JPH1193673A - Direct injection-type diesel engine - Google Patents

Direct injection-type diesel engine

Info

Publication number
JPH1193673A
JPH1193673A JP9273538A JP27353897A JPH1193673A JP H1193673 A JPH1193673 A JP H1193673A JP 9273538 A JP9273538 A JP 9273538A JP 27353897 A JP27353897 A JP 27353897A JP H1193673 A JPH1193673 A JP H1193673A
Authority
JP
Japan
Prior art keywords
fuel
combustion chamber
swirl flow
diesel engine
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9273538A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kuzutani
佳史 葛谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP9273538A priority Critical patent/JPH1193673A/en
Publication of JPH1193673A publication Critical patent/JPH1193673A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0678Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
    • F02B23/0687Multiple bowls in the piston, e.g. one bowl per fuel spray jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide compatibility between promotion of mixing of fuel and air in high loading and prevention of sticking of fuel to the peripheral wall surface of a combustion chamber in high-speed low loading, in a direct injection-type diesel engine. SOLUTION: A plurality of recessed parts 3 are circumferentially formed on the peripheral wall surface of a circular combustion chamber formed on a piston 1 at equal distances. Each recessed part 3 is formed into such a shape that the bottom surface may be gradually deeper from the upstream side to the downstream side and also may be shallower from the deepest part 302 with the steep gradient. A plurality of nozzle holes 41 whose injecting directions face respective recessed parts 3 are formed on a fuel injection nozzle 4 facing the combustion chamber. Even if the swirl flow is strengthened in order to promote mixing of a fuel and air in high loading, fuel sticking is restrained since the scattering direction of fuel grains and the bottom surfaces of the recessed parts 3 are made to be approximately parallel to each other in the upstream side half parts 31 of the recessed parts 3 in high-speed low loading, and centrifugal force to act on the fuel grains is weakened by the turbulence of the swirl flow in downstream side half parts 32 as small parts, and fuel sticking is restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は直接噴射式ディーゼ
ルエンジンに関する。
The present invention relates to a direct injection diesel engine.

【0002】[0002]

【従来の技術】直接噴射式のディーゼルエンジンは、ピ
ストンに上面開口の燃焼室を形成し、これに臨む燃料噴
射ノズルから燃料を燃焼室の周壁面に向けて噴射する構
成のもので、一般に、燃焼室に燃料が噴射される前に予
め燃料と空気の混合を行う副室式のタイプに比べ熱効率
がよく、出力当たりの二酸化炭素(CO2 )の排出量が
少ないため、大型の車両を中心に広く採用されている。
2. Description of the Related Art A direct-injection diesel engine has a structure in which a piston has a combustion chamber having an upper surface opening, and fuel is injected toward a peripheral wall of the combustion chamber from a fuel injection nozzle facing the combustion chamber. Compared to the sub-chamber type that mixes fuel and air before the fuel is injected into the combustion chamber, it has higher thermal efficiency and less carbon dioxide (CO2) emission per output. Widely adopted.

【0003】一方で直接噴射式ディーゼルエンジンは、
予め燃料と空気の混合が行われないので排気ガス中の窒
素酸化物(NOx )やパティキュレート(PM)等が発
生しやすく、これらの低減が特に要請されている。直接
噴射式ディーゼルエンジンにおけるこれらの発生量は燃
焼室における燃焼過程に強く影響を受け、特にスモー
ク、PMの排出量は、燃焼室に噴射された燃料と空気と
の混合状態が悪いと極端に増加する。そこで直接噴射式
ディーゼルエンジンでは、燃料と空気との混合を促進す
るため、燃焼室を円形とするとともに、吸気系統に、吸
気に渦巻き流を発生させるヘリカルポートやシリンダ接
線方向に空気を導入するディレクショナルポートを採用
して燃焼室内に導入される空気がスワール流を形成する
ようにすることで、燃料と空気との混合状態の改善を図
っている。
On the other hand, direct injection diesel engines are
Since the fuel and air are not mixed in advance, nitrogen oxides (NOx) and particulates (PM) in the exhaust gas are likely to be generated, and reduction of these is particularly demanded. The amount of these emissions in a direct-injection diesel engine is strongly affected by the combustion process in the combustion chamber. In particular, the amount of smoke and PM emission increases extremely when the mixing state of the fuel and air injected into the combustion chamber is poor. I do. Therefore, in direct injection diesel engines, the combustion chamber is made circular in order to promote the mixing of fuel and air, and the air is introduced into the intake system in the helical port that generates a vortex flow in the intake air and in the tangential direction of the cylinder. The mixing state of the fuel and the air is improved by employing a special port so that the air introduced into the combustion chamber forms a swirl flow.

【0004】燃料の噴射量が多く噴射期間が長い高負荷
時には、燃料の噴射が上死点後も長く続くため、燃焼室
の形状として、ピストン上面の開口部を絞ってスワール
流の保存性を高めたもの(リエントラント燃焼室)や、
リエントラント燃焼室において底面中央部に突起を形成
してスワール流を整流しさらにその保存性を高めた中央
突起付きのものが採用されている。
When the load is large and the injection period is long and the injection period is long, the fuel injection continues for a long time even after the top dead center. Therefore, the shape of the combustion chamber is narrowed by the opening on the top surface of the piston to preserve the swirl flow. Enhanced (reentrant combustion chamber),
In the reentrant combustion chamber, a projection is formed at the center of the bottom surface to rectify the swirl flow and has a central projection with improved preservability.

【0005】特開平8−326543号公報には、リエ
ントラント燃焼室の周壁面にらせん状にリブを形成して
螺旋状のスワール流が形成されるようにし、混合状態の
改善を図ったものがある。
[0005] Japanese Patent Application Laid-Open No. 8-326543 discloses a spiral-shaped swirl flow formed by forming spiral ribs on the peripheral wall of a reentrant combustion chamber to improve the mixing state. .

【0006】また特開平8−105368号公報には、
燃料噴射ノズルの噴孔の、スワール流の下流側をカット
して噴射燃料のスワール流下流側への拡散性を向上せし
めることで、混合状態を改善したものがある。また特開
平8−105369号公報には、燃料噴射ノズルの噴孔
の、燃焼室の形成されたピストン側をカットして、燃焼
室底部側への燃料の拡散性を向上せしめたものがある。
Japanese Patent Application Laid-Open No. 8-105368 discloses that
There is a fuel injection nozzle in which the mixing state is improved by cutting the downstream side of the swirl flow of the injection hole of the fuel injection nozzle to improve the diffusibility of the injected fuel to the downstream side of the swirl flow. Japanese Patent Application Laid-Open No. 8-105369 discloses a fuel injection nozzle in which the injection hole of a fuel injection nozzle is cut on the side of a piston where a combustion chamber is formed to improve the diffusion of fuel toward the bottom of the combustion chamber.

【0007】[0007]

【発明が解決しようとする課題】しかしリエントラント
燃焼室等の円形の燃焼室を備えた直接噴射式ディーゼル
エンジンでは、空気の割合の多い低負荷時には、特に高
速時にスワール流が強すぎ、スワール流に流される噴射
燃料が遠心力を受けて燃焼室の周壁面に衝突して付着
し、これが排気時に未燃の状態のまま白煙となって排出
される。スワール流を弱くすると、燃料噴射量の多い高
負荷時に燃料と空気の混合が不十分になるおそれがあ
る。
However, in a direct-injection diesel engine having a circular combustion chamber such as a reentrant combustion chamber, the swirl flow is too strong at a low load with a large proportion of air, especially at a high speed, and the swirl flow is reduced. The injected injected fuel receives the centrifugal force and collides with and adheres to the peripheral wall surface of the combustion chamber, and is discharged as white smoke in an unburned state when exhausted. If the swirl flow is weakened, mixing of fuel and air may be insufficient at high load with a large fuel injection amount.

【0008】また上記特開平8−105368号公報、
特開平8−105369号公報記載のものでも、負荷に
応じた適切なスワール流が得られず、高負荷時にスワー
ル流が不足して混合が十分に行われないか、あるいは高
速低負荷時にスワール流が強すぎて噴射燃料が周壁面に
衝突して付着するおそれがある。
The above-mentioned Japanese Patent Application Laid-Open No. 8-105368 describes
Even in the method described in Japanese Patent Application Laid-Open No. 8-105369, an appropriate swirl flow according to the load cannot be obtained, and the swirl flow is insufficient at a high load and mixing is not sufficiently performed. Is too strong, and the injected fuel may collide with and adhere to the peripheral wall surface.

【0009】そこで本発明は、高負荷時には燃料と空気
の混合が促進され、高速低負荷時には燃焼室内壁面に燃
料が付着しない直接噴射式ディーゼルエンジンを提供す
ることを目的とする。
Accordingly, an object of the present invention is to provide a direct injection diesel engine in which mixing of fuel and air is promoted at a high load and fuel does not adhere to the wall of the combustion chamber at a high speed and a low load.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明で
は、ピストンに形成された上面開口の円形の燃焼室内
に、スワール流を形成する空気を導入し、燃焼室内に臨
む燃料噴射ノズルから燃料を燃焼室の周壁面に向けて噴
射するようになした直接噴射式ディーゼルエンジンにお
いて、燃焼室の周壁面に、周方向に等間隔をおいて底面
がスワール流の上流側から下流側へと緩やかな曲面をな
して徐々に深くなり、最深部から急な勾配の曲面をなし
て浅くなる複数の凹部を形成する。かつ上記燃料噴射ノ
ズルには、噴射方向を上記各凹部に設けた複数の噴孔を
形成する。
According to the first aspect of the present invention, air forming a swirl flow is introduced into a circular combustion chamber having a top opening formed in a piston, and fuel is injected from a fuel injection nozzle facing the combustion chamber. Direct injection diesel engine that injects oil toward the peripheral wall of the combustion chamber, the bottom surface of the peripheral wall of the combustion chamber is gently spaced from the upstream side to the downstream side of the swirl flow at equal intervals in the circumferential direction. A plurality of concave portions are formed which gradually become deeper in a curved surface and become shallower in a curved surface having a steep gradient from the deepest portion. Further, the fuel injection nozzle has a plurality of injection holes each having an injection direction provided in each of the concave portions.

【0011】噴射された燃料はスワール流に流されて遠
心力を受け燃焼室の径方向の速度が増す。燃料の噴射量
の少ない低負荷時には特に増速する。しかし凹部の最深
部までの上流部では燃料の粒子の速度の周壁面に対する
鉛直方向成分が小さくなって、燃料粒子の飛行方向と周
壁面とがより平行に近くなり、燃料の付着が防止され
る。また凹部の最深部よりも下流側では、燃焼室の周方
向に空気が十分整流されずスワール流が乱れ遠心力の作
用は小さい。しかしてスワール流の強い高速低負荷時で
あっても、燃焼室周壁面への燃料の付着が防止される。
The injected fuel is caused to flow in a swirl flow and receives a centrifugal force to increase the radial velocity of the combustion chamber. The speed increases particularly at a low load with a small fuel injection amount. However, in the upstream part up to the deepest part of the concave portion, the vertical component of the velocity of the fuel particle with respect to the peripheral wall surface becomes small, and the flight direction of the fuel particle and the peripheral wall surface become more parallel, preventing fuel adhesion. . On the downstream side of the deepest portion of the concave portion, the air is not sufficiently rectified in the circumferential direction of the combustion chamber, the swirl flow is disturbed, and the effect of the centrifugal force is small. Thus, even at the time of high speed and low load with strong swirl flow, adhesion of fuel to the peripheral wall surface of the combustion chamber is prevented.

【0012】また凹部におけるスワール流に乱れを生じ
させる作用により、空気と噴射された燃料の混合が促進
されるとともに、高負荷時におけるオーバースワールが
防止できる。
Further, the action of causing the turbulence in the swirl flow in the concave portion promotes the mixing of the air and the injected fuel, and also prevents the overswirl at a high load.

【0013】請求項2記載の発明では、ピストンに形成
された上面開口の円形の燃焼室内に、スワール流を形成
する空気を導入し、燃焼室内に臨む燃料噴射ノズルから
燃料を燃焼室の周壁面に向けて噴射するようになした直
接噴射式ディーゼルエンジンにおいて、上記燃料噴射ノ
ズルの噴孔を、燃料噴射ノズルの径方向に対してスワー
ル流の下流側へ向けて形成する。
According to the second aspect of the present invention, air for forming a swirl flow is introduced into a circular combustion chamber having an upper surface opening formed in a piston, and fuel is injected from a fuel injection nozzle facing the combustion chamber to a peripheral wall surface of the combustion chamber. In the direct injection diesel engine configured to inject fuel toward the swirl flow, the injection hole of the fuel injection nozzle is formed toward the downstream side of the swirl flow in the radial direction of the fuel injection nozzle.

【0014】かかる構成により燃料の噴射がスワール流
の下流方向に向けて行われるので、燃料の噴霧はスワー
ル流に乗ってスムーズに流れる。すなわち燃料の噴射量
に応じてスワール流が強化される。噴射量の少ない低負
荷時には、スワール流の強化の程度は低く燃料の燃焼室
壁面への付着が防止される。また噴射量の多い高負荷時
には、スワール流が十分に強化されて空気と噴射された
燃料の混合が促進される。
[0014] With this configuration, the fuel is injected in the downstream direction of the swirl flow, so that the fuel spray flows smoothly on the swirl flow. That is, the swirl flow is enhanced according to the fuel injection amount. When the injection amount is small and the load is low, the degree of the swirl flow is low and the adhesion of the fuel to the combustion chamber wall is prevented. Further, at the time of a high load with a large injection amount, the swirl flow is sufficiently strengthened, and the mixing of the air and the injected fuel is promoted.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)図1、図2に本発明の直接噴射式ディ
ーゼルエンジンの要部を示す。図1はエンジンの気筒部
の上面図で、シリンダヘッド等を省略し、シリンダ内を
往復運動するピストン1と燃料噴射ノズル4のみを描い
ている。図2は図1のA−A線に沿う縦断面である。
(First Embodiment) FIGS. 1 and 2 show a main part of a direct injection diesel engine of the present invention. FIG. 1 is a top view of a cylinder portion of an engine, in which a cylinder head and the like are omitted, and only a piston 1 and a fuel injection nozzle 4 that reciprocate in a cylinder are illustrated. FIG. 2 is a longitudinal section taken along line AA of FIG.

【0016】ピストン1のヘッド部11には、これに同
軸に、上面に開口する円形(半径:R)の燃焼室2が形
成してある。燃料噴射ノズル4は図略のシリンダヘッド
に燃焼室2に同軸に固定され、その先端部が燃焼室2に
臨んでいる。
A circular (radius: R) combustion chamber 2 is formed in the head portion 11 of the piston 1 coaxially with the head portion 11 and opens on the upper surface. The fuel injection nozzle 4 is fixed to a cylinder head (not shown) coaxially with the combustion chamber 2, and the tip thereof faces the combustion chamber 2.

【0017】燃焼室2は開口部21が絞られた、いわゆ
るリエントラント燃焼室であり、シリンダ内にヘリカル
ポート等から吸入された空気がスワール流を発生し、ピ
ストン1の上昇に伴って吸入空気が圧縮されると、スワ
ール流は燃焼室2内に押し込まれて増速するようになっ
ている。また燃焼室2の底面中央部に円錐台状の突起部
22が形成され、燃焼室2内に流入する空気のスワール
流を整流し、さらにその保存性を高めている。
The combustion chamber 2 is a so-called reentrant combustion chamber in which the opening 21 is narrowed, and the air sucked from a helical port or the like in the cylinder generates a swirl flow. When compressed, the swirl flow is pushed into the combustion chamber 2 to increase the speed. A frustoconical projection 22 is formed at the center of the bottom surface of the combustion chamber 2 to rectify the swirl flow of the air flowing into the combustion chamber 2 and further improve its preservability.

【0018】図3は、実質的に図1と同じもので、図
中、B,C,D,Eは、図2の、ピストン1の横断面で
あるB−B線、C−C線、D−D線、E−E線に沿う断
面における燃焼室周壁面23を示す仮想線である。燃焼
室2の周壁面23には、同形状の凹部3が5か所に等間
隔で形成してあり、ポケット部3としてある。図1にお
けるポケット部3を示す線は図3のDと一致している。
ポケット部3は燃焼室2の周方向に長い卵形の単調な曲
面をなしている。相隣れるポケット部3がD−D線に沿
う断面において連続している。
FIG. 3 is substantially the same as FIG. 1. In FIG. 3, B, C, D, and E are BB lines, CC lines, which are cross sections of the piston 1 in FIG. It is an imaginary line showing the combustion chamber peripheral wall surface 23 in a cross section along the line DD and the line EE. On the peripheral wall surface 23 of the combustion chamber 2, recesses 3 having the same shape are formed at five locations at equal intervals, and serve as pocket portions 3. The line indicating the pocket portion 3 in FIG. 1 coincides with D in FIG.
The pocket portion 3 has an oval, monotonous curved surface that is long in the circumferential direction of the combustion chamber 2. Adjacent pocket portions 3 are continuous in a cross section along the line DD.

【0019】各ポケット部3の形状は、例えばD−D線
に沿う断面でみると、底面の深さがスワール流上流点
(始点)301から中間点302まで単調増加し、中間
点302から下流点(終点)303へ単調減少する形状
としてある。
The shape of each pocket portion 3 is such that, for example, in a cross section along the line DD, the depth of the bottom surface monotonically increases from the swirl flow upstream point (start point) 301 to the intermediate point 302 and downstream from the intermediate point 302. It has a shape that monotonously decreases to a point (end point) 303.

【0020】ポケット部3の、中間点302よりも上流
側の半部31の形状は円弧上で、ピストン1の軸心X1
から中間点302の方向に距離2R/5〜2R/3偏心
した位置X2を中心として、始点301を通る、曲率半
径が3R/5〜5R/6の円Yで規定され、始点301
から徐々に深くなる緩やかな曲面をなして深くなってい
る。
The shape of the half portion 31 of the pocket portion 3 on the upstream side of the intermediate point 302 is on an arc, and the axial center X1 of the piston 1 is
Is defined by a circle Y having a radius of curvature of 3R / 5 to 5R / 6 passing through a start point 301 with a center at a position X2 eccentric by a distance 2R / 5 to 2R / 3 in the direction of an intermediate point 302 from the center point 302.
It gradually becomes deeper and forms a gentle curved surface.

【0021】そして中間点302から終点303までの
ポケット部3の下流側の半部32は、形状が上流側半部
31から連続的に連なる曲面で、曲率が上流側半部31
よりも大きく、終点303近くでは底面がピストン1の
径方向とほぼ平行になるまで急勾配をなして浅くなって
いる。
The downstream half portion 32 of the pocket portion 3 from the intermediate point 302 to the end point 303 is a curved surface having a continuous shape from the upstream half portion 31 and has a curvature of the upstream half portion 31.
In the vicinity of the end point 303, the bottom surface is steep and shallow until the bottom surface is substantially parallel to the radial direction of the piston 1.

【0022】図より知られるように、上流側半部31と
下流側半部32の境界である中間点302においてポケ
ット部3は最も深くなる。この最深部302は、ポケッ
ト部3の曲率を下流側半部32の方が上流側半部31よ
りも大きくしているからポケット部3の下流側に偏在し
ている。すなわち図例では、各ポケット部3の周方向の
長さはピストン1の軸心X1を中心とする角度で表すと
θ1 =72(=360/5)°であり、また最深部30
2は、始点301を起点とする方位角度で表すとθ2 =
62〜67°である。
As can be seen from the drawing, the pocket portion 3 becomes deepest at an intermediate point 302 which is a boundary between the upstream half portion 31 and the downstream half portion 32. The deepest portion 302 is unevenly distributed downstream of the pocket portion 3 since the curvature of the pocket portion 3 is larger in the downstream half portion 32 than in the upstream half portion 31. That is, in the illustrated example, the circumferential length of each pocket portion 3 is expressed as θ1 = 72 (= 360/5) ° when represented by an angle centered on the axis X1 of the piston 1, and the deepest portion 30
2 is represented by an azimuth angle from the starting point 301 as θ2 =
62-67 °.

【0023】かかる燃焼室2に臨む燃料噴射ノズル4
は、噴孔41が5か所に形成され、72°の間隔をおい
て噴孔中心線5が放射状に形成される。噴孔中心線5は
方位角度θ3 が5〜15°の方向で、やや下方に向いて
おり、噴孔41から燃料がポケット部3の最上流部に向
けて噴射される。
The fuel injection nozzle 4 facing the combustion chamber 2
The injection hole 41 is formed in five places, and the injection hole center line 5 is formed radially at an interval of 72 °. The injection hole center line 5 is directed slightly downward in the direction in which the azimuth angle θ3 is 5 to 15 °, and fuel is injected from the injection hole 41 toward the most upstream portion of the pocket portion 3.

【0024】上記直接噴射式ディーゼルエンジンの作動
を説明する。
The operation of the direct injection diesel engine will be described.

【0025】シリンダ内に吸入される空気により発生す
るスワール流は、ピストン1の上昇による圧縮で燃料噴
射初期に最も強められる。燃料噴射ノズル4からは燃料
が方位角度θ3 の方向に噴射され、空気との混合気を形
成して燃焼する。
The swirl flow generated by the air sucked into the cylinder is intensified in the early stage of the fuel injection by the compression due to the rise of the piston 1. Fuel is injected from the fuel injection nozzle 4 in the direction of the azimuth angle θ3 to form a mixture with air and burn.

【0026】さて噴射された燃料はスワール流に流され
て遠心力を受け燃焼室2径方向の速度が増す。燃料の噴
射量の少ない低負荷時には特に増速する。本発明ではポ
ケット部3の上流側半部31は底面が下流側に向けて深
くなるので、燃料粒子速度の周壁面23に対する鉛直方
向成分が、従来の、リエントラント燃焼室等の単純な円
形の燃焼室に比して小さい。すなわち上流側半部31に
おいて、粒子の飛行方向と周壁面23とがより平行に近
くなり、燃料は周壁面23に付着しにくい。
The injected fuel is caused to flow in a swirl flow and receives a centrifugal force to increase the speed in the radial direction of the combustion chamber 2. The speed increases particularly at a low load with a small fuel injection amount. In the present invention, since the bottom surface of the upstream half portion 31 of the pocket portion 3 becomes deeper toward the downstream side, the vertical component of the fuel particle velocity with respect to the peripheral wall surface 23 is reduced by a simple circular combustion such as a conventional reentrant combustion chamber. Small compared to room. That is, in the upstream half portion 31, the flight direction of the particles and the peripheral wall surface 23 become closer to parallel, and the fuel hardly adheres to the peripheral wall surface 23.

【0027】またポケット部3の下流側半部32では燃
料粒子速度の周壁面23に対する鉛直方向成分が大きく
なるが、下流側半部32では下流側で急に浅くなるため
空気が不整流を生じてスワール流が乱れ燃料粒子に作用
する遠心力は小さい。しかして下流側半部32において
も燃料は周壁面23に付着しにくい。
In the downstream half portion 32 of the pocket portion 3, the vertical component of the fuel particle velocity with respect to the peripheral wall surface 23 increases, but in the downstream half portion 32, the air becomes unrectified because it becomes shallow on the downstream side. The swirl flow is turbulent and the centrifugal force acting on the fuel particles is small. Therefore, the fuel hardly adheres to the peripheral wall surface 23 also in the downstream half portion 32.

【0028】したがってスワール流の強い高速低負荷時
であっても、周壁面23への燃料粒子の付着が防止され
る。
Therefore, even at the time of high speed and low load with strong swirl flow, adhesion of fuel particles to the peripheral wall surface 23 is prevented.

【0029】また下流側半部32における空気の不整流
を生じさせる作用により、空気と噴射された燃料の混合
が促進され、特に燃料噴射量の多い高負荷時にも燃焼が
良好に行われる。なおこの燃焼が下流側半部32がカバ
ーする範囲を中心に行われるようにポケット部3の形状
を設定することで、さらに燃焼効率を高めることができ
る。
Further, the action of causing the air to be unrectified in the downstream half portion 32 promotes the mixing of the air and the injected fuel, so that the combustion can be favorably performed even under a high load with a large fuel injection amount. The combustion efficiency can be further increased by setting the shape of the pocket portion 3 so that the combustion is performed around the area covered by the downstream half portion 32.

【0030】またかかる燃料と空気の混合促進効果を発
揮するから、強いスワール流は必要がなく、オーバース
ワールが防止できる。
Further, since the effect of promoting the mixing of fuel and air is exhibited, a strong swirl flow is not required, and over-swirl can be prevented.

【0031】なおポケット部3の形状は本実施形態記載
のものに限定されるものではなく、底面がスワール流の
上流側から下流側へと緩やかな曲面をなして徐々に深く
なり、最深部から急な勾配の曲面をなして浅くなるもの
であればよい。
The shape of the pocket portion 3 is not limited to the shape described in the present embodiment. The bottom surface gradually forms a gentle curved surface from the upstream side to the downstream side of the swirl flow, and gradually becomes deeper. What is necessary is just to form a shallow surface with a steep slope.

【0032】またポケット部3および噴孔41の数は、
5に限定されるものではなく、4や6等でもよい。
The number of pockets 3 and injection holes 41 is
It is not limited to 5, but may be 4 or 6.

【0033】(第2実施形態)図4は、本発明の直接噴
射式ディーゼルエンジンの別の実施形態を示すもので、
燃焼室(図略)に臨む燃料噴射ノズルの縦断面である。
燃焼室は公知のリエントラント燃焼室等の円形の燃焼室
が用いられ、燃料噴射ノズル6は燃焼室と同軸にシリン
ダヘッド(図略)に取り付けられる。
(Second Embodiment) FIG. 4 shows another embodiment of the direct injection diesel engine of the present invention.
It is a longitudinal section of a fuel injection nozzle which faces a combustion chamber (not shown).
As the combustion chamber, a circular combustion chamber such as a well-known reentrant combustion chamber is used, and the fuel injection nozzle 6 is mounted on a cylinder head (not shown) coaxially with the combustion chamber.

【0034】図4において、燃料噴射ノズル6は、燃料
が圧送される燃料流路61の先端部にテーパ状のシート
部62が形成され、燃料流路61にはシート部62に着
座するニードル7が上下動可能に配設されている。シー
ト部62よりも下方の、先端閉鎖のサック部63には斜
め下方に向けて複数の噴孔64が形成してある。
In FIG. 4, a fuel injection nozzle 6 has a tapered seat portion 62 formed at the tip end of a fuel passage 61 through which fuel is fed under pressure. Are arranged to be vertically movable. A plurality of injection holes 64 are formed obliquely downward in the sack portion 63 having a closed end below the seat portion 62.

【0035】図5は図4のF−F線に沿う断面で、噴孔
64はノズル6壁を貫通して、周方向に対称位置に形成
されている(図例では6か所)。
FIG. 5 is a cross-sectional view taken along the line FF of FIG. 4. In FIG. 5, the injection holes 64 penetrate the wall of the nozzle 6 and are formed at symmetrical positions in the circumferential direction (six positions in the example of FIG. 4).

【0036】噴孔64は、従来の燃料噴射ノズルの噴孔
のように、噴孔中心線が燃料噴射ノズル6の軸心X3を
通る放射線X4に沿うように形成するのではなく、噴孔
中心線8が軸心X3から偏心した位置を通り、かつ放射
線X4に対して偏角するように形成してある。この偏角
θ4 はスワール流の下流側へ5〜15°に設定され、噴
孔64が燃料噴射ノズル6の径方向に対してスワール流
の下流側へ向けてあり、燃料がややスワール流の下流に
向けて噴射されるようになっている。
The injection hole 64 is not formed such that the center line of the injection hole is along the radiation X4 passing through the axis X3 of the fuel injection nozzle 6, unlike the injection hole of the conventional fuel injection nozzle. The line 8 is formed so as to pass through a position eccentric from the axis X3 and be deviated with respect to the radiation X4. This declination θ4 is set at 5 to 15 ° downstream of the swirl flow, the injection hole 64 is directed to the downstream side of the swirl flow in the radial direction of the fuel injection nozzle 6, and the fuel is slightly downstream of the swirl flow. It is to be sprayed toward.

【0037】燃料噴射ノズル6の外周面65は噴孔64
の開口周縁641が、スワール流下流側部分66が削ら
れて表面が後退し、開口周縁641は、上流側から湾曲
して表面が後退した下流側へ至る形状としてあり、噴口
64の有効長さがスワール流下流側で短くしてある。こ
れにより噴射燃料のスワール流下流側への拡散を良好に
している。
The outer peripheral surface 65 of the fuel injection nozzle 6 has an injection hole 64.
The opening edge 641 has a shape in which the swirl flow downstream side portion 66 is shaved and the surface recedes, and the opening edge 641 is curved from the upstream side to the downstream side where the surface is receded. Is shortened downstream of the swirl flow. Thereby, the diffusion of the injected fuel to the swirl flow downstream side is improved.

【0038】燃料の噴射が、燃料噴射ノズル6の径方向
(放射線X4方向)に行われるのではなく、スワール流
の下流に向けて行われるので、燃料の噴霧はスワール流
に乗ってスムーズに流れる。すなわち燃料の噴射量に応
じてスワール流が強化され、噴射量の少ない低負荷時に
はスワール流はあまり強化されず、燃料の燃焼室2の周
壁面23への付着が防止される。また噴射量の多い高負
荷時にはスワール流が十分に強化されて空気と噴射され
た燃料の混合が促進される。スワール流の弱い低速時で
あっても燃料の噴射量に応じてスワール流が強化される
から、きわめて好適な燃料噴射となる。
Since the fuel injection is not performed in the radial direction (radiation X4 direction) of the fuel injection nozzle 6 but is performed downstream of the swirl flow, the fuel spray flows smoothly on the swirl flow. . That is, the swirl flow is strengthened in accordance with the fuel injection amount, and the swirl flow is not so much strengthened at a low load with a small injection amount, thereby preventing the fuel from adhering to the peripheral wall surface 23 of the combustion chamber 2. Further, at the time of a high load with a large injection amount, the swirl flow is sufficiently strengthened, and the mixing of the air and the injected fuel is promoted. Even when the swirl flow is weak and at low speed, the swirl flow is strengthened in accordance with the fuel injection amount, so that extremely favorable fuel injection is achieved.

【0039】また燃料の噴射方向をスワール流下流側に
向けることで噴孔64と燃焼室の周壁面間の距離が長く
なり、周壁面に到達する燃料の量、到達時の速度が抑え
られ、さらに燃料の付着が低減する。
Further, by directing the fuel injection direction to the swirl flow downstream side, the distance between the injection hole 64 and the peripheral wall of the combustion chamber is increased, and the amount of fuel reaching the peripheral wall and the speed at the time of arrival are suppressed. Further, fuel adhesion is reduced.

【0040】なお噴孔64は有効長さがスワール流下流
側で短くしてあるが、要求される燃料の拡散作用によっ
ては、噴孔64は燃料噴射ノズル6に穿孔せしめただけ
の簡単な構成のものでもよい。
Although the effective length of the injection hole 64 is shortened on the downstream side of the swirl flow, the injection hole 64 can be simply formed by drilling the fuel injection nozzle 6 depending on the required fuel diffusion action. It may be.

【0041】なお上記各実施形態に示した数値等は必ず
しも記載のものに限定されるものではなく、本発明の趣
旨に反しない限り任意である。
The numerical values and the like shown in each of the above embodiments are not necessarily limited to those described, but are arbitrary as long as they do not contradict the spirit of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の直接噴射式ディーゼルエンジンの要部
上面図である。
FIG. 1 is a main part top view of a direct injection diesel engine of the present invention.

【図2】図1におけるA−A線に沿う断面図である。FIG. 2 is a sectional view taken along the line AA in FIG.

【図3】本発明の直接噴射式ディーゼルエンジンの別の
要部上面図である。
FIG. 3 is a top view of another main part of the direct injection diesel engine of the present invention.

【図4】本発明の別の直接噴射式ディーゼルエンジンの
燃料噴射ノズルの縦断面図である。
FIG. 4 is a vertical sectional view of a fuel injection nozzle of another direct injection diesel engine according to the present invention.

【図5】図4におけるF−F線に沿う断面図である。FIG. 5 is a sectional view taken along line FF in FIG. 4;

【符号の説明】[Explanation of symbols]

1 ピストン 11 ピストンヘッド 2 燃焼室 23 周壁面 3 ポケット部(凹部) 4,6 燃料噴射ノズル 41,64 噴孔 X3 軸心 DESCRIPTION OF SYMBOLS 1 Piston 11 Piston head 2 Combustion chamber 23 Peripheral wall surface 3 Pocket part (recess) 4,6 Fuel injection nozzle 41,64 Injection hole X3

フロントページの続き (51)Int.Cl.6 識別記号 FI F02M 61/18 320 F02M 61/18 320C 360 360J Continued on the front page (51) Int.Cl. 6 Identification code FI F02M 61/18 320 F02M 61/18 320C 360 360J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ピストンに上面開口の円形の燃焼室が形
成された直接噴射式ディーゼルエンジンであって、燃焼
室内にスワール流を形成する空気を導入し、燃焼室内に
臨む燃料噴射ノズルから燃料を燃焼室の周壁面に向けて
噴射するようになした直接噴射式ディーゼルエンジンに
おいて、燃焼室の周壁面に、周方向に等間隔をおいて、
底面がスワール流の上流側から下流側へと緩やかな曲面
をなして徐々に深くなり、最深部から急な勾配の曲面を
なして浅くなる複数の凹部を形成し、かつ上記燃料噴射
ノズルには、噴射方向を上記各凹部に設けた複数の噴孔
を形成したことを特徴とする直接噴射式ディーゼルエン
ジン。
1. A direct-injection diesel engine having a piston and a circular combustion chamber with a top opening formed therein, wherein air forming a swirl flow is introduced into the combustion chamber, and fuel is injected from a fuel injection nozzle facing the combustion chamber. In a direct-injection diesel engine that is designed to inject toward the peripheral wall of the combustion chamber, the peripheral wall of the combustion chamber is equally spaced in the circumferential direction,
The bottom surface gradually forms a gentle curved surface from the upstream side to the downstream side of the swirl flow, gradually deepens, forms a plurality of concave portions that become shallow with a steeply curved surface from the deepest portion, and in the fuel injection nozzle, A direct injection diesel engine, wherein a plurality of injection holes having injection directions provided in the recesses are formed.
【請求項2】 ピストンに上面開口の円形の燃焼室が形
成された直接噴射式ディーゼルエンジンであって、燃焼
室内にスワール流を形成する空気を導入し、燃焼室内に
臨む燃料噴射ノズルから燃料を燃焼室内に噴射するよう
になした直接噴射式ディーゼルエンジンにおいて、上記
燃料噴射ノズルの噴孔を、燃料噴射ノズルの径方向に対
してスワール流の下流側へ向けて形成したことを特徴と
する直接噴射式ディーゼルエンジン。
2. A direct-injection diesel engine having a piston and a circular combustion chamber with an open top, wherein air is introduced into the combustion chamber to form a swirl flow, and fuel is injected from a fuel injection nozzle facing the combustion chamber. A direct injection diesel engine adapted to inject into a combustion chamber, wherein the injection hole of the fuel injection nozzle is formed toward the downstream side of the swirl flow in the radial direction of the fuel injection nozzle. Injection diesel engine.
JP9273538A 1997-09-18 1997-09-18 Direct injection-type diesel engine Withdrawn JPH1193673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9273538A JPH1193673A (en) 1997-09-18 1997-09-18 Direct injection-type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9273538A JPH1193673A (en) 1997-09-18 1997-09-18 Direct injection-type diesel engine

Publications (1)

Publication Number Publication Date
JPH1193673A true JPH1193673A (en) 1999-04-06

Family

ID=17529240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9273538A Withdrawn JPH1193673A (en) 1997-09-18 1997-09-18 Direct injection-type diesel engine

Country Status (1)

Country Link
JP (1) JPH1193673A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834003A1 (en) * 2001-12-21 2003-06-27 Renault Multi-cylinder i.c. engine with direct fuel injection has each piston made with face cavity shaped to produce spiral motion in fuel/air mixture
FR2862719A1 (en) * 2003-11-21 2005-05-27 Bosch Gmbh Robert Fuel injector for internal combustion engine, has two discharge ports, where angle between axis of each port and tangent to surface of valve seat body is different, and angle between axis of each port and longitudinal axis of body is same
JP2015529783A (en) * 2012-09-25 2015-10-08 アカーテース パワー,インク. Swirl spray pattern fuel injection in opposed piston engine
US9869270B1 (en) 2016-10-31 2018-01-16 Caterpillar Inc. Piston design for jet placement
US9995203B2 (en) 2016-10-27 2018-06-12 Caterpillar Inc. Piston design for flow re-direction
US10087882B2 (en) 2016-10-31 2018-10-02 Caterpillar Inc. Piston design for splitting jets
JP2019065776A (en) * 2017-10-02 2019-04-25 いすゞ自動車株式会社 Fuel injection nozzle for internal combustion engine, and internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834003A1 (en) * 2001-12-21 2003-06-27 Renault Multi-cylinder i.c. engine with direct fuel injection has each piston made with face cavity shaped to produce spiral motion in fuel/air mixture
FR2862719A1 (en) * 2003-11-21 2005-05-27 Bosch Gmbh Robert Fuel injector for internal combustion engine, has two discharge ports, where angle between axis of each port and tangent to surface of valve seat body is different, and angle between axis of each port and longitudinal axis of body is same
JP2015529783A (en) * 2012-09-25 2015-10-08 アカーテース パワー,インク. Swirl spray pattern fuel injection in opposed piston engine
US9995203B2 (en) 2016-10-27 2018-06-12 Caterpillar Inc. Piston design for flow re-direction
US9869270B1 (en) 2016-10-31 2018-01-16 Caterpillar Inc. Piston design for jet placement
US10087882B2 (en) 2016-10-31 2018-10-02 Caterpillar Inc. Piston design for splitting jets
JP2019065776A (en) * 2017-10-02 2019-04-25 いすゞ自動車株式会社 Fuel injection nozzle for internal combustion engine, and internal combustion engine

Similar Documents

Publication Publication Date Title
EP2187017B1 (en) Diesel engine, piston for diesel engine and method of manufacturing a diesel engine
JP2019507848A (en) Air compression internal combustion engine
JPS6037290B2 (en) Air compression/direct injection internal combustion engine
EP3596320B1 (en) A piston for an internal combustion engine
US4538566A (en) Combustion chamber in a diesel engine
JP3567838B2 (en) Fuel injection nozzle
JPH1193673A (en) Direct injection-type diesel engine
JP6508236B2 (en) diesel engine
JP5227010B2 (en) Piston for direct injection diesel engine
US10876464B2 (en) Piston design for flow re-direction
JP2002122024A (en) Combustion chamber or piston
JP2501886Y2 (en) Combustion chamber of direct injection diesel engine
JPH033920A (en) Direct injection type diesel engine
JPH07208170A (en) Auxiliary chamber structure in auxiliary chamber type engine
JPH05106443A (en) Combustion chamber of internal combustion engine
JPH084535A (en) Piston of direct injection type diesel engine
JP2001214742A (en) Direct injection type combustion chamber for diesel engine
JPH01104914A (en) Piston for swirl-chamber type diesel engine
JPH0893479A (en) Combustion chamber of direct injection diesel engine
JPS6329016A (en) Subchamber type diesel combustion chamber
JP3956535B2 (en) Sub-chamber engine
JP2022149420A (en) Combustion chamber structure and engine including the same
JP2819854B2 (en) Combustion chamber of direct injection diesel engine
JPS63162926A (en) Combustion chamber of internal combustion engine
JPH0618035Y2 (en) Combustion chamber of a sub-chamber internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207