becomes rich (for example, about 12 to 14 as the air-fuel ratio).
[0029]
In the present embodiment, the optimum operation mode (above (1) to (5)) is set in advance based on experiments or the like according to the accelerator opening (the amount by which the driver depresses the accelerator pedal) and the engine speed. , Stored in the ROM of the ECU 30 as a map using the accelerator opening and the engine speed. During the operation of the engine 1, the ECU 30 determines which one of the operation modes (1) to (5) should be selected based on the accelerator opening detected by the accelerator opening sensor 37 and the engine speed, Control amounts for controlling the engine operating state, such as fuel injection amount, fuel injection timing and frequency, ignition timing, throttle valve opening, EGR amount (EGR valve opening), are determined according to each mode.
[0030]
Further, when mode (4) (theoretical air-fuel ratio homogeneous mixture combustion) is selected, the ECU 30 further calculates the fuel injection amount calculated as described above from the air-fuel ratio sensor so that the engine exhaust air-fuel ratio becomes the stoichiometric air-fuel ratio. Air-fuel ratio control for feedback correction is performed based on the outputs of 29a and 29b.
More specifically, when the mode (1) to (3) (lean air-fuel ratio combustion) is selected, the ECU 30 is based on a map prepared in advance for each of the modes (1) to (3). Control amounts such as the fuel injection amount, fuel injection timing, throttle opening, EGR amount, and ignition timing are determined from the accelerator opening and the engine speed. The accelerator opening represents the engine load required by the driver. Accordingly, in modes {circle around (1)} to {circle around (3)}, the value of each control amount such as the fuel injection amount is set based on the required engine load and the engine speed.
[0031]
When the modes (4) and (5) (theoretical air-fuel ratio or rich air-fuel ratio homogeneous mixture combustion) are selected, the ECU 30 is prepared in advance for each of the modes (4) and (5). Based on the map, the control amount such as the fuel injection amount is set based on the throttle valve opening, the engine speed, and the intake pipe pressure detected by the intake pressure sensor 35. Generally, the engine intake air amount is expressed as a function of the engine speed and the intake pipe negative pressure. Further, the engine intake air amount and the engine speed are used as parameters representing the engine load state. For this reason, in the modes (4) and (5), each control amount such as the fuel injection amount is set to a desired idle speed by further considering the engine speed in addition to the engine intake air amount determined from the engine speed and the intake pipe negative pressure. It is set to a value necessary for obtaining the fuel ratio. That is, in the present embodiment, in the homogeneous mixture combustion operation in modes (4) and (5), the value of each control amount such as the fuel injection amount is set based on the engine intake air amount and the engine speed.
[0032]
Further, the throttle valve 15 opening is controlled according to the accelerator opening in a region close to full opening in the modes (1) to (3). In this region, when the accelerator opening decreases, the throttle valve opening also decreases.However, since this is a region corresponding to the throttle valve fully open, the intake pipe pressure becomes substantially constant even if the throttle valve opening changes, and the intake throttle is almost constant. Does not occur.
On the other hand, in modes {circle around (4)} and {circle around (5)}, the throttle valve opening is controlled to an opening substantially equal to the accelerator opening. That is, when the accelerator opening (the amount of depression of the accelerator pedal) is 0, the throttle opening is also 0 (fully closed), and when the accelerator opening is 100% (when the accelerator pedal is fully depressed), the throttle opening Is also set to 100 percent (fully open).
[0033]
The opening degree of the EGR valve 41 is set so that a relatively large amount of EGR gas is recirculated in the mode (1), and is controlled so that the EGR gas amount decreases as the mode changes from (2) to (3). . In modes (4) and (5), EGR is almost stopped.
Next, NO of this embodimentXThe storage reduction catalyst 7 will be described.
NO of this embodimentXThe occlusion reduction catalyst 7 uses, for example, alumina as a carrier, and an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, alkaline earth such as barium Ba and calcium Ca, lanthanum La, cerium, and the like. It carries at least one component selected from rare earths such as Ce and yttrium Y and a noble metal such as platinum Pt. NOXThe NOx storage reduction catalyst is used when the air-fuel ratio of the inflowing exhaust gas is lean.X(NO2, NO) to nitrate ion NOThree -NO is absorbed when the inflowing exhaust gas becomes richXNO releaseXPerforms absorption and release action.
[0034]
In the present embodiment, an engine 1 capable of lean air-fuel ratio operation is used, and when the engine 1 is operated at a lean air-fuel ratio, NOXThe storage reduction catalyst is NO in the exhaust gas flowing in.XTo absorb. Further, when the engine 1 is operated at a rich air-fuel ratio, NOXThe NOx storage reduction catalyst 7 has absorbed NO.XNO released by using HC and CO components in rich air-fuel ratio exhaust gasXReduce and purify. In this embodiment, NO during lean air-fuel ratio operation.XNO absorbed by the storage reduction catalyst 7XWhen the amount increases, a rich spike operation is performed in which the engine air-fuel ratio is switched from a lean air-fuel ratio to a rich air-fuel ratio for a short time.XNO from storage reduction catalystXRelease and reduction purification.
[0035]
Next, the rich spike operation of the engine 1 of the present embodiment will be described.
In this embodiment, the ECU 30 is NOXNO by increasing or decreasing the counter valueXNO absorbed and stored by the storage reduction catalyst 7XEstimate the amount. NOXNO absorbed by the storage reduction catalyst 7 per unit timeXAmount of NOXNO in exhaust flowing into the storage reduction catalyst per unit timeXQuantity, ie NO generated per unit time in engine 1XIt is proportional to the amount. On the other hand, NO generated per unit time in the engineXIs determined by the amount of fuel supplied to the engine, air-fuel ratio, exhaust flow rate, etc., so if the engine operating conditions are determined, NOXNO absorbed by the storage reduction catalystXYou can know the amount. In the present embodiment, the engine operating conditions (accelerator opening degree, engine speed, intake air amount, intake pipe pressure, air-fuel ratio, fuel supply amount, EGR amount, etc.) are changed in advance and the NO generated by the engine per unit time.XMeasure the amount, NOXNO absorbed by the storage reduction catalyst 7 per unit timeXThe amount is stored in the ROM of the ECU 30 in the form of a numerical map using, for example, the engine load (fuel injection amount) and the engine speed. The ECU 30 uses this map to determine NO per unit time from the engine load (fuel injection amount) and the engine speed at regular intervals (every unit time).XNO absorbed by the storage reduction catalystXCalculate the amount, NOXSet this counter to NOXIncrease the amount absorbed. This makes NOXThe counter value is always NOXNO absorbed by the storage reduction catalyst 7XTo represent the amount of. The ECU 30 performs the above NO during the lean air-fuel ratio operation of the engine.XWhen the value of the counter increases to a predetermined value or more, a rich spike operation is performed in which the engine is operated in the mode (5) (rich air-fuel ratio homogeneous mixture combustion) for a short time. As a result, NOXNO absorbed from the storage reduction catalystXIs released and reduced and purified. When the engine is operated at a rich air-fuel ratio, the amount of HC and CO in the exhaust increases, and NOXNO from the storage reduction catalystXIs released and reduced by HC and CO in the exhaust. Here, NO per unit timeXNO released from the storage reduction catalyst and reduced by HC and CO in the exhaustXIs determined by the air-fuel ratio of the exhaust gas (HC and CO amount in the exhaust gas) and the exhaust gas flow rate. In this embodiment, the engine is operated at a rich air-fuel ratio by changing the engine operating conditions (accelerator opening, engine speed, intake air amount, intake pipe pressure, air-fuel ratio, fuel supply amount, EGR amount, etc.) in advance.XNO released from the storage reduction catalyst 7 per unit time and reduced and purifiedXMeasure the amount, NO during engine rich air-fuel ratio operationXNO released from the storage reduction catalyst 7 per unit timeXThe amount is stored in the ROM of the ECU 30 in the form of a numerical map using, for example, the engine load (fuel injection amount) and the engine speed. The ECU 30 uses this map to determine NO per unit time from the engine load (fuel injection amount) and the engine speed at regular intervals (every unit time) during the rich air-fuel ratio operation of the engine.XNO released from the storage reduction catalystXCalculate the amount, NOXSet this counter to NOXDecrease by the amount absorbed. And during rich spike operation, this NOXWhen the counter value reaches zero, the rich spike operation is terminated.
[0036]
  That is, in this embodiment, the lean air-fuel ratio operation of the engine 1 continues and NOXNO stored in the storage reduction catalyst 7XWhen the amount increases to a predetermined amount, a rich spike operation is performed in which the engine is operated at a rich air-fuel ratio regardless of the engine load required from the engine operating state. Rich spike operation is NOXNO stored in the NOx storage reduction catalystXMay be done separately from quantity. That is, in the engine of this embodiment, the mode(1)From(3)In this lean air-fuel ratio operation, the throttle valve 15 has an opening close to full open, so the negative pressure in the intake pipe is low (the absolute pressure is high). On the other hand, when using a booster that uses negative pressure for vehicle braking, it is necessary to always maintain a negative pressure for operating the booster. Since the pressure is low, negative pressure cannot be introduced into the booster from the intake passage downstream of the throttle valve. Therefore, in the present embodiment, the booster is provided with a negative pressure tank, and the booster is operated using the negative pressure stored in the negative pressure tank during the lean air-fuel ratio operation. Further, when the pressure in the negative pressure tank increases (negative pressure decreases) due to the operation of the booster, a rich spike operation similar to the above is performed. When the rich spike operation is performed in the load region where the lean air-fuel ratio operation is performed, the opening degree of the throttle valve 15 decreases and a large negative pressure is generated downstream of the throttle valve 15. In this embodiment, even when the negative pressure of a negative pressure tank or the like that supplies negative pressure to the booster decreases, the rich spike operation is performed regardless of the required load of the engine.
  Mode during normal operation(1)When the engine load increases due to acceleration, etc., from lean air-fuel ratio stratified combustion operation, it takes some time to change the engine operation mode.(1)From(2),(3),(4)Through the mode(5)Is switched to the rich air-fuel ratio mode. During rich spike operation, it is necessary to switch the air-fuel ratio to rich as soon as possible.(1)Direct mode from lean air-fuel ratio stratified combustion operation(5)When switching to a rich air-fuel ratio homogeneous mixture combustion of the engine, both the combustion mode change (stratified combustion to homogeneous mixture combustion) and the air-fuel ratio change (lean air-fuel ratio to rich air-fuel ratio) occur simultaneously, so the engine output torque Will fluctuate greatly. Therefore, normally, lean air-fuel ratio stratified combustion operation (mode(1)Rich air-fuel ratio homogeneous mixture combustion operation (mode)(5)Mode)(2),(3)Thus, the engine is operated for about several engine revolutions, and the air-fuel ratio and the operation mode are gradually switched. Also, as described above, the mode during normal operation(5)In (rich air-fuel ratio homogeneous mixture combustion), the control amount such as the fuel injection amount of the engine is set based on the engine intake air amount and the engine speed (engine intake pipe negative pressure and engine speed). Rich spike operation mode(5)Because the operation time is short, the mode during rich spike operation(5)In operation, the mode(1)From(3)In the same manner as above, the control is simplified by setting based on the required engine load and the engine speed (accelerator opening and engine speed). In other words, the conventional mode for rich spike operation(5)(richA separate numerical map is prepared for (air-fuel ratio homogeneous mixture air-fuel ratio combustion) and mode during rich spike(3)From mode(5)When the switch to is made, each control amount including the fuel injection amount is determined based on the required engine load and the engine speed (accelerator opening and engine speed).
[0037]
However, in this case, the fuel injection amount and the throttle valve opening immediately change to values determined from a numerical map prepared in advance based on the required engine load and the engine speed. The amount of air that is changed changes later than the change in the throttle valve opening, so that there is a slight time delay until the value corresponds to the throttle valve opening after the change. Therefore, when the mode is switched to the mode (5), the actual engine intake air amount does not decrease immediately even if the throttle valve opening decreases immediately. On the other hand, since the fuel injection amount is changed to a value corresponding to the throttle valve opening immediately after switching to the mode (5), the actual engine intake air amount becomes larger than the fuel injection amount immediately after the switching. There arises a problem that the air-fuel ratio deviates from the target value (rich air-fuel ratio) to the lean side.
[0038]
For this reason, immediately after the engine air-fuel ratio is switched to the rich air-fuel ratio (mode (5)) during the rich spike operation, the engine air-fuel ratio is operated in a lean air-fuel ratio region (for example, 20 or less in the air-fuel ratio) near the stoichiometric air-fuel ratio. NOXUnpurified NO due to reduced storage capacity of storage reduction catalystXWas released into the atmosphere.
In the present embodiment, this problem is solved by setting the fuel injection amount based on the engine intake air amount and the engine speed in the rich air-fuel ratio homogeneous mixture combustion mode during the rich spike operation. That is, in this embodiment, when the engine operation mode is switched to the rich air-fuel ratio homogeneous mixture combustion mode of mode (5) during the rich spike operation, the fuel injection amount is detected by the intake pipe pressure and the engine speed detected by the intake pressure sensor. Is set to a value that obtains a predetermined rich air-fuel ratio (for example, 12 to 14 as the air-fuel ratio) based on the actual engine intake air amount determined from the engine rotational speed. Therefore, immediately after the engine operation mode is switched to the rich air-fuel ratio homogeneous mixture combustion mode, the fuel injection amount is set to a value that provides a predetermined rich air-fuel ratio with respect to the actual engine intake air amount. A stable rich air-fuel ratio can be obtained immediately after switching.
[0039]
FIG. 2 is a timing diagram showing changes in the throttle valve opening TA, the intake pipe pressure PM, the fuel injection amount QINJ, and the engine combustion air-fuel ratio A / F during the rich spike operation of the present embodiment. As shown in FIG. 2, when the rich spike operation is started from the mode (1) (lean air-fuel ratio stratified combustion), the operation mode is switched to the mode (5) through the modes (2) and (3). . At this time, when the throttle valve opening TA is switched to the mode (2) and the mode (3), the accelerator opening and the engine speed (required engine load) are based on the numerical maps for the respective operation modes during the rich spike operation. And the engine speed). In this case, as shown in FIG. 2, even if the throttle valve opening TA changes, the intake air amount (intake pipe pressure PM) does not immediately become a value corresponding to the changed throttle valve opening but changes relatively slowly. Thus, the air amount in the steady state of mode (5) is reached.
[0040]
Also in this embodiment, the fuel injection amount QINJ is set based on the accelerator opening and the engine speed in the modes (1) to (3), so that the operation mode is ▲ as shown in FIG. Each time it is switched between 2 ▼ and 3), it changes in a step-like manner similar to the throttle valve opening TA. However, in this embodiment, when the operating state is switched from mode (3) to mode (5), the fuel injection amount QINJ is set according to the engine intake air amount and the engine speed (intake pipe negative pressure and engine speed). Therefore, immediately after the mode (5) is switched, it temporarily increases to a value corresponding to the actual intake air amount, and then decreases as the intake air amount (PM) decreases. Therefore, the engine combustion air-fuel ratio A / F immediately changes to a predetermined rich air-fuel ratio (about 12 to 14) when the operation mode is switched from mode (3) to mode (5).
[0041]
On the other hand, the dotted line in FIG. 2 shows the fuel immediately after the start of the mode (5) when the fuel injection amount is set based on the required engine load and the engine speed during operation in the mode (5) at the time of rich spike as in the prior art. Changes in the injection amount QINJ and the engine air-fuel ratio A / F are shown. In this case, as shown by a dotted line in FIG. 2, when the mode (3) is switched to (5), the fuel injection amount QINJ changes in a step shape in accordance with the change in the throttle valve opening TA, and the mode (5) It is maintained at a constant value during the operation of ▼. However, since the engine intake air amount actually changes with a delay with respect to the change in the throttle valve opening TA as described above, the intake air amount is not sufficiently reduced immediately after the start of the operation in the mode (5). For this reason, the intake air amount becomes excessive with respect to the fuel injection amount, and the engine air-fuel ratio A / F is sufficient rich air-fuel ratio until the intake air amount is sufficiently reduced to a value corresponding to the throttle valve opening. do not become. Therefore, the time during which the engine air-fuel ratio stays in the lean air-fuel ratio region near the stoichiometric air-fuel ratio becomes longer, and NOXUnpurified NO from the storage reduction catalystXWill be released.
[0042]
FIG. 3 is a flowchart showing the calculation operation of the fuel injection amount QINJ described above. This operation is performed as a routine executed by the ECU 30 at regular intervals.
In FIG. 3, in step 301, the current engine operation mode (modes (1) to (5)) is read. In step 303, the current operation mode read in step 301 is mode (4) (stoichiometric air-fuel ratio homogeneous mixture combustion) during normal operation (operation other than when the rich spike operation is performed) or mode (5) ( In step 305, the current mode is the mode (5) (rich air-fuel ratio homogeneous mixture) during the rich spike operation. It is determined whether or not it is (combustion).
[0043]
If the current engine operation mode is the normal operation mode (4) or (5) in step 303, or the current operation mode is the rich spike operation mode (5) in step 305, step 307 is executed. Then, the value of the fuel injection amount QINJ is determined from a numerical map prepared in advance based on the intake pipe pressure PM detected by the intake pressure sensor 35 (FIG. 1) and the engine speed NE. As a result, the fuel injection amount QINJ is set to a value capable of obtaining a predetermined rich air-fuel ratio based on the actual engine speed and the actual engine intake air amount, and the engine air-fuel ratio immediately becomes the predetermined rich air-fuel ratio. Change.
[0044]
On the other hand, if the current engine operation mode is not any of the normal operation mode (4), (5) and the rich spike operation mode (5) in steps 303 and 305, step 309 is executed and the fuel is The injection amount QINJ is set based on the accelerator opening ACCP detected by the accelerator opening sensor 37 and the engine speed. As a result, in the modes (1) to (3), the fuel injection amount QINJ is always set to a value according to the required engine load and the engine speed.
[0045]
In the present embodiment, as described above, the engine air-fuel ratio changes to the predetermined rich air-fuel ratio as soon as the operation of the mode (5) is performed during the rich spike operation.XUnpurified NO from the storage reduction catalystXIs prevented from being released. For example, NOXThe degradation of the storage reduction catalyst is NOXNO when the exhaust air-fuel ratio flowing into the storage reduction catalyst changes from lean to richXThe determination can be made based on the time required for the exhaust air-fuel ratio at the storage reduction catalyst outlet to change richly. That is, NO during rich spike operationXNO absorbed from the storage reduction catalystXNO is released when HC and CO components in the exhaust are releasedXBecause it is oxidized by NOXThe exhaust air-fuel ratio at the storage reduction catalyst outlet does not immediately change to the rich air-fuel ratio,XNO from storage reduction catalystXWhile being released, it is maintained near the stoichiometric air-fuel ratio, and NOXAs soon as the release of the gas is completed, the air-fuel ratio changes to a rich air-fuel ratio. Therefore, when the engine air-fuel ratio is switched from lean to rich during the rich spike operation, NOXBy measuring the time until the exhaust air-fuel ratio detected by the air-fuel ratio sensor 31 downstream of the storage reduction catalyst 7 changes to the rich air-fuel ratio, NOXNO absorbed by the storage reduction catalystXThe amount can be calculated and the calculated NOXAbsorption NO of storage reduction catalystXNO if the amount drops below a predetermined valueXNO of storage reduction catalystXOcclusion capacity declines, ie NOXIt can be determined that the storage reduction catalyst has deteriorated.
[0046]
However, if the fuel injection amount is set based on the required engine load and the engine speed at the time of rich spike operation as in the prior art, the engine operation mode can be switched to the rich air-fuel ratio homogeneous mixture combustion mode. Immediately, the actual air-fuel ratio does not change to the rich air-fuel ratio, and NOXVariations occur in the air-fuel ratio of the exhaust flowing into the storage reduction catalyst. For this reason, NOXWhen the deterioration of the storage reduction catalyst is determined, there is a problem that an error occurs in the determination of the deterioration.
[0047]
On the other hand, in this embodiment, NO immediately after the rich air-fuel ratio homogeneous mixture operation during the rich spike operation.XSince the exhaust air-fuel ratio flowing into the storage reduction catalyst changes to a stable rich air-fuel ratio, it is possible to prevent the deterioration determination error.
In this embodiment, the actual engine intake air amount is obtained based on the intake pipe pressure and the engine speed. However, for example, when the intake passage has an air flow meter, the intake air amount directly detected by the air flow meter. The fuel injection amount during the rich air-fuel ratio homogeneous mixture combustion operation during the rich spike operation may be determined based on the engine speed.
[0048]
In the present embodiment, the fuel injection amount is set based on the engine intake air amount and the engine speed during the rich air-fuel ratio homogeneous mixture combustion during the rich spike operation.XFuel injection set based on the engine intake air amount and the engine speed so that the exhaust air-fuel ratio detected by the air-fuel ratio sensors 29a, 29b in the exhaust passage upstream of the storage reduction catalyst 7 becomes a predetermined rich air-fuel ratio. If the amount is further corrected based on the outputs of the air-fuel ratio sensors 29a and 29b, the air-fuel ratio can be accurately controlled to a predetermined rich air-fuel ratio during the rich spike operation.
[0049]
As described above, in the above embodiment, the fuel injection amount is set based on the engine intake air amount and the engine speed during the rich air-fuel ratio homogeneous mixture combustion during the rich spike operation, so that the lean air-fuel ratio is changed to the rich air-fuel ratio. The time required for the engine air-fuel ratio to change to a predetermined rich air-fuel ratio when switching to is shortened. However, it is possible to shorten the time while setting the fuel injection amount based on the required engine load and the engine speed as in the prior art.
[0050]
As described above, at the time of switching from the lean air-fuel ratio to the rich air-fuel ratio, the cause of the delay in reaching the predetermined rich air-fuel ratio is due to the delay in following the actual change in the intake air amount with respect to the change in the throttle valve opening. For this reason, for example, when the throttle valve opening changes during the rich spike operation (when switching from mode (3) to (5)), the fuel may be increased according to the change speed of the throttle valve opening. In this case, for example, when the change rate (decrease rate) of the throttle valve opening is large, the difference between the actual intake air amount immediately after the change and the intake air amount corresponding to the throttle valve opening becomes large. The fuel may be increased as the change rate of the degree increases.
[0051]
FIG. 4 is a flowchart for explaining the fuel injection amount correction operation in the case of performing fuel increase correction in accordance with the throttle valve opening change speed. This operation is executed by the ECU 30 at regular intervals.
When the operation starts in FIG. 4, the throttle valve opening degree TA, the engine speed NE, and the current engine operation mode (modes (1) to (5)) are read in step 401, and read in step 401 in step 403. It is determined whether or not the current engine operation mode is the mode (5) (rich air-fuel ratio homogeneous mixture combustion mode) during the rich spike operation. If the operation is being performed in the mode (5) in which the rich spike operation is currently performed, the process proceeds to step 405, and the change amount ΔTA of the current throttle valve opening TA from the previous execution time is ΔTA = TA− TAOLDIs calculated as TAOLDIs the throttle valve opening read in step 401 when the previous operation was executed. In step 407, the fuel injection amount increase coefficient fdlta is set from a numerical map prepared in advance based on ΔTA and the engine speed NE. In step 419, the fuel injection amount QINJ is determined from the accelerator opening and the engine speed. A value obtained by multiplying the increase coefficient fdlta is newly set as QINJ. As described above, the increase coefficient fdlta is set such that the larger ΔTA is, the larger the positive value and fdlta> 1. If ΔTA is the same, the value of fdlta increases as the engine speed increases.
[0052]
After correcting QINJ as described above, in step 411, the current TA value is used.OLDUpdate the value of and end the operation.
By performing the operation of FIG. 4, the fuel injection amount is increased when the rich air-fuel ratio homogeneous mixture combustion mode is set during the rich spike operation and the throttle valve opening TA is throttled, so that the actual engine intake air amount is sufficient. Even if the air-fuel ratio has not decreased to the actual value, the actual air-fuel ratio of the engine immediately changes to a rich air-fuel ratio.XUnpurified NO from the storage reduction catalystXIs prevented from being released.
[0053]
Instead of increasing the fuel in accordance with the throttle valve opening change amount ΔTA as described above, the target air-fuel ratio is set for a predetermined time immediately after the operation mode is switched to the rich air-fuel ratio homogeneous mixture combustion mode during the rich spike operation. Further, it may be set to the rich side. By setting the target air-fuel ratio to be rich for a predetermined time immediately after the rich air-fuel ratio homogeneous mixture combustion mode change, the engine air-fuel ratio becomes a lean air-fuel ratio in the vicinity of the theoretical air-fuel ratio while the intake air amount change is not sufficiently reduced. To preventXUnpurified NO from the storage reduction catalystXIs prevented from being released.
[0054]
【The invention's effect】
According to the invention described in each claim, it is possible to change the engine air-fuel ratio from the lean air-fuel ratio to the rich air-fuel ratio in a short time during the rich spike operation.XEven when a storage reduction catalyst is used, unpurified NO in the initial stage of rich spike operationXCan be prevented from being released into the atmosphere.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a schematic configuration of an embodiment in which the present invention is applied to an automotive cylinder injection internal combustion engine.
FIG. 2 is a timing diagram illustrating an example of a rich spike operation according to the present invention.
FIG. 3 is a flowchart for explaining a rich spike operation of FIG. 2;
FIG. 4 is a flowchart for explaining another example of the rich spike operation.
[Explanation of symbols]
1. Internal combustion engine
2 ... Exhaust passage
7 ... NOXOcclusion reduction catalyst
15 ... Electronically controlled throttle valve
111-114 ... In-cylinder injection valve

Claims (4)

要求機関負荷に応じて機関燃焼空燃比を制御する内燃機関の燃料噴射制御装置であって、
機関の燃料噴射を機関吸入空気量と機関回転数とに基づいて制御する第1の燃料噴射制御手段と、機関の燃料噴射を要求機関負荷と機関回転数とに基づいて設定する第2の燃料噴射制御手段とを備え、
機関がリーン空燃比で運転されているときに、要求機関負荷とは無関係に機関補機の要求により機関をリッチ空燃比で運転するリッチスパイク操作を行い、
前記リッチスパイク操作における空燃比の切り換え時に、機関をリーン空燃比で運転する間は前記第2の燃料噴射制御手段により機関燃料噴射を制御し、機関リッチ空燃比で運転する間は前記第1の燃料噴射制御手段により機関の燃料噴射を制御する内燃機関の燃料噴射制御装置。
A fuel injection control device for an internal combustion engine that controls an engine combustion air-fuel ratio according to a required engine load,
First fuel injection control means for controlling engine fuel injection based on engine intake air amount and engine speed, and second fuel for setting engine fuel injection based on required engine load and engine speed An injection control means,
When the engine is operated at a lean air-fuel ratio, a rich spike operation is performed to operate the engine at a rich air-fuel ratio at the request of the engine auxiliary machine regardless of the required engine load,
When switching the air-fuel ratio in the rich spike operation, the engine fuel injection is controlled by the second fuel injection control means while the engine is operated at a lean air-fuel ratio, and the first fuel-fuel ratio is controlled while the engine is operated at a rich air-fuel ratio. A fuel injection control device for an internal combustion engine that controls fuel injection of the engine by the fuel injection control means.
筒内に直接燃料を噴射する筒内燃料噴射弁を備え、各気筒の圧縮行程中に燃料を噴射してリーン空燃比成層燃焼を行う成層燃焼モードと、各気筒の吸気行程中に燃料を噴射して均質混合気燃焼を行う均質混合気燃焼モードとを切り換えて運転する内燃機関の燃料噴射制御装置であって、
機関の燃料噴射を機関吸入空気量と機関回転数とに基づいて制御する第1の燃料噴射制御手段と、機関の燃料噴射を要求機関負荷と機関回転数とに基づいて設定する第2の燃料噴射制御手段とを備え、
要求機関負荷に応じて前記成層燃焼モードと前記均質混合気燃焼モードとの運転切り換えを行うとともに、要求機関負荷とは無関係に機関補機の要求によりリッチ空燃比の均質混合気燃焼モードで機関を運転するリッチスパイク操作を行い、
機関がリーン空燃比成層燃焼モードで運転されているときの前記リッチスパイク操作実施中には、機関をリーン空燃比で運転する間は前記第2の燃料噴射制御手段により機関燃料噴射を制御し、機関リッチ空燃比の均質混合気燃焼モードで運転する間は前記第1の燃料噴射制御手段により機関の燃料噴射を制御する内燃機関の燃料噴射制御装置。
In-cylinder fuel injection valve that injects fuel directly into the cylinder, stratified combustion mode in which fuel is injected during the compression stroke of each cylinder to perform lean air-fuel ratio stratified combustion, and fuel is injected during the intake stroke of each cylinder A fuel injection control device for an internal combustion engine that operates by switching between a homogeneous mixture combustion mode for performing homogeneous mixture combustion,
First fuel injection control means for controlling engine fuel injection based on engine intake air amount and engine speed, and second fuel for setting engine fuel injection based on required engine load and engine speed An injection control means,
The operation is switched between the stratified combustion mode and the homogeneous mixture combustion mode according to the required engine load, and the engine is operated in the rich air fuel ratio homogeneous mixture combustion mode at the request of the engine auxiliary machine regardless of the requested engine load. Rich spike operation to drive,
During the rich spike operation when the engine is operated in the lean air-fuel ratio stratified combustion mode, the engine fuel injection is controlled by the second fuel injection control means while the engine is operated at the lean air-fuel ratio , engine fuel injection control apparatus for an internal combustion engine during the controlling fuel injection of the engine by said first fuel injection control means for operating in a homogeneous mixture combustion mode rich air-fuel ratio.
前記機関補機は、機関排気通路に配置され流入する排気空燃比がリーンの時に排気中のNOX を吸収し流入する排気空燃比がリッチになったときに吸収したNOX を放出、還元浄化するNOX 吸蔵還元触媒であり、前記リッチスパイク操作はNOX 吸蔵還元触媒から吸収したNOX を放出させ、還元浄化するときに実行される請求項1または請求項2に記載の内燃機関の燃料噴射制御装置。The engine accessory, the release of NO X exhaust air-fuel ratio is absorbed when it is rich exhaust air-fuel ratio flowing disposed engine exhaust passage flows to absorb NO X in the exhaust gas when the lean, reducing and purifying NO X is storage-reduction catalyst, the rich-spike operation is to release NO X absorbed from the NO X storage reduction catalyst, fuel for an internal combustion engine according to claim 1 or claim 2 is performed when the reduction and purification of Injection control device. 更に、機関排気通路に配置され排気の空燃比を検出する空燃比センサを備え、前記リッチスパイク操作時に前記空燃比センサ出力に基づいて機関燃焼空燃比を予め定めた空燃比に制御する請求項1または請求項2に記載の内燃機関の燃料噴射制御装置。The engine combustion air-fuel ratio is further controlled to a predetermined air-fuel ratio based on an output of the air-fuel ratio sensor during the rich spike operation. Or the fuel-injection control apparatus of the internal combustion engine of Claim 2.
JP03583499A 1999-02-15 1999-02-15 Fuel injection control device for internal combustion engine Expired - Lifetime JP3680245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03583499A JP3680245B2 (en) 1999-02-15 1999-02-15 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03583499A JP3680245B2 (en) 1999-02-15 1999-02-15 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000234541A JP2000234541A (en) 2000-08-29
JP3680245B2 true JP3680245B2 (en) 2005-08-10

Family

ID=12453010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03583499A Expired - Lifetime JP3680245B2 (en) 1999-02-15 1999-02-15 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3680245B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608758B2 (en) * 2000-10-10 2011-01-12 株式会社デンソー Air-fuel ratio control device for internal combustion engine
JP5616274B2 (en) * 2011-03-31 2014-10-29 本田技研工業株式会社 Air-fuel ratio control device

Also Published As

Publication number Publication date
JP2000234541A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
US6708668B2 (en) Control system and method for direct-injection spark-ignition engine
JP4208012B2 (en) Exhaust gas purification device for internal combustion engine
JPH1144234A (en) Exhaust emission control device for internal combustion engine
US6758034B1 (en) Method for operating an internal combustion engine
JP3641914B2 (en) Control device for internal combustion engine
US6901327B2 (en) Computer instructions for control of multi-path exhaust system in an engine
US6305347B1 (en) Monitor for lean capable engine
JPWO2005017336A1 (en) Control device for internal combustion engine
US6581565B2 (en) Engine torque controller
US6568246B1 (en) System and method for detecting an air leak in an exhaust system coupled to an engine
JP3185637B2 (en) Fuel injection control device for internal combustion engine
JP3680245B2 (en) Fuel injection control device for internal combustion engine
JP3711602B2 (en) Fuel supply control device for internal combustion engine
JP3624702B2 (en) Control device for internal combustion engine
JP4339599B2 (en) In-cylinder injection internal combustion engine control device
JP3680241B2 (en) Exhaust gas purification device for internal combustion engine
JP3622290B2 (en) Control device for internal combustion engine
JP3680237B2 (en) Exhaust gas purification device for internal combustion engine
JP3633312B2 (en) Exhaust gas purification device for internal combustion engine
US5720166A (en) Fuel supply control device for an engine
JP2590823B2 (en) Air-fuel ratio control device for internal combustion engine
JP2004346917A (en) Internal combustion engine control device
JP4123612B2 (en) In-cylinder injection engine control device
JP2000192833A (en) Controller for cylinder injection type internal combustion engine
JP2000170587A (en) Combustion control device for cylinder fuel injection engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

EXPY Cancellation because of completion of term