JP2501886Y2 - Combustion chamber of direct injection diesel engine - Google Patents

Combustion chamber of direct injection diesel engine

Info

Publication number
JP2501886Y2
JP2501886Y2 JP1989146451U JP14645189U JP2501886Y2 JP 2501886 Y2 JP2501886 Y2 JP 2501886Y2 JP 1989146451 U JP1989146451 U JP 1989146451U JP 14645189 U JP14645189 U JP 14645189U JP 2501886 Y2 JP2501886 Y2 JP 2501886Y2
Authority
JP
Japan
Prior art keywords
fuel
cavity
reflection surface
reflected
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989146451U
Other languages
Japanese (ja)
Other versions
JPH0387823U (en
Inventor
一義 石坂
一郎 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1989146451U priority Critical patent/JP2501886Y2/en
Priority to DE4033822A priority patent/DE4033822C2/en
Publication of JPH0387823U publication Critical patent/JPH0387823U/ja
Application granted granted Critical
Publication of JP2501886Y2 publication Critical patent/JP2501886Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は直噴式ディーゼル機関の燃焼室に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a combustion chamber of a direct injection diesel engine.

〔従来の技術〕[Conventional technology]

ピストン頂面に形成されたキャビティ内周壁面上に断
面円弧状の凹状燃料反射面を斜め下向きに形成して燃料
噴射弁から燃料反射面に向けて燃料を噴射させ、燃料反
射面の形成位置および断面形状を燃料反射面において反
射した噴射燃料が、燃料反射面上での燃料反射位置が燃
料反射面の下方に向かうに従ってキャビティ周辺部から
キャビティ中心部まで順次移動するように定めた直噴式
ディーゼル機関の燃焼室が公知である(特開昭63-30622
0号公報参照)。このディーゼル機関では噴射燃料の進
行方向がキャビティの周辺部から中心部に順次移動して
いくので空気利用率を高めることができる。
A concave fuel reflection surface having an arcuate cross section is formed obliquely downward on the inner peripheral wall surface of the cavity formed on the top surface of the piston to inject fuel from the fuel injection valve toward the fuel reflection surface. A direct injection diesel engine in which the injected fuel whose cross-sectional shape is reflected on the fuel reflection surface moves sequentially from the cavity periphery to the cavity center as the fuel reflection position on the fuel reflection surface goes below the fuel reflection surface. Combustion chamber is known (JP-A-63-30622).
No. 0). In this diesel engine, the advancing direction of the injected fuel sequentially moves from the peripheral portion of the cavity to the central portion, so that the air utilization rate can be increased.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかしながらこのディーゼル機関の燃焼室では、燃料
反射位置が燃料反射面上の上方に位置する場合には、燃
料反射面と噴射燃料とのなす角度が小さくまた反射燃料
がキャビティ周辺部、すなわちキャビティ内周壁面近傍
に向かうため、燃料反射面下方で反射される燃料に比べ
てキャビティ内周壁面に付着し易く十分に混合しないと
いう問題がある。このためHCやスモークを低減すること
ができない。
However, in the combustion chamber of this diesel engine, when the fuel reflection position is located above the fuel reflection surface, the angle formed by the fuel reflection surface and the injected fuel is small, and the reflection fuel is in the peripheral portion of the cavity, that is, the inner circumference of the cavity. Since it goes toward the wall surface, there is a problem that it is more likely to adhere to the inner wall surface of the cavity and is not sufficiently mixed as compared with the fuel reflected below the fuel reflection surface. For this reason, HC and smoke cannot be reduced.

〔課題を解決するための手段〕[Means for solving the problem]

本考案によれば、ピストン頂面に形成されたキャビテ
ィ内周壁面上に該キャビティ内周壁面に沿って環状に延
びる燃料反射面を形成すると共に該燃料反射面を下向き
の断面凹状の湾曲面から形成して燃料噴射弁から前記燃
料反射面に向けて燃料を噴射させ、前記燃料反射面の形
成位置および断面形状を前記燃料反射面において反射し
た噴射燃料が、前記燃料反射面上での燃料反射位置が上
方から下方に向かうに従ってキャビティ周辺部からキャ
ビティ中心部に向かうように定め、前記燃料反射面上に
キャビティ上方に向かうに従って深さが深くなる凹部を
形成すると共に、燃料噴射弁からの燃料噴射方向を、キ
ャビティ内のスワール流方向から見て前記凹部より下流
側部分の燃料反射面に向けて設定した直噴式ディーゼル
機関の燃焼室が提供される。
According to the present invention, a fuel reflection surface extending annularly along the cavity inner peripheral wall surface formed on the piston top surface is formed, and the fuel reflection surface is formed from a downward curved curved surface having a concave cross section. The fuel is injected from the fuel injection valve that is formed to inject the fuel toward the fuel reflection surface, and the formation position and cross-sectional shape of the fuel reflection surface are reflected on the fuel reflection surface, and the injected fuel is reflected on the fuel reflection surface. The position is determined so as to go from the peripheral portion of the cavity toward the central portion of the cavity as the position goes from the upper side to the lower side, and a recess is formed on the fuel reflection surface so that the depth becomes deeper toward the upper side of the cavity, and the fuel injection from the fuel injection valve is performed. Providing the combustion chamber of a direct-injection diesel engine whose direction is set toward the fuel reflection surface on the downstream side of the recess when viewed from the swirl flow direction in the cavity It is.

〔作用〕[Action]

上方に向かうに従って深さが深くなる凹部を燃料反射
面上に形成したので、凹部によって生ぜしめられるキャ
ビティ内に流入する流れの乱れは燃料反射面の上方に向
かう程大きい。従って燃料反射面の上方で反射されてキ
ャビティ周辺部に向かう燃料ほど強い乱れによって十分
に空気と混合され拡散される。また、燃料反射面下方で
反射されてキャビティ中心部に向かう燃料は燃料反射面
上方で反射される燃料に比べて乱され方が小さく、従っ
てキャビティ中心部に向かうエネルギが低下せしめられ
ることはない。
Since the concave portion having a depth that increases as it goes upward is formed on the fuel reflecting surface, the turbulence of the flow flowing into the cavity caused by the concave portion becomes larger as it goes upward of the fuel reflecting surface. Therefore, the fuel that is reflected above the fuel reflection surface and moves toward the peripheral portion of the cavity is sufficiently mixed and diffused with air due to strong turbulence. Further, the fuel reflected below the fuel reflection surface toward the center of the cavity is less disturbed than the fuel reflected above the fuel reflection surface, and therefore the energy toward the center of the cavity is not reduced.

〔実施例〕〔Example〕

第2図に直噴式ディーゼル機関の側面断面図を示す。
第2図を参照すると、1はシリンダブロック、2はシリ
ンダブロック1内で往復動可能なピストン、3はシリン
ダブロック1に固締されたシリンダヘッド、4はシリン
ダブロック1の平坦な内壁面とピストン2間に形成され
た燃焼室、5は燃焼室4の頂部に配置された燃料噴射弁
を夫々示す。図面には示さないがシリンダヘッド1内に
は吸気ポートおよび排気ポートが形成され、これら吸気
ポートおよび排気ポートの燃焼室4内への開口部には夫
々吸気弁および排気弁が配置される。燃焼室4内に流入
する吸入空気に旋回流を与えるために吸気ポートとして
ヘリカル型吸気ポートが使用されており、或いは吸気弁
としてシュラウド付吸気弁が使用されている。無論、吸
気ポートを燃焼室4内に燃焼室4の周辺方向に向けて連
結する等の他の手段により燃焼室4内に流入する吸入空
気に旋回流を与えることができる。第2図に示される実
施例ではこれら吸排気弁や吸排気ポートとの干渉を避け
るために燃料噴射弁5が斜めに配置されている。
FIG. 2 shows a side sectional view of a direct injection diesel engine.
Referring to FIG. 2, 1 is a cylinder block, 2 is a piston capable of reciprocating in the cylinder block 1, 3 is a cylinder head fixed to the cylinder block 1, and 4 is a flat inner wall surface of the cylinder block 1 and a piston. Combustion chambers 5 formed between the two are fuel injection valves arranged at the top of the combustion chambers 4, respectively. Although not shown in the drawing, an intake port and an exhaust port are formed in the cylinder head 1, and an intake valve and an exhaust valve are arranged at openings of the intake port and the exhaust port into the combustion chamber 4, respectively. A helical intake port is used as an intake port to give a swirling flow to intake air flowing into the combustion chamber 4, or an intake valve with a shroud is used as an intake valve. Needless to say, a swirl flow can be given to the intake air flowing into the combustion chamber 4 by other means such as connecting the intake port into the combustion chamber 4 toward the periphery of the combustion chamber 4. In the embodiment shown in FIG. 2, the fuel injection valve 5 is obliquely arranged in order to avoid interference with these intake and exhaust valves and intake and exhaust ports.

第2図および第3図に示されるようにピストン2は平
坦な頂面2aを有し、この平坦なピストン頂面2aにキャビ
ティ6が形成される。キャビティ6の周壁面6aの上端部
には内方に向けて突出する環状のリップ7が形成され、
この環状リップ7の内周面上には上下方向に間隔を隔て
た一対の円環状をなす峰部8および9が形成される。第
2図および第3図からわかるように峰部8の内径は峰部
9の内径よりも小さく、従って峰部8は環状リップ7の
内周面のうちで最も径の小さな狭窄部を形成する。峰部
9は比較的鋭い角部をなしており、これに対して峰部8
は滑らかな曲面から形成されている。ピストン頂面2aか
ら峰部8まで延びる環状リップ7の内周面上端部7aは下
方に向けて断面積が徐々に減少する漏斗状断面形状に形
成される。また、峰部8から峰部9まで延びる環状リッ
プ7の内周面中間部7bは下方に向けて断面積が徐々に増
大する凹状湾曲面から形成され、この凹状湾曲面からな
る環状リップ7の内周面中間部7bは第2図および第3図
に示されるように斜め下向きの円弧状断面を有する。こ
の内周面中間部7bはほぼキャビティ6の底部中心部の方
向に指向されている。峰部9から下方に延びる環状リッ
プ7の内周面下端部7cは峰部9から下方に向けて徐々に
拡大し、この内周面下端部7cはキャビティ6の下側周壁
面6bの一部を形成する。このキャビティ下側周壁面6bは
凹状をなす湾曲面から形成され、更にこのキャビティ下
側周壁面6bはその全体が峰部9に対して外方に膨出して
いる。キャビティ6の底部6cは中央部が隆起したほぼ円
錐状に形成される。
As shown in FIGS. 2 and 3, the piston 2 has a flat top surface 2a, and a cavity 6 is formed in the flat piston top surface 2a. An annular lip 7 protruding inward is formed at the upper end of the peripheral wall surface 6a of the cavity 6,
On the inner peripheral surface of the annular lip 7, a pair of annular peaks 8 and 9 are formed at intervals in the vertical direction. As can be seen from FIGS. 2 and 3, the inner diameter of the ridge portion 8 is smaller than the inner diameter of the ridge portion 9, so that the ridge portion 8 forms the smallest diameter narrowed portion on the inner peripheral surface of the annular lip 7. . The ridges 9 have relatively sharp corners, while the ridges 8
Is formed from a smooth curved surface. The upper end 7a of the inner peripheral surface of the annular lip 7 extending from the piston top surface 2a to the ridge portion 8 is formed in a funnel-shaped cross-sectional shape in which the cross-sectional area gradually decreases downward. The inner peripheral surface middle portion 7b of the annular lip 7 extending from the ridge portion 8 to the ridge portion 9 is formed of a concave curved surface whose cross-sectional area gradually increases downward, and the annular lip 7 of the concave curved surface is formed. As shown in FIGS. 2 and 3, the inner peripheral surface middle portion 7b has an obliquely downward arcuate cross section. The inner peripheral surface middle portion 7b is directed substantially toward the center of the bottom of the cavity 6. The lower end 7c of the inner peripheral surface of the annular lip 7 extending downward from the ridge 9 gradually expands downward from the ridge 9, and the lower end 7c of the inner peripheral surface is part of the lower peripheral wall surface 6b of the cavity 6. To form The cavity lower peripheral wall surface 6b is formed of a concave curved surface, and the cavity lower peripheral wall surface 6b is entirely bulged outward with respect to the peak portion 9. The bottom 6c of the cavity 6 is formed in a substantially conical shape with a raised central portion.

燃料噴射弁5は例えば6個のノズル孔を具備し、第2
図において矢印Fで示されるように6個のノズル孔から
環状リップ7の内周面中間部7bに向けて燃料が噴射され
る。この噴射燃料の一部は内周面中間部7bにおいて反射
し、従って以下この内周面中間部7bを燃料反射面と称す
る。
The fuel injection valve 5 has, for example, six nozzle holes, and the second
Fuel is injected from the six nozzle holes toward the intermediate portion 7b of the inner peripheral surface of the annular lip 7 as indicated by arrow F in the figure. A part of this injected fuel is reflected at the inner peripheral surface intermediate portion 7b, and hence the inner peripheral surface intermediate portion 7b is hereinafter referred to as a fuel reflecting surface.

第1図にはピストン2の頂面図を、第4図および第5
図には第1図の夫々IV-IV線およびV−V線に沿ってみ
た拡大断面図を示す。第1図を参照すると、キャビティ
6の中心OCはピストン2の中心OPに対して偏心されてお
り、また燃料噴射弁5の先端の中心OIはOCおよびOPに対
して偏心されている。燃料噴射弁5は前述のように6個
のノズル孔を具備しており、各ノズル孔は噴射燃料Fの
噴射方向が互いに60度をなすように形成配置されてい
る。
FIG. 1 is a top view of the piston 2, and FIGS.
The figure shows enlarged sectional views taken along the lines IV-IV and VV of FIG. 1, respectively. Referring to FIG. 1, the center O C of the cavity 6 is eccentric with respect to the center O P of the piston 2, and the center O I of the tip of the fuel injection valve 5 is eccentric with respect to O C and O P. ing. The fuel injection valve 5 is provided with the six nozzle holes as described above, and the nozzle holes are formed and arranged so that the injection directions of the injected fuel F form 60 degrees with each other.

第1図、第4図および第5図を参照すると、環状リッ
プ7の内周面上端部7aおよび燃料反射面7b上には3個の
凹部20が互いに離れて形成されている。この実施例では
凹部20の個数は燃料噴射弁5のノズル孔の個数の1/2と
されている。凹部20の外周面20aはピストン2の中心軸
線と平行な垂直湾曲面によって形成されている。従って
第4図に示されるように燃料反射面7b上においては、凹
部20の深さD(燃料反射面7bと凹部外周面20aとの間の
距離)は燃料反射面7bの上方に向かうに従って深くな
る。また第5図に示されるように燃料反射面7b上におい
て、凹部外周面20aの周長Lは燃料反射面7bの上方に向
かうに従って長くなる。
Referring to FIG. 1, FIG. 4 and FIG. 5, three recesses 20 are formed apart from each other on the upper end 7a of the inner peripheral surface of the annular lip 7 and the fuel reflecting surface 7b. In this embodiment, the number of recesses 20 is half the number of nozzle holes of the fuel injection valve 5. The outer peripheral surface 20a of the recess 20 is formed by a vertical curved surface parallel to the central axis of the piston 2. Therefore, as shown in FIG. 4, on the fuel reflecting surface 7b, the depth D of the concave portion 20 (the distance between the fuel reflecting surface 7b and the concave portion outer peripheral surface 20a) becomes deeper toward the upper side of the fuel reflecting surface 7b. Become. Further, as shown in FIG. 5, on the fuel reflection surface 7b, the peripheral length L of the recess outer peripheral surface 20a becomes longer toward the upper side of the fuel reflection surface 7b.

第6図には第4図のVI-VI線に沿ってみた断面図を示
す。燃焼室4内に発生する旋回流SWの旋回方向を第1図
中の矢印SWで示されるように時計回りとすると、第6図
に示されるように、凹部外周面20aと燃料反射面7bとの
なす角度θのうち、旋回流SWに対して凹部外周面20aの
上流端20bにおける角度θUが旋回流SWに対して凹部外周
面20aの下流端20cにおける角度θDより大きくなるよう
に凹部外周面20aが形成されている。従って旋回流は凹
上流端20bから凹部20内に流入し易く、一方、旋回流SW
が下流端20cにおいて凹部20内から流出する際に燃料反
射面7bから剥離し下流側に局部的な強い乱れRを生ず
る。燃料反射面7bは上方に向かうに従って直径が小さく
なるため、上方に向かうに従って角度θUおよびθDは共
に小さくなる。旋回流SWがキャビティ6内に流入する際
に凹部20によって下流端20cの下流に局部的な乱れRが
発生するが、前述のように凹部20の深さD(第4図)は
燃料反射面7bの上方に向かうに従って深くなるためこの
乱れRは燃料反射面7b上方に向かうに従って強くなる。
さらに、上方に向かうに従ってθDが小さくなるため、
乱れRが燃料反射面7b上方に向かうに従って強くなる傾
向をさらに助長する。
FIG. 6 shows a sectional view taken along the line VI-VI in FIG. Assuming that the swirling direction of the swirling flow SW generated in the combustion chamber 4 is clockwise as indicated by the arrow SW in FIG. 1, as shown in FIG. 6, the concave outer peripheral surface 20a and the fuel reflecting surface 7b are Of the angle θ formed by the concave portion so that the angle θ U at the upstream end 20b of the concave outer peripheral surface 20a with respect to the swirl flow SW is larger than the angle θ D at the downstream end 20c of the concave outer peripheral surface 20a with respect to the swirl flow SW. An outer peripheral surface 20a is formed. Therefore, the swirl flow easily flows into the recess 20 from the recess upstream end 20b, while the swirl flow SW
When flowing out from the recess 20 at the downstream end 20c, it separates from the fuel reflection surface 7b, and a strong local turbulence R is generated on the downstream side. Since the diameter of the fuel reflecting surface 7b decreases toward the top, both angles θ U and θ D decrease toward the top. When the swirling flow SW flows into the cavity 6, a local turbulence R is generated downstream of the downstream end 20c by the recess 20. As described above, the depth D of the recess 20 (Fig. 4) is the fuel reflection surface. This turbulence R becomes stronger as it goes up above the fuel reflection surface 7b because it becomes deeper as it goes up above 7b.
Furthermore, θ D becomes smaller as it goes upward,
The turbulence R further promotes the tendency of becoming stronger as it goes upward of the fuel reflection surface 7b.

凹部20の深さDは旋回流SWが弱めすぎられないような
深さとし、凹部20の容積は凹部20の形成によって圧縮比
が大きく変化しない程度とし、例えば凹部20の1個当り
の容積がキャビティ6の全容積の0.3%以下となるよう
にすることが望ましい。
The depth D of the recess 20 is set such that the swirl flow SW is not weakened too much, and the volume of the recess 20 is set so that the compression ratio does not change significantly due to the formation of the recess 20. For example, the volume of each recess 20 is a cavity. It is desirable to set it to 0.3% or less of the total volume of No. 6.

第4図および第5図に示されるように凹部20は峰部9
より下方のキャビティ内周壁面6a上には形成されない。
これによって燃焼行程においてキャビティ6内のガス流
が凹部20を介してキャビティ6外に早く放出されてしま
うことを防止することができ、従って未燃ガスのスキッ
シュエリアでのクエンチを抑制することができる。
As shown in FIGS. 4 and 5, the recess 20 has a ridge 9.
It is not formed on the inner wall surface 6a of the lower cavity.
As a result, it is possible to prevent the gas flow in the cavity 6 from being discharged to the outside of the cavity 6 early through the recess 20 in the combustion process, and thus to suppress the quenching of unburned gas in the squish area. .

第1図に示されるように、凹部20の円周方向形成位置
は、円周方向に1つおきの噴射燃料Fが凹部外周面下流
端20cより少しだけ旋回流SWの方向にずれた燃料反射面7
b上に衝突するように定められる。
As shown in FIG. 1, at the position where the recess 20 is formed in the circumferential direction, every other fuel injection F in the circumferential direction is slightly deviated from the downstream end 20c of the outer peripheral surface of the recess in the swirling flow SW direction. Face 7
b Determined to collide on.

第7図(a)から(e)は燃料噴射開始から燃料噴射
終りまでを経時的に示している。第7図(a)はピスト
ン2が上死点の少し手前にあって燃料噴射が開始された
ときを示している。第7図(b)はピストン2が上死点
に向けて少し上昇したときを示しており、第7図(c)
はピストン2が上死点に達したときを示している。第7
図(d)はピストン2が上死点を越えて少し下降したと
ころを示しており、第7図(e)はピストン2が更に下
降した噴射完了時を示している。第7図(a)に示され
るように燃料噴射開始時には噴射燃料Fが燃料反射面7b
の上端部に衝突し、第7図(c)に示されるようにピス
トン2が上死点に達したときには噴射燃料Fが燃料反射
面7bの下端部に衝突する。即ち、云い換えると燃料反射
面7bの位置および燃料噴射弁5からの燃料噴射方向は燃
料噴射開始時に噴射燃料Fが燃料反射面7bの上端部に衝
突し、ピストン2が上死点に達したときには噴射燃料F
が燃料反射面7bの下端部に衝突するように定められる。
FIGS. 7 (a) to 7 (e) show the time lapse from the start of fuel injection to the end of fuel injection. FIG. 7 (a) shows the case where the piston 2 is slightly before the top dead center and fuel injection is started. FIG. 7 (b) shows the piston 2 slightly elevated toward the top dead center, and FIG. 7 (c).
Indicates the time when the piston 2 has reached the top dead center. Seventh
FIG. 7 (d) shows the piston 2 slightly descending beyond the top dead center, and FIG. 7 (e) shows the completion of injection when the piston 2 further descends. As shown in FIG. 7 (a), at the start of fuel injection, the injected fuel F is the fuel reflection surface 7b.
When the piston 2 reaches the top dead center as shown in FIG. 7 (c), the injected fuel F collides with the lower end of the fuel reflection surface 7b. That is, in other words, regarding the position of the fuel reflection surface 7b and the direction of fuel injection from the fuel injection valve 5, the injected fuel F collides with the upper end of the fuel reflection surface 7b at the start of fuel injection, and the piston 2 reaches the top dead center. Sometimes injected fuel F
Are set so as to collide with the lower end of the fuel reflection surface 7b.

一方、燃料反射面7bはキャビティ4の底部中心部方向
に斜め下向きに指向されており、更にこの燃料反射面7b
は断面円弧状をなしている。従って第7図の(a)から
(c)に示されるようにピストン2が上昇するにつれて
燃料衝突点における燃料反射面7bと噴射燃料Fとのなす
角は次第に増大し、従って燃料反射面7bに向かう噴射燃
料Fの軸線と燃料反射面7bにおいて反射した反射燃料G
の軸線とのなす角はピストン2が上昇するにつれて次第
に小さくなる。第7図(a)に示されるように燃料噴射
開始時には反射燃料Gがキャビティ6の周辺部に向か
い、第7図(b)に示されるようにピストン2が少し上
昇すると反射燃料Gの進行方向がキャビティ6の周辺部
から中心部に向けて移動し、第7図(c)に示されるよ
うにピストン2が上死点に達すると反射燃料Gはキャビ
ティ6の中心部に向かう。即ち、燃料噴射が開始されて
からピストン2が上死点に達するまでに反射燃料Gの進
行方向がキャビティ6の周辺部から中心部に向けて連続
的に移動する。云い換える燃料反射面7bの形状は燃料噴
射が開始されてからピストン2が上死点に達するまでに
反射燃料Gの進行方向がキャビティ6の周辺部から中心
部に向けて連続的に移動するように定められている。第
7図の(c)から(e)に示されるようにピストン2が
上死点に達してから燃料噴射が完了するまでは反射燃料
Gはキャビティ4の中心部から周辺部に向けて連続的に
移動する。
On the other hand, the fuel reflecting surface 7b is directed obliquely downward toward the center of the bottom of the cavity 4, and the fuel reflecting surface 7b
Has an arcuate cross section. Therefore, as shown in (a) to (c) of FIG. 7, as the piston 2 rises, the angle formed by the fuel reflection surface 7b and the injected fuel F at the fuel collision point gradually increases. Reflected fuel G reflected on the axis of the injected fuel F and the fuel reflecting surface 7b
The angle formed by the axis line of and becomes smaller as the piston 2 rises. As shown in FIG. 7 (a), the reflected fuel G heads to the peripheral portion of the cavity 6 at the time of starting the fuel injection, and as shown in FIG. 7 (b), when the piston 2 is slightly raised, the reflected fuel G travels in the traveling direction. Moves from the periphery of the cavity 6 toward the center, and when the piston 2 reaches the top dead center as shown in FIG. 7 (c), the reflected fuel G moves toward the center of the cavity 6. That is, the traveling direction of the reflected fuel G continuously moves from the peripheral portion of the cavity 6 to the central portion thereof after the fuel injection is started and before the piston 2 reaches the top dead center. In other words, the shape of the fuel reflecting surface 7b is such that the traveling direction of the reflected fuel G continuously moves from the peripheral portion of the cavity 6 toward the central portion thereof after the fuel injection is started and before the piston 2 reaches the top dead center. Stipulated in. As shown in (c) to (e) of FIG. 7, the reflected fuel G continues from the central portion of the cavity 4 toward the peripheral portion thereof after the piston 2 reaches the top dead center until the fuel injection is completed. Move to.

第7図(a)に示されるように燃料噴射が開始される
と噴射燃料Fが燃料反射面7aの上端部に衝突する。とこ
ろで噴射燃料Fが燃料反射面7bの上端部に衝突する場合
には、前述のように燃料反射面7bと噴射燃料Fとのなす
角度は小さくまた反射燃料Gはキャビティ6の周辺部、
すなわちキャビティ6の内周壁面近傍に向かう。このた
め、燃料反射面7bの下方で反射される燃料に比べてキャ
ビティ内周壁面6aに付着し易く、このため空気を十分に
混合できないという問題がある。この結果パティキュレ
ート、HCおよびスモークの排出量を十分に低減できない
という問題がある。
When the fuel injection is started as shown in FIG. 7 (a), the injected fuel F collides with the upper end portion of the fuel reflection surface 7a. When the injected fuel F collides with the upper end of the fuel reflection surface 7b, the angle formed by the fuel reflection surface 7b and the injected fuel F is small as described above, and the reflected fuel G is the peripheral portion of the cavity 6.
That is, it goes to the vicinity of the inner peripheral wall surface of the cavity 6. Therefore, compared with the fuel reflected below the fuel reflection surface 7b, the fuel is more likely to adhere to the inner wall surface 6a of the cavity, which causes a problem that air cannot be mixed sufficiently. As a result, there is a problem that the emission amount of particulates, HC and smoke cannot be reduced sufficiently.

本実施例においては燃料反射面7b上に凹部20を形成し
たので、旋回流SWがキャビティ6内に流入する際に下流
端20cの下流に局部的な乱れRが発生し、この乱れRは
燃料反射面7b上方に向かうに従って強くなる。従って噴
射燃料Fが燃料反射面7bの上方部で反射される場合に
は、反射燃料Gは凹部20によって生ぜしめられる局部的
な強い乱れRによって空気と混合されて拡散される。従
って噴射燃料Fが燃料反射面7bの上方部で反射されてキ
ャビティ6の周辺部に向かう場合においても燃料はキャ
ビティ内周壁面6aにほとんど付着しない。
In this embodiment, since the recess 20 is formed on the fuel reflecting surface 7b, when the swirl flow SW flows into the cavity 6, a local turbulence R is generated downstream of the downstream end 20c, and this turbulence R is the fuel. It becomes stronger as it goes upward on the reflecting surface 7b. Therefore, when the injected fuel F is reflected above the fuel reflection surface 7b, the reflected fuel G is mixed with air by the locally strong turbulence R generated by the recess 20 and diffused. Therefore, even when the injected fuel F is reflected by the upper portion of the fuel reflection surface 7b and heads for the peripheral portion of the cavity 6, the fuel hardly adheres to the inner wall surface 6a of the cavity.

第7図(a)に示すようにピストン2が上死点に近づ
くとピストン頂面2aの周辺部とシリンダヘッド3間に形
成されるスキッシュエリア10から燃焼室4の中心部に向
けてスキッシュ流が流出する。このスキッシュ流は矢印
Sで示されるように環状リップ7の内周面上端部7aに沿
って下方に向けて流れる。前述したように峰部8(第3
図)は比較的鋭い角部をなしており、従ってリップ内周
面上端部7aに沿って流れるスキッシュ流Sは峰部8にお
いて剥離して燃料反射面7bの周りに微少渦、即ちマイク
ロタービュレンスを発生する。このマイクロタービュレ
ンスによっても燃料が燃料反射面7b上に付着することが
防止される。このように燃料噴射が開始された直後には
噴射燃料がキャビティ6の周辺部に集められるのでキャ
ビティ6の周辺部には混合気領域Pが形成される。
As shown in FIG. 7 (a), when the piston 2 approaches the top dead center, the squish flow flows from the squish area 10 formed between the peripheral portion of the piston top surface 2a and the cylinder head 3 toward the center of the combustion chamber 4. Is leaked. The squish flow flows downward along the upper end portion 7a of the inner peripheral surface of the annular lip 7 as shown by the arrow S. As mentioned above, Minebe 8 (3rd
In the figure), the squish flow S flowing along the upper end 7a of the inner peripheral surface of the lip separates at the peak 8 and is a minute vortex, that is, a micro turbulence, around the fuel reflection surface 7b. To occur. This microturbulence also prevents the fuel from adhering to the fuel reflecting surface 7b. Immediately after the fuel injection is started in this way, the injected fuel is collected in the peripheral portion of the cavity 6, so that the air-fuel mixture region P is formed in the peripheral portion of the cavity 6.

次いで第7図(b)に示されるようにピストン2が上
昇すると反射燃料Gの進行方向がキャビティ6の中心部
に向けて移動する。燃料反射位置が燃料反射面7b上で下
方に向けて移動するにつれて乱れRの強さは弱まるの
で、キャビティ6の中心部に向かう反射燃料Gのエネル
ギをほとんど奪うことがなくこのため反射燃料Gはキャ
ビティ6の中心部に向かうことができる。一方、燃料粒
子の温度が十分に高まるとキャビティ6の周辺部の混合
気P(第7図(a))が着火燃焼せしめられる。ところ
で旋回流中に質量の大きなガスと質量の小さなガスとが
存在すると遠心力によって質量の大きなガスは周辺部に
移動し、質量の小さなガスは中心部に集まる。ところで
燃焼ガスの質量は空気の質量よりも小さく、従って燃焼
ガスおよび空気が旋回していると燃焼ガスは中心部に向
けて移動し、空気は周辺部に向けて移動する。従ってキ
ャビティ6の周辺部の混合気P(第7図(a))が着火
燃焼せしめられるとその燃焼ガスは第7図(b)におい
てQで示されるようにキャビティ6の中心部に向けて移
動を開始する。同時に燃焼火炎もキャビティ6の中心部
に向けて伝播する。従って第7図(b)に示されるよう
に反射燃料Qを追いかけるように火炎が伝播することに
なる。云い換えると反射燃料Qによって混合気が形成さ
れるとこの混合気にタイミングよくただちに火炎が伝播
し、混合気が燃焼せしめられることになる。従って第7
図(c)に示されるように反射燃料Gがキャビティ6の
中心部に向かうとこの反射燃料Gによってキャビティ6
の中心部に形成された混合気が中心部に向かう火炎によ
ってただちに着火燃焼せしめられる。
Next, as shown in FIG. 7 (b), when the piston 2 rises, the traveling direction of the reflected fuel G moves toward the center of the cavity 6. The intensity of the turbulence R becomes weaker as the fuel reflection position moves downward on the fuel reflection surface 7b, and therefore the energy of the reflection fuel G toward the center of the cavity 6 is hardly taken away. It can go to the center of the cavity 6. On the other hand, when the temperature of the fuel particles is sufficiently increased, the air-fuel mixture P (FIG. 7A) around the cavity 6 is ignited and burned. By the way, when a gas with a large mass and a gas with a small mass exist in the swirling flow, the gas with a large mass moves to the peripheral portion by the centrifugal force, and the gas with a small mass gathers in the central portion. Incidentally, the mass of the combustion gas is smaller than the mass of the air. Therefore, when the combustion gas and the air are swirling, the combustion gas moves toward the center and the air moves toward the periphery. Therefore, when the air-fuel mixture P (FIG. 7 (a)) around the cavity 6 is ignited and burned, the combustion gas moves toward the center of the cavity 6 as indicated by Q in FIG. 7 (b). To start. At the same time, the combustion flame propagates toward the center of the cavity 6. Therefore, as shown in FIG. 7 (b), the flame propagates so as to follow the reflected fuel Q. In other words, when the air-fuel mixture is formed by the reflected fuel Q, the flame immediately propagates to the air-fuel mixture in a timely manner, and the air-fuel mixture is burned. Therefore, the seventh
As shown in FIG. 6C, when the reflected fuel G moves toward the center of the cavity 6, the reflected fuel G causes the cavity 6 to move.
The air-fuel mixture formed in the central part of the is immediately ignited and burned by the flame toward the central part.

一方、この間空気はキャビティ6の中心部から周辺部
の方へ移動する。従って第7図(d)から(e)に示さ
れるようにピストン2が下降を開始して反射燃料Gの進
行方向がキャビティ6の中心部から周辺部に移動すると
反射燃料Gは十分空気が存在する領域内に送り込まれる
ことになる。このとき火炎は逆にキャビティ6の中心部
から周辺部に向かう。一方、キャビティ6の周壁面に付
着した液状燃料が蒸発することによってキャビティ6の
周辺部には混合気が形成されており、この混合気はキャ
ビティ6の中心部から周辺部に向かう火炎によって燃焼
せしめられる。
On the other hand, during this time, the air moves from the center of the cavity 6 toward the periphery. Therefore, as shown in FIGS. 7D to 7E, when the piston 2 starts descending and the traveling direction of the reflected fuel G moves from the central portion to the peripheral portion of the cavity 6, the reflected fuel G has sufficient air. Will be sent into the area. At this time, the flame goes from the center of the cavity 6 to the periphery. On the other hand, an air-fuel mixture is formed around the cavity 6 due to the evaporation of the liquid fuel attached to the peripheral wall surface of the cavity 6, and this air-fuel mixture is burned by a flame directed from the center of the cavity 6 to the periphery. Can be

以上のように本実施例によれば凹部20によって、旋回
流SWを燃料反射面7bの上方に向かって強くなる局部的な
乱れRに変換するので、燃料反射面7bの上方で反射され
る燃料もキャビティ内周壁面6aにほとんど付着すること
がなく空気と良好に混合して拡散され、一方燃料反射面
7bの下方で反射された燃料は乱れRの影響をほとんど受
けることなくキャビティ中心部に達することができる。
斯くして良好な燃焼を得ることができ、出力の向上、パ
ティキュレート、HCおよびスモークの排出量を減少せし
めることができる。
As described above, according to the present embodiment, the swirl flow SW is converted into the local turbulence R which becomes stronger toward the upper side of the fuel reflection surface 7b by the concave portion 20, so that the fuel reflected above the fuel reflection surface 7b is converted. Also hardly adheres to the inner wall surface 6a of the cavity and is well mixed with air and diffused, while the fuel reflection surface
The fuel reflected below 7b can reach the center of the cavity with little influence of turbulence R.
In this way, good combustion can be obtained, and the output can be improved and the emissions of particulates, HC and smoke can be reduced.

また旋回流SWの一部を乱れRに変換するため旋回流SW
が強くなりすぎることを防止することができ、これによ
って複数のノズル孔を有する燃料噴射弁を使用する場合
においても互いに隣り合うノズル孔からの噴射燃料によ
って形成される燃料噴霧が機関高回転時において互いに
重なり合うことを防止することができ、この結果スモー
クの発生量の増大を防止することができる。
In addition, in order to convert a part of the swirl flow SW into turbulence R, the swirl flow SW
Can be prevented from becoming too strong, so that even when a fuel injection valve having a plurality of nozzle holes is used, the fuel spray formed by the injected fuel from the nozzle holes adjacent to each other at high engine speed It is possible to prevent overlapping with each other, and as a result, it is possible to prevent an increase in the amount of smoke generated.

第8図には周方向の燃料反射位置を変化させた場合に
おける機関回転数とトルクとの関係を示す。本実施例に
おいては燃料反射位置は凹部20の下流端20cのすぐ下流
に位置しているが、燃料反射位置を本実施例の位置から
上流側に5度ずらした場合、図示のように低速域におい
てトルクが著しく低下する。これは旋回流の弱い機関低
速時においては燃料噴霧がキャビティ外に漏れているか
らであり、スモークおよびHCの排出量も増大する。一
方、燃料噴射位置を本実施例の位置から下流側に5度ず
らした場合、低中速域においてトルクが悪化する。これ
らの結果より燃料反射位置を本実施例のように凹部20の
下流端20cのすぐ下流に位置せしめると最も高い効果が
得られることがわかる。
FIG. 8 shows the relationship between the engine speed and the torque when the fuel reflection position in the circumferential direction is changed. In the present embodiment, the fuel reflection position is located immediately downstream of the downstream end 20c of the recess 20, but when the fuel reflection position is shifted 5 degrees upstream from the position of the present embodiment, as shown in the figure, the low speed range is reached. At, the torque is significantly reduced. This is because the fuel spray leaks to the outside of the cavity at low engine speeds where the swirl flow is weak, and the smoke and HC emissions also increase. On the other hand, when the fuel injection position is shifted 5 degrees downstream from the position of this embodiment, the torque deteriorates in the low and medium speed range. From these results, it is understood that the highest effect can be obtained by locating the fuel reflection position immediately downstream of the downstream end 20c of the recess 20 as in the present embodiment.

第9図には機関回転数と全負荷トルクとの関係を示す
本実施例によれば全領域において全負荷トルクが向上し
ていることがわかる。
FIG. 9 shows the relationship between the engine speed and the full load torque. According to this embodiment, the full load torque is improved in all regions.

第10図にはアイドル運転時におけるNOx排出量とパテ
ィキュレート排出量およびHC排出量との関係を示す。本
実施例によればパティキュレート排出量およびHC排出量
ともに低減せしめることができNOxの排出量を低減せし
めても、従来例のようにパティキュレート排出量および
HC排出量が増大しない。
FIG. 10 shows the relationship between the NO x emission amount, the particulate emission amount, and the HC emission amount during idle operation. According to the present embodiment, both the particulate emission amount and the HC emission amount can be reduced, and even if the NO x emission amount is reduced, as in the conventional example, the particulate emission amount and the HC emission amount can be reduced.
HC emissions do not increase.

第11図は旋回流の強さとトルクとの関係を示す。従来
例では高速域(3400rpm)において旋回流が強くなると
トルクが大幅に低下するが本実施例によれば大幅に改善
することができる。これは凹部20によってキャビティ内
の旋回流を弱めることができるからである。
FIG. 11 shows the relationship between the strength of the swirling flow and the torque. In the conventional example, when the swirl flow becomes stronger in the high speed region (3400 rpm), the torque is significantly reduced, but according to the present example, the torque can be greatly improved. This is because the concave portion 20 can weaken the swirling flow in the cavity.

第12図には燃料噴射弁5のノズル孔と同数の凹部20が
形成された場合の実施例を示す。この実施例においては
全ての噴射燃料Fが凹部20の下流端20cのすぐ下流位置
で反射されることとなり、第1図に示す実施例に対しよ
り高い効果を得ることができる。
FIG. 12 shows an embodiment in which the same number of recesses 20 as the nozzle holes of the fuel injection valve 5 are formed. In this embodiment, all of the injected fuel F is reflected at a position immediately downstream of the downstream end 20c of the recess 20, and a higher effect can be obtained as compared with the embodiment shown in FIG.

〔考案の効果〕[Effect of device]

燃料反射面の上方で反射されてキャビティ周辺部に向
かう燃料も十分に空気と混合せしめて拡散することがで
きる。これによってHCおよびスモークの発生を低減せし
めることができる。
The fuel reflected above the fuel reflection surface and directed to the peripheral portion of the cavity can also be sufficiently mixed with air and diffused. This can reduce the generation of HC and smoke.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を適用したディーゼル機関の
ピストンの頂面図、第2図は本発明によるディーゼル機
関の側面断面図、第3図は第2図の拡大側面断面図、第
4図は第1図のIV-IV線に沿ってみた要部拡大断面図、
第5図は第1図のV−V線に沿ってみた要部拡大断面
図、第6図は第4図のVI-VI線に沿ってみた拡大断面
図、第7図は燃焼方法を説明するための図、第8図は燃
料反射位置を変化させた場合の機関回転数とトルクとの
関係を示す線図、第9図は機関回転数と全負荷トルクと
の関係を示す線図、第10図はアイドル運転時におけるNO
x排出量とパティキュレート排出量およびHC排出用との
関係を示す線図、第11図は旋回流の強さとトルクとの関
係を示す線図、第12図は別の実施例のピストンの頂面図
である。 2……ピストン、5……燃料噴射弁、6……キャビテ
ィ、6a……キャビティ周壁面、7b……燃料反射面、20…
…凹部。
1 is a top view of a piston of a diesel engine to which an embodiment of the present invention is applied, FIG. 2 is a side sectional view of a diesel engine according to the present invention, FIG. 3 is an enlarged side sectional view of FIG. FIG. 4 is an enlarged sectional view of an essential part taken along the line IV-IV in FIG.
FIG. 5 is an enlarged cross-sectional view taken along the line VV of FIG. 1, FIG. 6 is an enlarged cross-sectional view taken along the line VI-VI of FIG. 4, and FIG. FIG. 8 is a diagram showing the relationship between engine speed and torque when the fuel reflection position is changed, and FIG. 9 is a diagram showing relationship between engine speed and full load torque. Fig. 10 shows NO during idle operation
x is a diagram showing the relationship between the discharge amount, the particulate discharge amount, and the HC discharge amount, FIG. 11 is a diagram showing the relationship between the strength of swirling flow and torque, and FIG. 12 is the top of the piston of another embodiment. It is a side view. 2 ... Piston, 5 ... Fuel injection valve, 6 ... Cavity, 6a ... Cavity peripheral wall surface, 7b ... Fuel reflection surface, 20 ...
… Recessed.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】ピストン頂面に形成されたキャビティ内周
壁面上に該キャビティ内周壁面に沿って環状に延びる燃
料反射面を形成すると共に該燃料反射面を下向きの断面
凹状の湾曲面から形成して燃料噴射弁から前記燃料反射
面に向けて燃料を噴射させ、前記燃料反射面の形成位置
および断面形状を前記燃料反射面において反射した噴射
燃料が、前記燃料反射面上での燃料反射位置が上方から
下方に向かうに従ってキャビティ周辺部からキャビティ
中心部に向かうように定め、前記燃料反射面上にキャビ
ティ上方に向かうに従って深さが深くなる凹部を形成す
ると共に、燃料噴射弁からの燃料噴射方向を、キャビテ
ィ内のスワール流方向から見て前記凹部より下流側部分
の燃料反射面に向けて設定した直噴式ディーゼル機関の
燃焼室。
1. A fuel reflection surface extending annularly along the cavity inner peripheral wall surface formed on the piston top surface, and the fuel reflection surface is formed from a downward curved surface having a concave cross section. Then, the fuel is injected from the fuel injection valve toward the fuel reflection surface, and the injected fuel having the formation position and the cross-sectional shape of the fuel reflection surface reflected on the fuel reflection surface is the fuel reflection position on the fuel reflection surface. Is formed so as to go from the periphery of the cavity toward the center of the cavity as it goes downward from above, and a recess whose depth becomes deeper as it goes above the cavity is formed on the fuel reflection surface, and the fuel injection direction from the fuel injection valve is also formed. Is a combustion chamber of a direct-injection diesel engine, which is set toward the fuel reflection surface at a portion downstream of the recess when viewed from the swirl flow direction in the cavity.
JP1989146451U 1989-12-21 1989-12-21 Combustion chamber of direct injection diesel engine Expired - Lifetime JP2501886Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1989146451U JP2501886Y2 (en) 1989-12-21 1989-12-21 Combustion chamber of direct injection diesel engine
DE4033822A DE4033822C2 (en) 1989-12-21 1990-10-24 Combustion chamber of a diesel engine with direct injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989146451U JP2501886Y2 (en) 1989-12-21 1989-12-21 Combustion chamber of direct injection diesel engine

Publications (2)

Publication Number Publication Date
JPH0387823U JPH0387823U (en) 1991-09-06
JP2501886Y2 true JP2501886Y2 (en) 1996-06-19

Family

ID=15407938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989146451U Expired - Lifetime JP2501886Y2 (en) 1989-12-21 1989-12-21 Combustion chamber of direct injection diesel engine

Country Status (2)

Country Link
JP (1) JP2501886Y2 (en)
DE (1) DE4033822C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10261181A1 (en) * 2002-12-20 2004-07-01 Daimlerchrysler Ag Internal combustion engine with auto-ignition
US6997158B1 (en) * 2004-10-07 2006-02-14 International Engine Intellectual Property Company, Llc Diesel combustion chamber
FR2886982A1 (en) * 2005-06-09 2006-12-15 Renault Sas Combustion chamber for diesel engine with direct injection has piston face cavity with notches in cavity rim aligned with injector orifices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2753341A1 (en) * 1977-11-30 1979-05-31 Daimler Benz Ag Compression ignition IC engine - has trough in piston with recess for each injector jet in wall
GB8317453D0 (en) * 1983-06-28 1983-08-03 Massey Ferguson Perkins Ltd Ic engine
JPS6032929A (en) * 1983-08-03 1985-02-20 Yanmar Diesel Engine Co Ltd Combustion chamber of direct-injection type internal- combustion engine
JP2650294B2 (en) * 1988-01-27 1997-09-03 トヨタ自動車株式会社 Combustion chamber of direct injection diesel engine
DE3874012T2 (en) * 1987-06-08 1993-01-14 Toyota Motor Co Ltd COMBUSTION CHAMBER IN A DIRECT INJECTION TYPE ENGINE.

Also Published As

Publication number Publication date
DE4033822A1 (en) 1991-06-27
JPH0387823U (en) 1991-09-06
DE4033822C2 (en) 1995-06-01

Similar Documents

Publication Publication Date Title
JP2019507848A (en) Air compression internal combustion engine
JPS6037290B2 (en) Air compression/direct injection internal combustion engine
US4281629A (en) Compression ignition direct injection internal combustion engine
US5351665A (en) Internal combustion engine
KR20190116513A (en) Pistons for Internal Combustion Engines
JP2501886Y2 (en) Combustion chamber of direct injection diesel engine
JPS6017223A (en) Combustion chamber of direct injection type internal- combustion engine
JP2002122024A (en) Combustion chamber or piston
JP3781536B2 (en) Combustion chamber structure of in-cylinder injection engine
JPH0623540B2 (en) Pentorf type direct injection internal combustion engine
JP2000352316A (en) Combustion chamber in direct injection compression ignition engine
EP0828066B1 (en) Combustion chamber of diesel engine
JPS6032929A (en) Combustion chamber of direct-injection type internal- combustion engine
JPH1193673A (en) Direct injection-type diesel engine
JP2524133Y2 (en) Combustion chamber of direct injection diesel engine
JP2650294B2 (en) Combustion chamber of direct injection diesel engine
JPS6093115A (en) Combustion chamber in direct injection type internal-combustion engine
JP2594054B2 (en) Direct injection diesel engine
JPS6329016A (en) Subchamber type diesel combustion chamber
EP0909893A2 (en) Direct injection diesel engine
JP2501868Y2 (en) Combustion chamber of direct injection diesel engine
JPH086589B2 (en) Direct injection internal combustion engine
JP2581866Y2 (en) Combustion chamber of direct injection diesel engine
JPS6032928A (en) Combustion chamber of direct-injection type internal- combustion engine
JPS63162926A (en) Combustion chamber of internal combustion engine