JPH09158734A - Direct injection combustion chamber of diesel engine - Google Patents
Direct injection combustion chamber of diesel engineInfo
- Publication number
- JPH09158734A JPH09158734A JP7319936A JP31993695A JPH09158734A JP H09158734 A JPH09158734 A JP H09158734A JP 7319936 A JP7319936 A JP 7319936A JP 31993695 A JP31993695 A JP 31993695A JP H09158734 A JPH09158734 A JP H09158734A
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- line
- valve recess
- combustion chamber
- imaginary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0672—Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/14—Direct injection into combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0645—Details related to the fuel injector or the fuel spray
- F02B23/0669—Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ディーゼルエンジ
ンの直接噴射式燃焼室に関し、詳しくは、燃焼効率を高
めることができるものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection type combustion chamber of a diesel engine, and more particularly to a combustion chamber capable of increasing combustion efficiency.
【0002】[0002]
【従来の技術】ディーゼルエンジンの直接噴射式燃焼室
の従来技術として図4に示すものがある。これは、本発
明と同様、次のような基本構造を備えている。すなわ
ち、シリンダヘッド101に燃料噴射ノズル102とス
ワールポート103とを設け、ピストンヘッド頂面10
4に、スキッシュ面105を残してバルブリセス106
と燃焼用のキャビティ107とを凹設し、キャビティ1
07内に燃料噴射ノズル102から燃料108を噴射す
るようにし、キャビティ107をピストンヘッド頂面1
04の中央部に、バルブリセス106をピストンヘッド
頂面104の周縁寄りにそれぞれ配置するとともに、キ
ャビティ107とバルブリセス106とを相互に連通さ
せて、スワール流123がバルブリセス内周面112の
案内でキャビティ107に導入されるようにしてある。2. Description of the Related Art A conventional direct injection combustion chamber for a diesel engine is shown in FIG. This has the following basic structure as in the present invention. That is, the cylinder head 101 is provided with the fuel injection nozzle 102 and the swirl port 103, and the piston head top surface 10
4, leaving the squish surface 105, the valve recess 106
And a cavity 107 for combustion are recessed to form a cavity 1.
The fuel 108 is injected from the fuel injection nozzle 102 into the cavity 07, and the cavity 107 is inserted into the piston head top surface 1
In the center of 04, the valve recesses 106 are arranged near the periphery of the piston head top surface 104, respectively, and the cavity 107 and the valve recess 106 are communicated with each other so that the swirl flow 123 is guided by the valve recess inner peripheral surface 112. It is being introduced into.
【0003】この種の燃焼室では、吸気工程でスワール
ポート103からシリンダ内に導入された吸気により、
シリンダ内にシリンダ中心軸線109を旋回中心とする
スワール流123が形成され、圧縮工程の終期には、ピ
ストンヘッド頂面104がシリンダヘッドに接近するた
め、スワール流123がバルブリセス内周面112の案
内でキャビティ107内に速やかに導入され、キャビテ
ィ107内にキャビティ中心軸線122を旋回中心とす
る旋回流124が形成されるうえ、スキッシュ面105
によってキャビティ107内にスキッシュ流125が形
成され、この旋回流124とスキッシュ流125によっ
てキャビティ107内で空気と燃料108とが混合され
る。In this type of combustion chamber, the intake air introduced into the cylinder from the swirl port 103 during the intake stroke causes
A swirl flow 123 around the cylinder center axis 109 is formed in the cylinder, and at the end of the compression process, the piston head top surface 104 approaches the cylinder head, so that the swirl flow 123 guides the valve recess inner peripheral surface 112. Is swiftly introduced into the cavity 107 to form a swirl flow 124 having the cavity center axis 122 as the swirl center in the cavity 107 and the squish surface 105.
A squish flow 125 is formed in the cavity 107, and the swirl flow 124 and the squish flow 125 mix air and fuel 108 in the cavity 107.
【0004】この従来技術では、キャビティ107の内
底面が平坦になっているため、キャビティ107の中心
部に旋回流124が作用しない空気の停滞部分が残る。In this conventional technique, since the inner bottom surface of the cavity 107 is flat, a stagnant portion of air in which the swirl flow 124 does not act remains at the center of the cavity 107.
【0005】[0005]
【発明が解決しようとする課題】上記従来技術では、キ
ャビティ107の中心部に旋回流124が作用しない空
気の停滞部分が残るため、キャビティ107内での空気
と燃料108との混合が不十分となり、燃焼効率が低
い。In the above-mentioned conventional technique, since the stagnant portion of the air in which the swirling flow 124 does not act remains in the center of the cavity 107, the mixing of the air and the fuel 108 in the cavity 107 becomes insufficient. , The combustion efficiency is low.
【0006】本発明の課題は、燃焼効率を高めることが
できる、ディーゼルエンジンの直接噴射式燃焼室を提供
することにある。An object of the present invention is to provide a direct injection type combustion chamber of a diesel engine which can improve combustion efficiency.
【0007】[0007]
(第1発明)第1発明は、図1(A)または図3に示すよ
うに、シリンダヘッド1に燃料噴射ノズル2とスワール
ポート3とを設け、ピストンヘッド頂面4に、スキッシ
ュ面5を残してバルブリセス6と燃焼用のキャビティ7
とを凹設し、キャビティ7内に燃料噴射ノズル2から燃
料8を噴射するようにし、キャビティ7をピストンヘッ
ド頂面4の中央部に、バルブリセス6をピストンヘッド
頂面4の周縁寄りにそれぞれ配置するとともに、キャビ
ティ7とバルブリセス6とを相互に連通させて、スワー
ル流23がバルブリセス内周面12の案内でキャビティ
7に導入されるようにした、ディーゼルエンジンの直接
噴射式燃焼室において、次のようにしたことを特徴とす
る。(First Invention) As shown in FIG. 1 (A) or 3, the first invention provides a cylinder head 1 with a fuel injection nozzle 2 and a swirl port 3, and a piston head top surface 4 with a squish surface 5. Remaining valve recess 6 and combustion cavity 7
Are provided so as to inject fuel 8 from the fuel injection nozzle 2 into the cavity 7, the cavity 7 is arranged at the center of the piston head top surface 4, and the valve recess 6 is arranged near the periphery of the piston head top surface 4. In addition, in the direct injection combustion chamber of the diesel engine in which the cavity 7 and the valve recess 6 are communicated with each other so that the swirl flow 23 is introduced into the cavity 7 by the guide of the valve recess inner peripheral surface 12, It is characterized by doing so.
【0008】すなわち、キャビティ7の内底中央部から
シリンダヘッド1に向けて隆起部10を形成したことを
特徴とする。That is, the ridge 10 is formed from the center of the inner bottom of the cavity 7 toward the cylinder head 1.
【0009】(第2発明)第2発明は、第1発明におい
て、図3に示すように、キャビティ内周面11とバルブ
リセス内周面12とを、これらの接線方向に向けたスワ
ール流案内面13で接続したことを特徴とする。(Second Invention) In the second invention, as shown in FIG. 3, a swirl flow guide surface in which the cavity inner peripheral surface 11 and the valve recess inner peripheral surface 12 are directed tangentially to each other as shown in FIG. It is characterized by being connected by 13.
【0010】(第3発明)第3発明は、第1発明または
第2発明において、図1(A)または図3に示すよう
に、バルブリセス6を一個のみ設け、シリンダ中心軸線
9と平行な向きに見て、シリンダ中心軸線9からバルブ
リセス6のリセス中心軸線14に向けて伸びるリセス中
心向き放射仮想線15と、シリンダ中心軸線9からリセ
ス中心向き放射仮想線15と反対側に伸びる基準放射仮
想線16と、基準放射仮想線16からスワール流旋回方
向に進角させた下限放射仮想線17と、この下限放射仮
想線17よりも更にスワール流旋回方向に進角させた上
限放射仮想線18とを想定し、次のようにしたことを特
徴とする。(Third Invention) In the third invention, as shown in FIG. 1A or 3, in the first or second invention, only one valve recess 6 is provided, and the direction parallel to the cylinder center axis 9 is provided. , The imaginary recess line 15 extending from the cylinder center axis 9 toward the recess center axis 14 of the valve recess 6, and the reference imaginary line extending from the cylinder center axis 9 to the opposite side of the recess center radiating line 15 16, a lower limit imaginary line 17 that is advanced from the reference imaginary imaginary line 16 in the swirl flow swirl direction, and an upper limit imaginary line 18 that is advanced from the lower radiant line 17 in the swirl flow swirl direction. Assuming that, it is characterized as follows.
【0011】すなわち、基準放射仮想線16からの下限
放射仮想線17の進角度19を30゜とし、基準放射仮
想線16からの上限放射仮想線18の進角度20を15
0゜とし、下限放射仮想線17と上限放射仮想線18と
の間に挟まれた中心角120゜の扇形領域21内に、シ
リンダ中心軸線9から偏心させたキャビティ中心軸線2
2を配置したことを特徴とする。That is, the advancing angle 19 of the lower limit imaginary line 17 from the reference imaginary imaginary line 16 is set to 30 °, and the advancing angle 20 of the upper limit imaginary line 18 from the reference imaginary imaginary line 16 is 15.
The cavity center axis 2 is eccentric from the cylinder center axis 9 in a fan-shaped region 21 having a center angle of 120 ° sandwiched between the lower limit phantom imaginary line 17 and the upper limit imaginary phantom line 18
2 is arranged.
【0012】[0012]
(第1発明)この種の燃焼室では、図1(A)または図
3に示すように、吸気工程でスワールポート3からシリ
ンダ内に導入された吸気により、シリンダ内にシリンダ
中心軸線9を旋回中心とするスワール流23が形成さ
れ、圧縮工程の終期には、ピストンヘッド頂面4がシリ
ンダヘッド1に接近するため、スワール流23がバルブ
リセス内周面12の案内でキャビティ7内に速やかに導
入され、キャビティ7内にキャビティ中心軸線22を旋
回中心とする旋回流24が形成されるうえ、スキッシュ
面5によってキャビティ7内にスキッシュ流25が形成
され、この旋回流24とスキッシュ流25によってキャ
ビティ7内で空気と燃料8とが混合される。(First Invention) In this type of combustion chamber, as shown in FIG. 1 (A) or FIG. 3, the cylinder center axis 9 is swirled in the cylinder by the intake air introduced into the cylinder from the swirl port 3 in the intake stroke. A central swirl flow 23 is formed, and at the end of the compression process, the piston head top surface 4 approaches the cylinder head 1, so that the swirl flow 23 is introduced into the cavity 7 promptly by the guide of the valve recess inner peripheral surface 12. As a result, a swirl flow 24 with the center axis 22 of the cavity as the swirl center is formed in the cavity 7, and a squish flow 25 is formed in the cavity 7 by the squish surface 5, and the swirl flow 24 and the squish flow 25 cause the cavity 7 to move. Air and fuel 8 are mixed therein.
【0013】そして、この第1発明では、キャビティ7
の内底中央部からシリンダヘッドに向けて隆起10を形
成してあるため、キャビティ7の中心部に旋回流24が
作用しない空気の停滞部分が無くなる。In the first aspect of the invention, the cavity 7
Since the ridge 10 is formed from the central portion of the inner bottom of the cavity toward the cylinder head, there is no stagnant portion of the air in the center of the cavity 7 where the swirling flow 24 does not act.
【0014】(第2発明)第2発明では、第1発明の作
用に加え、次のように作用する。すなわち、図3に示す
ように、バルブリセス6に導入されたスワール流23
が、スワール流案内面13に沿ってキャビティ7内に速
やかに案内され、キャビティ7内の旋回流24の流速が
高まる。(Second Invention) In addition to the operation of the first invention, the second invention operates as follows. That is, as shown in FIG. 3, the swirl flow 23 introduced into the valve recess 6
However, the swirling flow 24 in the cavity 7 is quickly guided into the cavity 7 along the swirl flow guide surface 13, and the flow velocity of the swirling flow 24 in the cavity 7 increases.
【0015】(第3発明)第3発明では、第1発明また
は第2発明の作用に加え、次のように作用する。すなわ
ち、図1(A)または図3に示すように、バルブリセス
6からスワール流旋回方向に沿って基準放射仮想線16
に至る前半部26と、基準放射仮想線16からスワール
流旋回方向に沿ってバルブリセス6に至る後半部27と
に、スキッシュ面5を区分した場合、シリンダ中心軸線
9からのキャビティ中心軸線22の偏心距離が一定なら
ば、基準放射仮想線16からスワール流下流側に90゜
進角させた直角放射仮想線28上にキャビティ中心軸線
22が位置する時、前半部26の面積が最大になり、か
つ、後半部27の面積が最小になる。(Third invention) In addition to the operation of the first invention or the second invention, the third invention operates as follows. That is, as shown in FIG. 1 (A) or FIG. 3, the reference radiation virtual line 16 extends from the valve recess 6 along the swirl flow swirling direction.
When the squish surface 5 is divided into a front half portion 26 leading to the reference radial imaginary line 16 and a rear half portion 27 reaching the valve recess 6 along the swirl flow swirling direction, the eccentricity of the cavity center axis line 22 from the cylinder center axis line 9 is eccentric. If the distance is constant, the area of the front half portion 26 is maximized when the cavity center axis 22 is located on the right-angled radial imaginary line 28 that is advanced 90 ° from the reference radial imaginary line 16 to the downstream side of the swirl flow, and The area of the latter half 27 is minimized.
【0016】このため、この直角放射仮想線28からス
ワール流23の上流側と下流側とにそれぞれ均等に広が
る中心角120゜の扇形領域21内に、キャビティ中心
軸線22を配置すると、前半部26の面積が十分に大き
く、後半部27の面積が十分に小さくなり、前半部26
で形成されるスキッシュ流25が高速化される分だけ、
後半部27で形成されるスキッシュ流25が低速化され
る。このため、バルブリセス6からキャビティ7に導入
された直後の旋回力の高い旋回流24と高速のスキッシ
ュ流25とがバランスよく複合化されるとともに、キャ
ビティ7内を半周程度旋回して旋回力がやや低下した旋
回流24と低速のスキッシュ流25とがバランスよく複
合化され、スキッシュ流25による旋回流24の乱れが
起こりにくく、その旋回力の低下が抑制される。For this reason, when the cavity center axis 22 is arranged in the fan-shaped region 21 having a central angle of 120 °, which spreads uniformly from the imaginary line of orthogonal radiation 28 to the upstream side and the downstream side of the swirl flow 23, the front half portion 26 is formed. Area is sufficiently large, the area of the second half 27 is sufficiently small,
As the squish flow 25 formed by is accelerated,
The squish flow 25 formed in the latter half portion 27 is slowed down. Therefore, the swirling flow 24 having a high swirling force immediately after being introduced from the valve recess 6 into the cavity 7 and the high-speed squish flow 25 are combined in a well-balanced manner, and the swirling force is swirled in the cavity 7 for about a half turn so that the swirling force is slightly increased. The lowered swirl flow 24 and the low-speed squish flow 25 are combined in a well-balanced manner, and the squish flow 25 is less likely to cause turbulence in the swirl flow 24, thereby suppressing a decrease in the swirling force.
【0017】[0017]
(第1発明)第1発明では、キャビティ7内に旋回流2
4が作用しない空気の停滞部分が無くなるため、キャビ
ティ7内での空気と燃料8との混合が促進され、燃焼効
率が高まる。(First Invention) In the first invention, the swirling flow 2 is generated in the cavity 7.
Since the stagnant portion of the air in which 4 does not act is eliminated, the mixing of the air and the fuel 8 in the cavity 7 is promoted, and the combustion efficiency is increased.
【0018】(第2発明)第2発明では、第1発明の効
果に加え、次の効果を奏する。すなわち、キャビティ7
内の旋回流24の流速が高まるため、キャビティ7内で
の空気と燃料8の混合が一層促進され、燃焼効率が一層
高まる。(Second Invention) In addition to the effects of the first invention, the second invention has the following effects. That is, the cavity 7
Since the flow velocity of the swirling flow 24 in the inside increases, the mixing of the air and the fuel 8 in the cavity 7 is further promoted, and the combustion efficiency is further increased.
【0019】(第3発明)第3発明では、第1発明また
は第2発明の効果に加え、次の効果を奏する。すなわ
ち、スキッシュ流25による旋回流24の乱れが起こり
にくく、その旋回力の低下が抑制されるため、キャビテ
ィ7内での空気と燃料8の混合が一層促進され、燃焼効
率が一層高まる。(Third Invention) In addition to the effects of the first invention or the second invention, the third invention has the following effect. That is, the squish flow 25 hardly disturbs the swirl flow 24, and the reduction of the swirling force is suppressed, so that the mixing of the air and the fuel 8 in the cavity 7 is further promoted, and the combustion efficiency is further enhanced.
【0020】[0020]
【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1及び図2に示す第1実施形態では、
単気筒の横形ディーゼルエンジンを用いている。このエ
ンジンの構成は次の通りである。すなわち、図2(A)
に示すように、シリンダブロック29内にシリンダ30
を水平な向きに設け、シリンダブロック29の一端側に
シリンダヘッド1を組み付けてある。シリンダ30には
ピストンヘッド32を内嵌してある。そして、シリンダ
ブロック29とシリンダヘッド1とにわたってプッシュ
ロッド挿通孔34をあけ、ここにプッシュロッド35を
挿通してある。シリンダヘッド1には、吸気用のスワー
ルポート3と排気ポート31と、ノズル差し込み孔33
とを設け、ノズル差し込み孔33に燃料噴射ノズル2を
差し込んで固定してある。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. In the first embodiment shown in FIGS. 1 and 2,
It uses a single cylinder horizontal diesel engine. The structure of this engine is as follows. That is, FIG.
As shown in FIG.
Is provided in a horizontal direction, and the cylinder head 1 is attached to one end of the cylinder block 29. A piston head 32 is fitted in the cylinder 30. A push rod insertion hole 34 is formed between the cylinder block 29 and the cylinder head 1, and a push rod 35 is inserted therein. The cylinder head 1 has an intake swirl port 3, an exhaust port 31, and a nozzle insertion hole 33.
And the fuel injection nozzle 2 is inserted into the nozzle insertion hole 33 and fixed.
【0021】そして、図1に示すように、ピストンヘッ
ド頂面4に、スキッシュ面5を残してバルブリセス6と
燃焼用のキャビティ7とを凹設し、キャビティ7内に燃
料噴射ノズル2から燃料8を噴射するようにし、キャビ
ティ7をピストンヘッド頂面4の中央部に、バルブリセ
ス6をピストンヘッド頂面4の周縁寄りにそれぞれ配置
するとともに、キャビティ7とバルブリセス6とを相互
に連通させて、スワール流23がバルブリセス内周面1
2の案内でキャビティ7に導入されるようにしてある。As shown in FIG. 1, a valve recess 6 and a combustion cavity 7 are recessed in the piston head top surface 4 leaving a squish surface 5, and the fuel injection nozzle 2 to fuel 8 are introduced into the cavity 7. And the cavity 7 is arranged at the center of the piston head top surface 4 and the valve recess 6 is arranged near the peripheral edge of the piston head top surface 4, and the cavity 7 and the valve recess 6 are communicated with each other to form a swirl. The flow 23 is the inner surface 1 of the valve recess.
It is adapted to be introduced into the cavity 7 by the guide of 2.
【0022】この種の燃焼室では、吸気工程でスワール
ポート3からシリンダ内に導入された吸気により、シリ
ンダ内にシリンダ中心軸線9を旋回中心とするスワール
流23が形成され、圧縮工程の終期には、ピストンヘッ
ド頂面4がシリンダヘッド1に接近するため、スワール
流23がバルブリセス内周面12の案内でキャビティ7
内に速やかに導入され、キャビティ7内にキャビティ中
心軸線22を旋回中心とする旋回流24が形成されるう
え、スキッシュ面5によってキャビティ7内にスキッシ
ュ流25が形成され、この旋回流24とスキッシュ流2
5によってキャビティ7内で空気と燃料8とが混合され
る。In this type of combustion chamber, the intake air introduced into the cylinder from the swirl port 3 during the intake stroke forms a swirl flow 23 centered around the cylinder center axis 9 in the cylinder, and at the end of the compression stroke. Because the piston head top surface 4 approaches the cylinder head 1, the swirl flow 23 is guided by the inner peripheral surface 12 of the valve recess and the cavity 7
Is swiftly introduced into the cavity 7, and a swirl flow 24 having the cavity center axis 22 as a swirl center is formed in the cavity 7. Further, the squish surface 5 forms a squish flow 25 in the cavity 7. Flow 2
5 mixes air and fuel 8 in the cavity 7.
【0023】この実施形態では、燃焼効率を高めるた
め、キャビティ7の内底中央部からシリンダヘッド1に
向けて隆起部10を形成してあるため、キャビティ7の
中心部に旋回流24が作用しない空気の停滞部分が無く
なり、キャビティ7内での空気と燃料との混合が促進さ
れ、燃焼効率が高まる。In this embodiment, the swirl flow 24 does not act on the central portion of the cavity 7 because the raised portion 10 is formed from the center of the inner bottom of the cavity 7 toward the cylinder head 1 in order to improve the combustion efficiency. The stagnant portion of air is eliminated, the mixing of air and fuel in the cavity 7 is promoted, and the combustion efficiency is increased.
【0024】バルブリセス6は円形にしてある。このバ
ルブリセス6は、吸気バルブ用のバルブリセスで、排気
バルブ用のバルブリセスは設けていない。燃料噴射ノズ
ル2から噴射される燃料8は、キャビティ中心軸線22
付近からキャビティ内周面11に向けてある。キャビテ
ィ7はシリンダ中心軸線9と平行なキャビティ中心軸線
22を有し、キャビティ内周面11はキャビティ7の内
底面に近づくにつれて次第に径を広げる円錐台面として
ある。また、隆起部10の周面は、シリンダヘッド1に
近づくにつれて次第に径を広げる円錐面としてある。図
1(D)に示すように、シリンダ中心軸線9と直交する
仮想断面上で、キャビティ内周面11と隆起部10の周
面とは、キャビティ中心軸線22を中心とする同心円に
なるため、キャビティ7内で旋回流24が抵抗少なく旋
回する。The valve recess 6 has a circular shape. The valve recess 6 is a valve recess for an intake valve, and no valve recess for an exhaust valve is provided. The fuel 8 injected from the fuel injection nozzle 2 has a cavity center axis line 22.
It is directed from the vicinity to the cavity inner peripheral surface 11. The cavity 7 has a cavity center axis 22 parallel to the cylinder center axis 9, and the cavity inner peripheral surface 11 is a truncated cone surface whose diameter gradually increases as it approaches the inner bottom surface of the cavity 7. The peripheral surface of the raised portion 10 is a conical surface whose diameter gradually increases as it approaches the cylinder head 1. As shown in FIG. 1D, since the cavity inner peripheral surface 11 and the peripheral surface of the raised portion 10 are concentric circles centering on the cavity central axis 22 on an imaginary cross section orthogonal to the cylinder central axis 9. The swirling flow 24 swirls in the cavity 7 with less resistance.
【0025】この第1実施形態では、図1(A)に示す
ように、バルブリセス6を一個のみ設け、シリンダ中心
軸線9と平行な向きに見て、シリンダ中心軸線9からバ
ルブリセス6のリセス中心軸線14に向けて伸びるリセ
ス中心向き放射仮想線15と、シリンダ中心軸線9から
リセス中心向き放射仮想線15と反対側に伸びる基準放
射仮想線16と、基準放射仮想線16からスワール流旋
回方向に進角させた下限放射仮想線17と、この下限放
射仮想線17よりも更にスワール流旋回方向に進角させ
た上限放射仮想線18とを想定した。In the first embodiment, as shown in FIG. 1 (A), only one valve recess 6 is provided, and when viewed in a direction parallel to the cylinder center axis 9, the recess center axis of the valve recess 6 from the cylinder center axis 9 is seen. 14, a virtual imaginary line 15 extending toward the recess center, a reference virtual imaginary line 16 extending from the cylinder center axis 9 to the opposite side of the radial imaginary line 15 facing the recess center, and a virtual phantom line 16 extending from the reference virtual imaginary line 16 in the swirl swirling direction. The lower limit imaginary phantom line 17 that is angled and the upper limit imaginary phantom line 18 that is further advanced in the swirl flow swirling direction than the lower limit imaginary phantom line 17 are assumed.
【0026】そして、基準放射仮想線16からの下限放
射仮想線17の進角度19を30゜とし、基準放射仮想
線16からの上限放射仮想線18の進角度20を150
゜とし、下限放射仮想線17と上限放射仮想線18との
間に挟まれた中心角120゜の扇形領域21内に、シリ
ンダ中心軸線9から偏心させたキャビティ中心軸線22
を配置した。The advancing angle 19 of the lower limit imaginary line 17 from the reference imaginary imaginary line 16 is set to 30 °, and the advancing angle 20 of the upper limit imaginary line 18 from the reference imaginary imaginary line 16 is set to 150.
And a cavity center axis line 22 decentered from the cylinder center axis line 9 in a fan-shaped region 21 having a center angle of 120 ° sandwiched between the lower limit phantom imaginary line 17 and the upper limit imaginary phantom line 18.
Was placed.
【0027】このような構成によれば、バルブリセス6
からスワール流旋回方向に沿って基準放射仮想線16に
至る前半部26と、基準放射仮想線16からスワール流
旋回方向に沿ってバルブリセス6に至る後半部27と
に、スキッシュ面5を区分した場合、シリンダ中心軸線
9からのキャビティ中心軸線22の偏心距離が一定なら
ば、基準放射仮想線16からスワール流下流側に90゜
進角させた直角放射仮想線28上にキャビティ中心軸線
22が位置する時、前半部26の面積が最大になり、か
つ、後半部27の面積が最小になる。According to such a configuration, the valve recess 6
When the squish surface 5 is divided into the front half portion 26 extending from the reference imaginary line 16 along the swirl swirl direction to the rear half portion 27 extending from the reference radial imaginary line 16 to the valve recess 6 along the swirl swirl direction. If the eccentric distance of the cavity center axis line 22 from the cylinder center axis line 9 is constant, the cavity center axis line 22 is positioned on the right angle imaginary line 28 that is advanced 90 degrees to the swirl flow downstream side from the reference radiation imaginary line 16. At this time, the area of the first half portion 26 is maximized and the area of the second half portion 27 is minimized.
【0028】このため、この直角放射仮想線28からス
ワール流23の上流側と下流側とにそれぞれ均等に広が
る中心角120゜の扇形領域21内に、キャビティ中心
軸線22を配置すると、前半部26の面積が十分に大き
く、後半部27の面積が十分に小さくなり、前半部26
で形成されるスキッシュ流25が高速化される分だけ、
後半部27で形成されるスキッシュ流25が低速化され
る。このため、バルブリセス6からキャビティ7に導入
された直後の旋回力の高い旋回流24と高速のスキッシ
ュ流25とがバランスよく複合化されるとともに、キャ
ビティ7内を半周程度旋回して旋回力がやや低下した旋
回流24と低速のスキッシュ流25とがバランスよく複
合化され、スキッシュ流25による旋回流24の乱れが
起こりにくく、その旋回力の低下が抑制される。このた
め、キャビティ7内での空気と燃料8の混合が一層促進
され、燃焼効率が一層高まる。Therefore, when the cavity center axis line 22 is arranged in the fan-shaped region 21 having a central angle of 120 °, which spreads evenly from the imaginary line of right-angled radiation 28 to the upstream side and the downstream side of the swirl flow 23, the front half portion 26 is formed. Area is sufficiently large, the area of the second half 27 is sufficiently small,
As the squish flow 25 formed by is accelerated,
The squish flow 25 formed in the latter half portion 27 is slowed down. Therefore, the swirling flow 24 having a high swirling force immediately after being introduced from the valve recess 6 into the cavity 7 and the high-speed squish flow 25 are combined in a well-balanced manner, and the swirling force is slightly swirled in the cavity 7 by making a half turn. The lowered swirl flow 24 and the low-speed squish flow 25 are combined in a well-balanced manner, and the squish flow 25 is less likely to cause turbulence in the swirl flow 24, thereby suppressing a decrease in the swirling force. Therefore, the mixing of the air and the fuel 8 in the cavity 7 is further promoted, and the combustion efficiency is further enhanced.
【0029】より望ましくは、基準放射仮想線16から
の下限放射仮想線17の進角度19を45゜とし、基準
放射仮想線16からの上限放射仮想線18の進角度20
を135゜とし、下限放射仮想線17と上限放射仮想線
18との間に挟まれた中心角90゜の扇形領域21内に
シリンダ中心軸線9から偏心させたキャビティ中心軸線
22を配置する。More preferably, the advancing angle 19 of the lower limit imaginary line 17 from the reference imaginary imaginary line 16 is set to 45 °, and the advancing angle 20 of the upper limit imaginary line 18 from the reference imaginary imaginary line 16 is set.
Is set to 135 °, and a cavity center axis line 22 eccentric from the cylinder center axis line 9 is arranged in a fan-shaped region 21 having a center angle of 90 ° sandwiched between the lower limit imaginary line 17 and the upper limit imaginary line 18.
【0030】図3に示す第2実施形態では、図1及び図
2に示す第1実施形態において、キャビティ内周面11
とバルブリセス内周面12とを、これらの接線方向に向
けたスワール流案内面13で接続してある。他の構成は
第1実施形態と同一にしており、図3中、第1実施形態
と同一の要素には同一の符号を付しておく。このような
構成によれば、バルブリセス6に導入されたスワール流
23が、スワール流案内面13に沿ってキャビティ7内
に速やかに案内され、キャビティ7内の旋回流24の流
速が高まる。このため、キャビティ7内での空気と燃料
8の混合が一層促進され、燃焼効率が一層高まる。In the second embodiment shown in FIG. 3, the cavity inner peripheral surface 11 in the first embodiment shown in FIGS. 1 and 2 is used.
The valve recess inner peripheral surface 12 and the valve recess inner peripheral surface 12 are connected to each other by a swirl flow guide surface 13 directed in a tangential direction thereof. The other configuration is the same as that of the first embodiment. In FIG. 3, the same elements as those of the first embodiment are denoted by the same reference numerals. With such a configuration, the swirl flow 23 introduced into the valve recess 6 is quickly guided into the cavity 7 along the swirl flow guide surface 13, and the flow velocity of the swirl flow 24 in the cavity 7 increases. Therefore, the mixing of the air and the fuel 8 in the cavity 7 is further promoted, and the combustion efficiency is further enhanced.
【図1】第1実施形態の燃焼室を説明する図で、図1
(A)はピストンヘッド頂面の正面図、図1(B)は図
1(A)のB−B線断面図、図1(C)は図1(A)の
C−C線断面図、図1(D)は図1(B)のD−D線断
面図である。FIG. 1 is a diagram illustrating a combustion chamber according to a first embodiment, and FIG.
1A is a front view of the top surface of the piston head, FIG. 1B is a sectional view taken along line BB in FIG. 1A, and FIG. 1C is a sectional view taken along line CC in FIG. 1A. FIG. 1D is a sectional view taken along the line D-D of FIG.
【図2】第1実施形態の燃焼室を備えたエンジンの要部
説明図で、図2(A)は縦断側面図、図2(B)は図2
(A)のB−B線断面図である。FIG. 2 is an explanatory view of a main part of an engine including a combustion chamber according to the first embodiment, FIG. 2 (A) is a vertical side view, and FIG. 2 (B) is FIG.
It is a BB sectional view taken on the line of (A).
【図3】第2実施形態の燃焼室に用いるピストンヘッド
頂面の正面図である。FIG. 3 is a front view of the top surface of a piston head used in the combustion chamber of the second embodiment.
【図4】従来技術の燃焼室を説明する図で、図4(A)
はピストンヘッド頂面の正面図、図4(B)は図4
(A)のB−B線断面図である。FIG. 4 is a diagram illustrating a conventional combustion chamber, and FIG.
Is a front view of the top surface of the piston head, and FIG.
It is a BB sectional view taken on the line of (A).
1…シリンダヘッド、2…燃料噴射ノズル、3…スワー
ルポート、4…ピストンヘッド頂面、5…スキッシュ
面、6…バルブリセス、7…キャビティ、8…燃料、9
…シリンダ中心軸線、10…隆起部、11…キャビティ
内周面、12…バルブリセス内周面、13…スワール流
案内面、14…リセス中心軸線、15…リセス中心向き
放射仮想線、16…基準放射仮想線、17…下限放射仮
想線、18…上限放射仮想線、19・20…進角度、2
1…扇形領域、22…キャビティ中心軸線、23…スワ
ール流。1 ... Cylinder head, 2 ... Fuel injection nozzle, 3 ... Swirl port, 4 ... Piston head top surface, 5 ... Squish surface, 6 ... Valve recess, 7 ... Cavity, 8 ... Fuel, 9
... Cylinder center axis line, 10 ... Raised part, 11 ... Cavity inner peripheral surface, 12 ... Valve recess inner peripheral surface, 13 ... Swirl flow guide surface, 14 ... Recess center axis line, 15 ... Recess center radiating virtual line, 16 ... Reference radiation Virtual line, 17 ... Lower limit virtual line, 18 ... Upper limit virtual line, 19/20 ... Advance angle, 2
1 ... fan-shaped region, 22 ... cavity center axis line, 23 ... swirl flow.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02F 3/28 F02F 3/28 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area F02F 3/28 F02F 3/28 B
Claims (3)
(2)とスワールポート(3)とを設け、ピストンヘッド頂
面(4)に、スキッシュ面(5)を残してバルブリセス(6)
と燃焼用のキャビティ(7)とを凹設し、キャビティ(7)
内に燃料噴射ノズル(2)から燃料(8)を噴射するように
し、キャビティ(7)をピストンヘッド頂面(4)の中央部
に、バルブリセス(6)をピストンヘッド頂面(4)の周縁
寄りにそれぞれ配置するとともに、キャビティ(7)とバ
ルブリセス(6)とを相互に連通させて、スワール流(2
3)がバルブリセス内周面(12)の案内でキャビティ
(7)に導入されるようにした、ディーゼルエンジンの直
接噴射式燃焼室において、 キャビティ(7)の内底中央部からシリンダヘッド(1)に
向けて隆起部(10)を形成した、ことを特徴とするディ
ーゼルエンジンの直接噴射式燃焼室。A fuel injection nozzle is provided on a cylinder head (1).
(2) and swirl port (3) are provided, and the valve recess (6) is left on the piston head top surface (4) leaving the squish surface (5).
And the cavity (7) for combustion are recessed, and the cavity (7)
The fuel (8) is injected from the fuel injection nozzle (2), the cavity (7) is located at the center of the piston head top surface (4), and the valve recess (6) is located at the periphery of the piston head top surface (4). The cavities (7) and the valve recesses (6) are connected to each other, and the swirl flow (2
3) Guide the inner surface of the valve recess (12) to the cavity
In the direct injection combustion chamber of the diesel engine, which is adapted to be introduced into (7), the ridge (10) is formed from the center of the inner bottom of the cavity (7) toward the cylinder head (1). The direct injection type combustion chamber of the diesel engine.
の直接噴射式燃焼室において、キャビティ内周面(11)
とバルブリセス内周面(12)とを、これらの接線方向に
向けたスワール流案内面(13)で接続した、ことを特徴
とするディーゼルエンジンの直接噴射式燃焼室。2. A direct injection type combustion chamber of a diesel engine according to claim 1, wherein the cavity inner peripheral surface (11)
A direct injection combustion chamber for a diesel engine, characterized in that the valve recess inner peripheral surface (12) and the valve recess inner peripheral surface (12) are connected by a swirl flow guide surface (13) directed in a tangential direction thereof.
ーゼルエンジンの直接噴射式燃焼室において、バルブリ
セス(6)を一個のみ設け、シリンダ中心軸線(9)と平行
な向きに見て、シリンダ中心軸線(9)からバルブリセス
(6)のリセス中心軸線(14)に向けて伸びるリセス中心
向き放射仮想線(15)と、シリンダ中心軸線(9)からリ
セス中心向き放射仮想線(15)と反対側に伸びる基準放
射仮想線(16)と、基準放射仮想線(16)からスワール
流旋回方向に進角させた下限放射仮想線(17)と、この
下限放射仮想線(17)よりも更にスワール流旋回方向に
進角させた上限放射仮想線(18)とを想定し、 基準放射仮想線(16)からの下限放射仮想線(17)の進
角度(19)を30゜とし、基準放射仮想線(16)からの
上限放射仮想線(18)の進角度(20)を150゜とし、
下限放射仮想線(17)と上限放射仮想線(18)との間に
挟まれた中心角120゜の扇形領域(21)内に、シリン
ダ中心軸線9から偏心させたキャビティ中心軸線(22)
を配置した、ことを特徴とするディーゼルエンジンの直
接噴射式燃焼室。3. The direct injection combustion chamber for a diesel engine according to claim 1 or 2, wherein only one valve recess (6) is provided, and the cylinder center is viewed in a direction parallel to the cylinder center axis (9). Valve recess from axis (9)
(6) Recess center imaginary imaginary line (15) extending toward the recess center axis (14) and reference imaginary imaginary line extending from the cylinder center axis (9) to the opposite side of the recess center facing imaginary line (15). (16), the lower limit radial phantom line (17) advanced from the reference radial phantom line (16) in the swirl flow swirl direction, and the lower limit radial phantom line (17) further advanced in the swirl flow swirl direction than this lower limit radial phantom line (17). Assuming that the upper limit virtual phantom line (18), the advance angle (19) of the lower limit virtual phantom line (17) from the reference virtual phantom line (16) is set to 30 ° The advancing angle (20) of the imaginary radiation line (18) is set to 150 °,
A cavity center axis (22) eccentric from the cylinder center axis 9 is located in a fan-shaped region (21) having a central angle of 120 ° sandwiched between the lower limit imaginary line (17) and the upper limit imaginary line (18).
The direct injection combustion chamber of a diesel engine is characterized in that
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31993695A JP3357519B2 (en) | 1995-12-08 | 1995-12-08 | Diesel engine direct injection combustion chamber |
CN96114585A CN1086443C (en) | 1995-12-08 | 1996-11-22 | Direct injection type combustion chamber of diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31993695A JP3357519B2 (en) | 1995-12-08 | 1995-12-08 | Diesel engine direct injection combustion chamber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09158734A true JPH09158734A (en) | 1997-06-17 |
JP3357519B2 JP3357519B2 (en) | 2002-12-16 |
Family
ID=18115901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31993695A Expired - Fee Related JP3357519B2 (en) | 1995-12-08 | 1995-12-08 | Diesel engine direct injection combustion chamber |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3357519B2 (en) |
CN (1) | CN1086443C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270749A (en) * | 2006-03-31 | 2007-10-18 | Toyota Motor Corp | Internal combustion engine |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101676538A (en) * | 2008-09-18 | 2010-03-24 | 吕文杰 | Engine with multiple-level gas displacement |
EP2942506B1 (en) * | 2013-01-07 | 2017-08-23 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
JP6432788B2 (en) * | 2015-07-29 | 2018-12-05 | マツダ株式会社 | Engine combustion chamber structure |
CN112031920A (en) * | 2020-09-11 | 2020-12-04 | 潍柴动力股份有限公司 | Diesel engine combustion system and diesel engine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87210334U (en) * | 1987-07-18 | 1988-07-20 | 大连工学院 | Squeezing-and-flowing-nozzle type oil-film atomizing combustion chamber |
CN2184785Y (en) * | 1994-01-17 | 1994-12-07 | 云南内燃机厂 | 4100 energy saving type diesel engine |
-
1995
- 1995-12-08 JP JP31993695A patent/JP3357519B2/en not_active Expired - Fee Related
-
1996
- 1996-11-22 CN CN96114585A patent/CN1086443C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270749A (en) * | 2006-03-31 | 2007-10-18 | Toyota Motor Corp | Internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
CN1086443C (en) | 2002-06-19 |
CN1152071A (en) | 1997-06-18 |
JP3357519B2 (en) | 2002-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09158734A (en) | Direct injection combustion chamber of diesel engine | |
JP2003201846A (en) | Cylinder direct injection engine | |
JPH01200012A (en) | Combustion chamber for vortex current chamber type diesel engine | |
CN114607522A (en) | Combustion system and engine | |
JP3185234B2 (en) | Direct injection internal combustion engine | |
JPH09303149A (en) | Combustion chamber for direct injection diesel engine | |
JPH1193673A (en) | Direct injection-type diesel engine | |
JPH01104914A (en) | Piston for swirl-chamber type diesel engine | |
JPH11117748A (en) | Combustion chamber for direct injection type diesel engine | |
JP2001214742A (en) | Direct injection type combustion chamber for diesel engine | |
JP2504770Y2 (en) | Direct injection diesel engine | |
JP2526943Y2 (en) | Sub-chamber diesel engine | |
JPH086589B2 (en) | Direct injection internal combustion engine | |
JPS6329016A (en) | Subchamber type diesel combustion chamber | |
JPH0318619A (en) | Combustion chamber of swirl flow chamber type diesel engine | |
JPH0134657Y2 (en) | ||
JP2003269176A (en) | Cylinder direct injection engine | |
JP2715750B2 (en) | Combustion chamber of a swirl chamber type diesel engine | |
JPH0110411Y2 (en) | ||
JPH0949431A (en) | Direct injection type diesel engine | |
CS250778B1 (en) | Combustion chamber | |
JPH01219351A (en) | Fuel injection multispout nozzle for direct-injection diesel engine | |
JP3295260B2 (en) | Vortex chamber combustion chamber for diesel engine | |
JP2534248Y2 (en) | Combustion chamber of vortex chamber diesel engine | |
JP2921328B2 (en) | Engine with swirl chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091004 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091004 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101004 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111004 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121004 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131004 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |