JP2921328B2 - Engine with swirl chamber - Google Patents
Engine with swirl chamberInfo
- Publication number
- JP2921328B2 JP2921328B2 JP11489893A JP11489893A JP2921328B2 JP 2921328 B2 JP2921328 B2 JP 2921328B2 JP 11489893 A JP11489893 A JP 11489893A JP 11489893 A JP11489893 A JP 11489893A JP 2921328 B2 JP2921328 B2 JP 2921328B2
- Authority
- JP
- Japan
- Prior art keywords
- flow
- engine
- chamber
- wall surface
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Combustion Methods Of Internal-Combustion Engines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は渦流室付きエンジン、特
に、渦流室内に旋回流を生成させてエアと燃料の混合を
行わせ、着火を比較的早期に行うことの出来る渦流室付
きエンジンに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine with a swirl chamber, and more particularly, to an engine with a swirl chamber capable of generating a swirling flow in a swirl chamber to mix air and fuel and to ignite relatively early. .
【0002】[0002]
【従来の技術】圧縮着火式のディーゼルエンジンの内、
渦流室付きエンジンは直噴式ディーゼルエンジンと比べ
て圧縮比が高く、着火遅れが少なく、初期の熱発生率を
比較的低く押えられ、NOxの発生率を低減でき、排煙
濃度を低減することが出来、多用されている。例えば、
図13及び図14に示すように、この渦流室付きエンジ
ンはシリンダブロック1内の主室Cとシリンダヘッド3
内の渦流室中心線L3を備えた渦流室4とに挾まれた口
金2上の噴口5を通して連通されている。このエンジン
はシリンダブロック1内でピストン中心線L1方向に摺
動するピストン6が圧縮上死点近傍にあるとき、ピスト
ン6のピストン頂面Pf上の凹部7により主室Cを形成
している。2. Description of the Related Art Among compression ignition type diesel engines,
The engine with a vortex chamber has a higher compression ratio than a direct-injection diesel engine, has less ignition delay, can keep the initial heat generation rate relatively low, can reduce the NOx generation rate, and can reduce the exhaust gas concentration. Made and heavily used. For example,
As shown in FIGS. 13 and 14, the engine with a swirl chamber includes a main chamber C in a cylinder block 1 and a cylinder head 3.
The vortex chamber 4 is provided with a vortex chamber 4 having a vortex chamber center line L3. In this engine, when the piston 6 sliding in the direction of the piston center line L1 in the cylinder block 1 is near the compression top dead center, the main chamber C is formed by the concave portion 7 on the piston top surface Pf of the piston 6.
【0003】ここでエンジンはその圧縮行程でピストン
頂面Pf上の主室Cより、この主室と渦流室4とに挾ま
れた口金2上の噴口5を通して渦流室4にエアを押し込
み、渦流室内に流入されて縦向き旋回流Fと成ったエア
に圧縮行程終期にインジェクタ9より燃料を噴霧する。
すると渦流室4の燃料噴霧が着火して燃焼膨張を開始す
る。この燃焼膨張を開始した燃焼ガスは噴口5より所定
の噴口角βで主室Cに噴出され、同室のエア中に拡散し
て主燃焼し、エンジンは燃焼膨張行程を行うことと成
る。このように、渦流室付きエンジンでは渦流室4は主
にエアと燃料の混合を促進してそれを確実に着火させ、
スムーズに主室Cに噴出する役割を持ち、主室Cは渦流
室4にて着火した燃焼ガスを完全に燃焼させる役割を持
つことと成る。In the compression stroke, the engine pushes air from the main chamber C on the piston top surface Pf into the vortex chamber 4 through the injection port 5 on the base 2 sandwiched between the main chamber and the vortex chamber 4, thereby causing the vortex flow. At the end of the compression stroke, fuel is sprayed from the injector 9 onto the air that has flowed into the room and has become the vertical swirling flow F.
Then, the fuel spray in the swirl chamber 4 is ignited and combustion expansion starts. The combustion gas which has started the combustion expansion is jetted from the injection port 5 into the main chamber C at a predetermined injection port angle β, diffuses into the air in the same chamber and performs main combustion, and the engine performs a combustion expansion process. Thus, in an engine with a swirl chamber, the swirl chamber 4 mainly promotes the mixing of air and fuel to ignite it,
The main chamber C has a role of smoothly jetting into the main chamber C, and the main chamber C has a role of completely burning the combustion gas ignited in the swirl chamber 4.
【0004】この着火燃焼開始を担当する渦流室4は、
噴口5の上開口501を中央部として環状に形成される
筒状壁面402と、筒状壁面402の噴口5と反対側端
縁に続いて形成されると共に噴口の上開口501からの
上向き流f1を下向き流f2に偏向させる半円球状のド
ーム壁面401と、筒状壁面の噴口側端縁に続き形成さ
れ下向き流f2を噴口の上開口501に向けて流れる低
壁流f3に偏向させる低壁面201とを備える。この渦
流室4で生成される上向き流f1と下向き流f2及び低
壁流f3は、連続的に旋回して縦向き旋回流Fを成し、
これによってエアと燃料との混合を促進し、比較的早く
着火を完了させる。そして、エンジンが圧縮上死点を経
過後には渦流室4にて着火し燃焼膨張を開始させた燃焼
ガスの内、低壁流f3部分が偏向されて、上開口501
から噴口5に流入され、噴口5の下開口502より所定
の噴口角βで主室Cに噴出され、燃焼を完了させてい
る。The vortex chamber 4 responsible for starting the ignition combustion is
A cylindrical wall surface 402 formed in an annular shape with the upper opening 501 of the nozzle 5 as a center portion, and an upward flow f1 formed following the edge of the cylindrical wall surface 402 opposite to the nozzle 5 and from the upper opening 501 of the nozzle. Semi-spherical dome wall surface 401 that deflects the downward flow f2, and a low wall surface that is formed following the nozzle-side edge of the cylindrical wall surface and deflects the downward flow f2 into a low-wall flow f3 that flows toward the upper opening 501 of the nozzle. 201. The upward flow f1, the downward flow f2, and the low wall flow f3 generated in the vortex flow chamber 4 continuously swirl to form a vertical swirl flow F,
This promotes mixing of air and fuel, and completes ignition relatively quickly. Then, after the engine passes through the compression top dead center, the low wall flow f3 of the combustion gas ignited in the vortex chamber 4 to start combustion expansion is deflected, and the upper opening 501 is opened.
From the lower opening 502 of the nozzle 5 and is injected into the main chamber C at a predetermined nozzle angle β, thereby completing the combustion.
【0005】特に、図13に示すようにエンジンが燃焼
初期を経過し中期に達する頃には主室Cはピストン頂面
Pfとシリンダヘッド3のピストン頂面Pfの対向部の
間に大きく形成され、そこに噴口5より噴口角βで噴出
された燃焼ガスはそのペネトレーション(主室Cに噴出
された燃焼ガスの貫通力)によって噴口側と反対の隙間
領域にまで進み、主室Cでのエアとの混合が成され、燃
焼が進むことと成る。[0005] In particular, as shown in FIG. 13, when the engine reaches the middle stage after the early stage of combustion, the main chamber C is largely formed between the opposed portion of the piston top surface Pf and the piston top surface Pf of the cylinder head 3. The combustion gas ejected from the nozzle 5 at the nozzle angle β advances to the gap area opposite to the nozzle side due to the penetration (penetrating force of the combustion gas injected into the main chamber C), and the air in the main chamber C And the combustion proceeds.
【0006】[0006]
【発明が解決しようとする課題】しかし、図13に示す
ように、このような渦流室付きエンジンでは渦流室4の
縦向き旋回流Fを適確に生成させる必要があり、特に低
速運転時には縦向き旋回流Fの旋回エネルギが小さくそ
の強化が望まれている。更に、圧縮上死点を経過後にお
いて、渦流室4にて着火し燃焼膨張を開始させた混合気
の内、低壁流f3部分がまず偏向されて上開口501に
流入し、下開口502より所定の噴口角βで主室Cに噴
出され、低壁流f3は大きく流動方向を偏向する必要が
ある。例えば、図13の渦流室付きエンジンの場合にも
偏向角δ(=180°+(180°−β))が大きい。
このように渦流室付きエンジンでは低壁流f3を噴口角
βに大きく偏向させる必要があり、この流動方向の偏向
時のロスが多かった。即ち、低壁流の部分が慣性によっ
て上開口501の上方に向う(図14に符号faとして
示した)習性を持つため、これを抑えて噴口5に向かわ
せる必要があり、流動方向の偏向がスムーズに成されて
いなかった。However, as shown in FIG. 13, in such an engine with a swirl chamber, it is necessary to accurately generate the vertical swirling flow F of the swirl chamber 4, especially when the engine is operated at a low speed. The swirling energy of the direction swirling flow F is small, and its reinforcement is desired. Further, after elapse of the compression top dead center, the low wall flow f3 portion of the mixture ignited in the vortex flow chamber 4 and started combustion expansion is first deflected and flows into the upper opening 501, and from the lower opening 502. The low wall flow f3 is jetted into the main chamber C at a predetermined jet angle β, and it is necessary to largely deflect the flow direction. For example, also in the case of the engine with a swirl chamber shown in FIG. 13, the deflection angle δ (= 180 ° + (180 ° −β)) is large.
As described above, in the engine with a swirl chamber, it is necessary to largely deflect the low-wall flow f3 to the injection port angle β, and a large loss is caused when the flow direction is deflected. That is, since the low-wall flow portion has a habit (indicated by reference numeral fa in FIG. 14) that tends to be above the upper opening 501 due to inertia, it is necessary to suppress the flow and direct the flow toward the injection port 5, and the flow direction is deflected. It was not done smoothly.
【0007】このため従来装置では所定の噴口角βで噴
口5より主室Cに噴出される燃焼ガスのぺネトレーショ
ン(主室Cに噴出された燃焼ガスの貫通力)の強化に限
界があった。結果として、主室Cでのエアとの混合が十
分に成されず、適確な燃焼が成されず、燃焼期間が延び
てしまい、機関の排煙濃度を低減出来ず、燃費も悪化す
るという問題が有った。本発明の目的は渦流室内での旋
回流を適確に生成させると共に噴口をへて主室に噴出す
る燃焼ガスの流動ロスを低減させて機関の燃焼を改善し
て排煙濃度を低減し、燃費を改善できる渦流室付きエン
ジンを提供することにある。For this reason, in the conventional apparatus, there is a limit in enhancing the penetration of the combustion gas injected from the injection port 5 into the main chamber C at the predetermined injection port angle β (the penetration force of the combustion gas injected into the main chamber C). Was. As a result, mixing with the air in the main chamber C is not sufficiently performed, accurate combustion is not performed, the combustion period is extended, the exhaust gas concentration of the engine cannot be reduced, and the fuel efficiency deteriorates. There was a problem. It is an object of the present invention to accurately generate a swirl flow in a swirl chamber and reduce a flow loss of a combustion gas ejected from a nozzle to a main chamber to improve combustion of an engine to reduce smoke concentration. It is an object of the present invention to provide an engine with a swirl chamber that can improve fuel efficiency.
【0008】[0008]
【課題を解決するための手段】上述の目的を達成するた
めに、本発明はエンジンのピストン頂面上の主室よりこ
の主室と渦流室とに挾まれた口金上の噴口を通して上記
渦流室にエアを流入させ、上記渦流室内に旋回流を生成
させ燃料を噴射し着火させ上記噴口より上記主室に噴出
させて燃焼を完了させる渦流室付きエンジンにおいて、
上記渦流室は上記噴口の上開口を中央部として環状に形
成される筒状壁面と、上記筒状壁面の上記噴口と反対端
側に形成されると共に上記噴口からの上向き流を下向き
流に偏向させるドーム壁面と、上記筒状壁面の噴口端側
に少なくとも上記上開口の上記旋回流と直交する方向の
長さと同等の幅に亘って上記ピストン頂面と略平行に形
成されると共に上記下向き流を上記噴口の上開口に向け
て流れる低壁流に偏向させる下向き流偏向側低壁面と、
上記筒状壁面の噴口端側に形成されると共に上記噴口の
上開口を挾んで上記下向き流偏向側低壁面と反対側に形
成され上記ピストン頂面に対して上記下向き流偏向側低
壁面より大きく突出して形成される上向き流対向側低壁
面と、上記下向き流偏向側低壁面と上記上向き流対向側
低壁面との間を連続的に結ぶと共に上記噴口の上開口を
挾んで形成される一対の勾配壁面とを備えたことを特徴
とする。In order to achieve the above-mentioned object, the present invention is directed to a swirl chamber through an orifice on a mouthpiece interposed between the main chamber and the swirl chamber from a main chamber on the top surface of an engine piston. In the engine with a swirl chamber, which injects air into the swirl chamber, generates a swirl flow in the swirl chamber, injects and ignites fuel, and ejects the fuel from the injection port to the main chamber to complete combustion.
The swirl chamber is formed on the cylindrical wall surface formed in an annular shape with the upper opening of the nozzle at the center, and formed at the end of the cylindrical wall opposite to the nozzle, and deflects an upward flow from the nozzle into a downward flow. Dome wall surface to be sprayed
At least in the direction orthogonal to the swirling flow of the upper opening
A downward-flow-deflecting-side low wall formed substantially parallel to the piston top surface over a width equivalent to the length and deflecting the downward flow into a low-wall flow flowing toward the upper opening of the injection port. When,
It is formed on the nozzle end side of the cylindrical wall surface, and is formed on the opposite side to the downward flow deflection side low wall surface with the upper opening of the injection hole interposed therebetween, and is larger than the downward flow deflection side low wall surface with respect to the piston top surface. A pair of upper flow-facing lower wall surfaces formed so as to protrude, and a continuous connection between the lower flow deflecting lower wall surface and the upper flow-facing lower wall surface, and a pair of upper and lower openings formed between the injection ports. And a slope wall surface.
【0009】[0009]
【作用】一対の勾配壁面が、圧縮行程において、低壁流
のエネルギーロスを抑えて低壁流を上向き流偏向側低壁
面側に流動でき、渦流室の旋回流の流動を促進できる。
しかも、上向き流偏向側低壁面側の噴口の上開口縁が下
向き流偏向側低壁面より大きく突出して形成され、且つ
下向き流偏向側低壁面が少なくとも上開口の旋回流と直
交する方向の長さと同等の幅に亘ってビストン頂面と略
平行に形成されているため、上向き流偏向側低壁面側の
噴口の上開口縁が下向き流偏向側低壁面側よりも大きく
突出することとなる。そのため、燃焼行程において、混
合気が、ピストン頂面と略平行に形成された下向き流偏
向側低壁面に沿って流動することによつて、上向き流偏
向側低壁面側の噴口の上開口縁よりもピストン頂面側の
噴口内部に衝突して渦流室内の流れが抑制され、混合気
の低壁流を噴口内にスムーズに導くことができる。In the compression stroke, the pair of inclined wall surfaces can suppress the energy loss of the low wall flow and can flow the low wall flow toward the upward flow deflection side and the low wall surface side, thereby promoting the flow of the swirling flow of the vortex chamber.
In addition, the upper opening edge of the nozzle on the upward flow deflecting side low wall surface side is formed so as to protrude more than the downward flow deflecting side low wall surface, and the length of the downward flow deflecting side low wall surface is at least a direction orthogonal to the swirling flow of the upper opening. Since it is formed substantially parallel to the top surface of the piston over the same width, the upper opening edge of the injection port on the upward flow deflecting side low wall surface side projects more than the downward flow deflecting side low wall surface side. Therefore, in the combustion stroke, the air-fuel mixture flows along the downward-flow-deflecting-side low-wall surface formed substantially in parallel with the piston top surface, so that the air-fuel mixture flows from the upper opening edge of the nozzle on the upward-flow-deflecting-side low-wall surface side. Also, the collision with the inside of the injection hole on the top surface side of the piston suppresses the flow in the swirl chamber, and the low-wall flow of the air-fuel mixture can be smoothly guided into the injection hole.
【0010】[0010]
【実施例】図1の渦流室付きエンジンは直列4気筒ディ
ーゼルエンジンであり、エンジンの主室Cより噴口12
を通して渦流室10にエアを流入させ、エアと燃料との
混合を促進し、この燃料噴霧を着火させた上で噴口12
より主室Cに噴出させて主燃焼を完了させる。この渦流
室付きエンジンは各シリンダ毎に図1に示すような主室
C及び渦流室10を備えており、ここでは第1気筒のみ
を示した。この渦流室付きエンジンは図13に示したエ
ンジンと比べて、渦流室10、特に口金11上の各部形
状が相違する点を除くとそれ以外の部分がほぼ同様の構
成を採っており、ここでは同一部分の重複説明を略す。
主室Cはピストン頂面Pfとシリンダヘッド3の主室C
との対向部とシリンダブロック1内のシリンダ内壁とで
区分される空間であり、その容積はピストン6の上下動
に応じて変化する。1 is an in-line four-cylinder diesel engine with a swirl chamber engine shown in FIG.
The air flows into the swirl chamber 10 through the nozzle, promotes the mixing of the air and the fuel, and ignites the fuel spray.
The main combustion is completed by ejecting the fuel into the main chamber C. This engine with a swirl chamber has a main chamber C and a swirl chamber 10 as shown in FIG. 1 for each cylinder, and here only the first cylinder is shown. This engine with a swirl chamber has substantially the same configuration as the engine shown in FIG. 13 except for the differences in the shape of each part on the swirl chamber 10, particularly the base 11, and here, A duplicate description of the same part will be omitted.
The main chamber C is composed of the piston top surface Pf and the main chamber C of the cylinder head 3.
And a space divided by the inner wall of the cylinder in the cylinder block 1, and its volume changes according to the vertical movement of the piston 6.
【0011】ここで、ピストン6の頂面Pfはピストン
6の摺動方向のピストン中心線L1に対して垂直な面で
あり、その頂面Pf上の噴口12との対向部aの中心と
ピストン中心po(図2参照)とを結ぶ噴口対向部中心
線L2を中心にして双渦流型の凹部7が凹設される。凹
部7は噴口12より噴出される燃焼ガスの一部を分散縦
壁部701によって左右の双葉状部702に分散させ、
主室Cに噴出された燃焼ガスが噴口対向部中心線L2に
沿って集中して流動すること無く、主室Cの全域に分散
させるように働く。渦流室10はシリンダヘッド3に釣
鐘状空間として凹設され、その低壁がシリンダヘッド3
に一体的に結合される口金11で形成される。 Here , the top surface Pf of the piston 6 is a surface perpendicular to the piston center line L1 in the sliding direction of the piston 6, and the center of the portion a on the top surface Pf facing the injection port 12 and the piston A double vortex-type concave portion 7 is provided around the center line L2 of the nozzle-facing portion connecting the center po (see FIG. 2). The concave portion 7 disperses a part of the combustion gas ejected from the injection port 12 to the left and right bilobal portions 702 by the distributing vertical wall portion 701,
The combustion gas injected into the main chamber C does not concentrate and flow along the center line L2 of the nozzle-facing portion, but acts to disperse the combustion gas over the entire area of the main chamber C. The swirl chamber 10 is recessed in the cylinder head 3 as a bell-shaped space, and its low wall is
The base 11 is formed integrally with the base.
【0012】口金11はシリンダブロック1内の主室C
とシリンダヘッド3内の渦流室10とに挾まれ、この口
金11上の噴口12を通して主室Cと渦流室10とが連
通されている。口金11上に形成された噴口12は、図
1に示すようにその噴口長手方向がピストン中心側に向
けて傾斜した状態で伸びており、その渦流室10側の上
開口121と主室C側の下開口122との間における噴
口流路の直交断面はほぼ楕円状を呈する。しかも、ここ
では上開口121側より下開口122側の噴口角βの方
が大ききく形成され、これによって主室Cに噴出される
燃焼ガスの水平方向(図1において)の速度変換効率を
高め、燃焼ガスの主室Cでのペネトレーションの低下を
防止している。The base 11 is a main chamber C in the cylinder block 1.
The main chamber C and the vortex chamber 10 are communicated with each other through an injection port 12 on the base 11. As shown in FIG. 1, the nozzle 12 formed on the base 11 extends in a state where the longitudinal direction of the nozzle is inclined toward the center of the piston, and the upper opening 121 on the swirl chamber 10 side and the main chamber C side. An orthogonal cross section of the injection port passage between the lower opening 122 and the lower opening 122 has an almost elliptical shape. Further, here, the nozzle angle β on the lower opening 122 side is formed larger than that on the upper opening 121 side, thereby increasing the horizontal (in FIG. 1) velocity conversion efficiency of the combustion gas injected into the main chamber C. This prevents the penetration of the combustion gas in the main chamber C from being lowered.
【0013】渦流室10はピストン頂面Pfに対して垂
直な渦流室中心線L3を備えるように形成される。この
渦流室10は噴口12の上開口121を中央部として環
状に形成される筒状壁面102と、筒状壁面102の噴
口と反対端側である上端側に続いて形成されるドーム壁
面101と、筒状壁面102の噴口端側である下端側に
続き形成される下向き流偏向側低壁面111と、筒状壁
面102の噴口端側である下端側に続き形成されると共
に噴口の上開口121を挾んで下向き流偏向側低壁面1
11と反対側に形成される上向き流対向側低壁面112
と、噴口の上開口121を挾んで左右縁部に形成される
一対の勾配壁面113と、上向き流対向側低壁面11
2、下向き流偏向側低壁面111及び一対の勾配壁面1
13と筒状壁面102の下端との間に配設される環状傾
斜面114とを備える。The swirl chamber 10 is formed to have a swirl chamber center line L3 perpendicular to the piston top surface Pf. The swirl chamber 10 has a cylindrical wall surface 102 formed in an annular shape with the upper opening 121 of the injection port 12 as a center, and a dome wall surface 101 formed following the upper end side of the cylindrical wall surface 102 opposite to the injection port. A downward flow deflecting side low wall surface 111 formed at the lower end side of the cylindrical wall surface 102 at the nozzle end, and an upper opening 121 formed at the lower end side of the cylindrical wall surface 102 at the nozzle end side. The lower wall 1 on the downward deflection side
11 is formed on the opposite side to the lower wall surface 112 on the upstream side.
A pair of sloped walls 113 formed on the left and right edges of the nozzle with the upper opening 121 interposed therebetween;
2. Downstream deflection side low wall 111 and a pair of sloped walls 1
13 and an annular inclined surface 114 disposed between the lower end of the cylindrical wall surface 102.
【0014】このような渦流室10はエンジンの圧縮行
程時に噴口の上開口121からの上向き流f1を受入
れ、これを環状傾斜面114及び筒状壁面102によっ
て噴口と反対側である上方にガイドし、ドーム壁面10
1によって上向き流f1を下向き流f2に偏向させ、環
状傾斜面114及び下向き流偏向側低壁面111によっ
て下向き流f2を噴口の上開口121に向けて流れる低
壁流f3に偏向させ、結果として縦向き旋回流Fを生成
する。この縦向き旋回流Fは図1の紙面と垂直な線(図
示せず)を渦中心として旋回し、その旋回エネルギによ
って適時にインジェクタ9より噴射された燃料をエアと
撹拌できる。The swirl chamber 10 receives the upward flow f1 from the upper opening 121 of the injection port during the compression stroke of the engine, and guides the upward flow f1 on the opposite side of the injection port by the annular inclined surface 114 and the cylindrical wall surface 102. , Dome wall 10
1 deflects the upward flow f1 into a downward flow f2, and deflects the downward flow f2 into a low wall flow f3 flowing toward the upper opening 121 of the injection port by the annular inclined surface 114 and the downward flow deflection side low wall surface 111. The direction swirling flow F is generated. The vertical swirling flow F swirls around a line (not shown) perpendicular to the paper surface of FIG. 1 as a vortex center, and the fuel injected from the injector 9 can be agitated with air at an appropriate time by the swirling energy.
【0015】ここで、筒状壁面102は渦流室中心線L
3を中心として形成され、ドーム壁面101は渦流室中
心線L3上の一点を中心とし、半径Rとする半円球とし
て形成される。図1及び図3に示すように、下向き流偏
向側低壁面111はピストン頂面Pfと並行に形成され
ると共に下向き流f2を噴口の上開口121に向けて流
れる低壁流f3に偏向させる。上向き流対向側低壁面1
12はピストン頂面Pfと並行に形成されると共にピス
トン頂面Pfに対して下向き流偏向側低壁面111より
大きく突出して形成される。即ち、ここで口金11の低
壁は噴口対向部中心線L2に沿った方向に対して段差を
備え、下向き流偏向側低壁面111及び上向き流対向側
低壁面112のピストン頂面Pfからの相対的な距離が
相違するように形成される。Here, the cylindrical wall surface 102 has a vortex chamber center line L
3 and the dome wall surface 101 is formed as a semicircle having a radius R with one point on the vortex chamber center line L3 as the center. As shown in FIGS. 1 and 3, the downward flow deflecting side low wall surface 111 is formed in parallel with the piston top surface Pf and deflects the downward flow f2 into a low wall flow f3 flowing toward the upper opening 121 of the injection port. Upward flow opposite side low wall 1
Numeral 12 is formed in parallel with the piston top surface Pf, and is formed so as to protrude more than the downward flow deflection side low wall surface 111 with respect to the piston top surface Pf. That is, the lower wall of the base 11 has a step in the direction along the center line L2 of the nozzle facing portion, and the lower wall 111 and the lower wall 112 face relative to the piston top surface Pf. Are formed so that the typical distances are different.
【0016】ここでは図4に示すように、ピストン頂面
Pfと並行な口金11の低壁からの間隔、即ち下向き流
偏向側低壁面111側の下向き流偏向側低壁厚さH1よ
り上向き流対向側低壁面112側の上向き流対向側低壁
厚さH2が大きく設定される。図1のエンジンではH2
/H1=135.7%に設定した。ここで下向き流偏向
側低壁厚さH1より上向き流対向側低壁厚さH2を大き
く設定したことによって、図4に符号hで示すような突
壁部が上向き流対向側低壁面112側の噴口の内壁面1
23に形成され、この突壁部hがエンジンの燃焼行程時
に噴口の上開口121に向けて流動してくる低壁流f3
を噴口12内に導くように働くことが出来る。Here, as shown in FIG. 4, the distance from the lower wall of the base 11 parallel to the piston top surface Pf, that is, the upward flow from the downward flow deflection side low wall thickness 111 on the downward flow deflection side low wall surface 111 side. The thickness H2 of the upward flow-facing low wall on the facing low wall surface 112 side is set large. Figure 1 is an engine H 2
/ H 1 was set to 135.7%. Here, by setting the thickness H2 of the upward flow opposing side low wall to be larger than the thickness H1 of the downward flow deflection side low wall, the projecting wall portion indicated by the symbol h in FIG. Inner wall 1 of the spout
The low wall flow f3 which flows toward the upper opening 121 of the injection port during the combustion stroke of the engine
In the nozzle 12.
【0017】噴口の上開口121を挾んで左右縁部に形
成される一対の勾配壁面113は段差のある下向き流偏
向側低壁面111と上向き流対向側低壁面112との間
を連続的に結び、噴口対向部中心線L2に沿った方向
(図4において紙面左右方向)に対して傾斜面と成るよ
うに形成される。ここで、勾配壁面113はピストン頂
面Pfと並行な面に対しての傾斜角θが設定されてい
る。なお、この傾斜角θは下向き流f2と低壁流f3と
上向き流f1とを連続してスムーズに旋回させることが
できる形状であれば良く、3°乃至25°の範囲に設定
されることが望ましい。図2に示すように、ここで一対
の勾配壁面113はその平面視が略三日月状を成し、外
側縁が環状傾斜面114に連続するように形成され、各
下向き流偏向側低壁面111側に対しては噴口12の横
幅Bに沿って続く縁線rを成して連結し、上向き流対向
側低壁面112側に対しては折曲したエッジ部m部を介
して連結するように構成される。A pair of sloped walls 113 formed on the left and right edges of the upper opening 121 of the injection port continuously connects the stepped lower wall 111 on the lower side of the deflection flow and the lower wall 112 on the opposite side of the upward flow. It is formed so as to be inclined with respect to the direction along the center line L2 of the nozzle-facing portion (the horizontal direction in FIG. 4). Here, the inclination angle θ of the slope wall 113 with respect to a plane parallel to the piston top surface Pf is set. The inclination angle θ may be any shape as long as the downward flow f2, the low wall flow f3, and the upward flow f1 can be swirled continuously and smoothly, and may be set in a range of 3 ° to 25 °. desirable. As shown in FIG. 2, the pair of inclined wall surfaces 113 have a substantially crescent shape in a plan view, and are formed so that the outer edges are continuous with the annular inclined surface 114. Is connected so as to form an edge line r that continues along the lateral width B of the injection port 12, and is connected to the upward-flow-facing-side low-wall surface 112 side via a bent edge portion m. Is done.
【0018】このような一対の勾配壁面113は下向き
流偏向側低壁面111によって偏向された低壁流f3を
上向き流対向側低壁面112側にガイドし、上向き流f
1に再度偏向させることを促進でき、結果として縦向き
旋回流Fの旋回エネルギの低下を防止出来る。なお、図
2及び図4中の符号p1の位置において、下向き流偏向
側低壁面111と勾配壁面113との間には段差が生じ
るように形成されているが、場合によっては、上開口1
21の縁部でp1の位置における段差を無くし、勾配壁
面113を渦流室10中心に向けても傾斜するように形
成しても良い。Such a pair of inclined wall surfaces 113 guide the low wall flow f3 deflected by the downward flow deflecting side low wall surface 111 to the upward flow opposite side low wall surface 112 side, and the upward flow f
1 can be promoted again, and as a result, a decrease in the swirling energy of the vertical swirling flow F can be prevented. 2 and 4, a step is formed between the downward flow deflecting side low wall surface 111 and the inclined wall surface 113 at the position of reference symbol p1.
The step at the position of p1 may be eliminated at the edge of 21 and the inclined wall surface 113 may be formed so as to be directed toward the center of the vortex chamber 10 or inclined.
【0019】図1の渦流室付きエンジンの各気筒はそれ
ぞれ圧縮行程に入ると、主室Cのエアが噴口12から上
向き流f1となって渦流室10に流入し、縦向き旋回流
Fが生成されて燃料とエアの混合が促進される。この
際、主室Cからのエアが噴口12より上向き流f1とし
て流入を続け、この間に生成される縦向き旋回流Fの
内、特に、低壁流f3は一対の勾配壁面113の働きに
よってエネルギロスを抑えて上向き流対向側低壁面11
2側に流動出来、再度上向き流f1に偏向されエアと燃
料の撹拌を促進でき、着火性を改善でき、しかも、上向
き流対向側低壁面112が比較的低く(図4の従来の低
壁厚さH0を参照)、この分、インジェクタ9の噴霧す
る燃料粒とエアとが混合するスペースが増加し、この点
からも着火性を改善できる。When each cylinder of the engine with a swirl chamber in FIG. 1 enters the compression stroke, the air in the main chamber C flows upward from the injection port 12 into the swirl chamber 10 as the upward flow f1, and the vertical swirl flow F is generated. This promotes mixing of the fuel and air. At this time, the air from the main chamber C continues to flow in from the injection port 12 as an upward flow f1, and among the vertical swirling flow F generated during this time, the low wall flow f3, in particular, has an energy Low wall surface 11 on the opposite side to upward flow while suppressing loss
2 and can be re-deflected to the upward flow f1 to promote agitation of air and fuel, improve ignitability, and have a relatively low upward-flow-facing-side low wall surface 112 (the conventional low wall thickness of FIG. 4). Accordingly, the space where the fuel particles sprayed by the injector 9 and the air are mixed increases, and the ignitability can be improved from this point as well.
【0020】更に、図1の渦流室付きエンジンの各気筒
がそれぞれ燃焼行程に入ると、噴口の内壁面123に形
成された突壁部hが噴口の上開口121に向けて流動し
てくる低壁流f3を噴口12内にスムーズに導くように
働くことが出来る。このため、着火し縦向き旋回流Fを
成している混合気の方向転換を効率良く行え、所定の噴
口角θで噴口12より主室Cに噴出された燃焼ガスのペ
ネトレーションが強化され、主室Cにおける火炎の伝達
が早期に適確に成され、燃焼期間が短縮され、機関の排
煙濃度を低減出来、燃費も改善される。次に、図1の渦
流室付きエンジンの運転時のデータの一例を勾配型Bと
して、本発明のその他の実施例のデータの一例を勾配型
Aとして、従来のエンジンのデータの一例を基準型とし
て、それぞれ図5乃至図11に示した。なお、その他の
実施例である勾配型Aは、その渦流室の下向き流偏向側
低壁厚さH1、上向き流対向側低壁厚さの比がH2/H1
=114.3%に設定されたものが採用され、従来のエ
ンジンである基準型は、その渦流室の噴口を囲む低壁面
がフラットで低壁厚さはH2/H1=100%として設定
されたものが採用された。Further, when each cylinder of the engine with a swirl chamber shown in FIG. 1 enters the combustion stroke, the projecting wall h formed on the inner wall surface 123 of the injection port flows toward the upper opening 121 of the injection port. It can work to smoothly guide the wall flow f3 into the nozzle hole 12. For this reason, the direction change of the air-fuel mixture which has ignited and forms the vertical swirling flow F can be efficiently performed, and the penetration of the combustion gas ejected from the injection port 12 to the main chamber C at the predetermined injection port angle θ is enhanced. The transmission of the flame in the chamber C is accurately performed at an early stage, the combustion period is shortened, the exhaust gas concentration of the engine can be reduced, and the fuel efficiency is improved. Next, an example of data during the operation of the engine with a swirl chamber in FIG. 1 is referred to as a gradient type B, an example of data of another embodiment of the present invention is referred to as a gradient type A, and an example of data of a conventional engine is referred to as a reference type. 5 to 11 respectively. Note that the slope type A is another embodiment, the downward flow deflection side of the swirl chamber low wall thickness H1, upflow ratio of opposing lower wall thickness H 2 / H 1
= That is set to 114.3% is employed, the reference type is a conventional engine, setting a low wall low wall thickness flat surrounding nozzle hole of the swirl chamber as H 2 / H 1 = 100% What was done was adopted.
【0021】図5には無負荷運転時の排煙濃度の相違が
示され、勾配型A及び勾配型Bが基準型より排煙濃度が
低いことが明らかである。図6には炭化水素HCの排出
量の相違が示され、基準型に対して勾配型Aや勾配型B
がより炭化水素HCを低減できることが明らかである。
図7には窒素酸化物NOXの排出量の相違が示され、基
準型と勾配型Aや勾配型Bとの間にほぼ相違が無いこと
が明らかである。図8にはパティキュレートPMの排出
量の相違が示され、基準型に対して勾配型Aや勾配型B
がよりパティキュレートPMの排出量を低減できること
が明らかである。図9には一酸化炭素COの排出量の相
違が示され、基準型に対して勾配型Aや勾配型Bが大き
く一酸化炭素COの排出量を低減できることが明らかで
ある。FIG. 5 shows the difference in the smoke concentration during the no-load operation. It is apparent that the gradient type A and the gradient type B have lower smoke concentration than the reference type. FIG. 6 shows a difference in the amount of hydrocarbon HC emission, and shows a gradient type A and a gradient type B with respect to the reference type.
It is clear that can further reduce hydrocarbon HC.
FIG. 7 shows the difference in the emission amount of nitrogen oxides NO X , and it is clear that there is almost no difference between the reference type and the gradient type A or the gradient type B. FIG. 8 shows the difference in the amount of particulate PM emitted. The gradient type A and the gradient type B are different from the reference type.
It is clear that can reduce the emission amount of particulate PM. FIG. 9 shows the difference in the amount of carbon monoxide CO emitted, and it is clear that the gradient type A and the gradient type B are larger than the reference type, and the emission amount of carbon monoxide CO can be reduced.
【0022】図10には燃費率の相違がエンジン回転数
の相違に応じて示され、基準型に対して勾配型Bはほぼ
同等の燃費率のレベルにあり、勾配型Aの燃費が特に優
れることが明らかである。図11には排煙濃度の相違が
エンジン回転数の相違に応じて示され、基準型に対して
勾配型A、Bとも低回転時には排煙濃度を低減出来、特
に、ほぼ全回転域にわたって勾配型Aの排煙濃度が確実
に低減されることが明らかである。なお、図12には勾
配型A、勾配型Bの形状データを示した。 これら各デ
ータより明らかなように、基準型(従来例)に対して本
願発明である勾配型A及び勾配型Bは確実にその排煙濃
度やパティキュレートの低下を示し、排ガス中のCO、
HCの排出量を低減できることが確認された。FIG. 10 shows the difference in fuel efficiency according to the difference in engine speed. The gradient type B is at substantially the same level of the fuel efficiency as the reference type, and the fuel efficiency of the gradient type A is particularly excellent. It is clear that. FIG. 11 shows the difference in the smoke concentration according to the difference in the engine speed. In both the gradient types A and B, the smoke concentration can be reduced at low rotation with respect to the reference type. It is clear that the Type A flue gas concentration is reliably reduced. FIG. 12 shows the shape data of the gradient type A and the gradient type B. As is clear from these data, the gradient type A and the gradient type B of the present invention surely show a decrease in the smoke concentration and particulates with respect to the reference type (conventional example).
It was confirmed that HC emission could be reduced.
【0023】[0023]
【発明の効果】以上のように、本発明は、圧縮行程にお
いて、一対の勾配壁面が渦流室の旋回流の流動を促進で
きるので、エアと燃料との拠枠を促進でき、着火性を改
善することができる。また、上向き流偏向側低壁面側の
噴口の上開口縁が下向き流偏向側低壁面側よりも大きく
突出するため、燃焼行程において、混合気が、ピストン
頂面と略平行に形成された下向き流偏向側低壁面に沿っ
て低壁流として流動してくると、これが上向き流偏向側
低壁面側の噴口の上開口縁に衝突して渦流室内の流れが
抑制され、混合気の低壁流を噴口内にスムーズに導くこ
とができる。このため、主室に噴出された燃焼ガスのペ
ネトレーションが強化され、主室における火炎の伝達も
早期にしかも的確になされ、燃焼期間が短縮されて機関
の排煙濃度を低滅でき燃費を向上することができる。As described above, according to the present invention, in the compression stroke, the pair of sloped walls can promote the flow of the swirling flow of the swirl chamber, so that the frame between air and fuel can be promoted and the ignitability can be improved. can do. In addition, since the upper opening edge of the nozzle on the upward flow deflecting side low wall side protrudes more than the downward flow deflecting side low wall side, during the combustion stroke, the air-fuel mixture flows downward in a direction substantially parallel to the piston top surface. When flowing as a low-wall flow along the deflecting-side low wall surface, it collides with the upper opening edge of the injection port on the upward flow deflecting-side low wall surface side, suppressing the flow in the vortex chamber and reducing the low-wall flow of the air-fuel mixture. It can be guided smoothly into the nozzle. For this reason, the penetration of the combustion gas injected into the main chamber is strengthened, and the transmission of the flame in the main chamber is also performed quickly and accurately, the combustion period is shortened, the smoke concentration of the engine is reduced, and the fuel efficiency is improved. be able to.
【図1】本発明の渦流室付きエンジンの要部概略断面図
である。FIG. 1 is a schematic sectional view of a main part of an engine with a swirl chamber according to the present invention.
【図2】図1中のX−X線拡大断面図である。FIG. 2 is an enlarged sectional view taken along line XX in FIG.
【図3】図2中のY−Y線断面図である。FIG. 3 is a sectional view taken along line YY in FIG. 2;
【図4】図1中のエンジンの口金部分の拡大断面図であ
る。FIG. 4 is an enlarged sectional view of a base portion of the engine in FIG. 1;
【図5】図1のエンジンとその他のエンジンの無負荷運
転時の排煙濃度の比較特性線図であるFIG. 5 is a comparison characteristic diagram of smoke concentration when the engine of FIG. 1 and other engines are operated under no load.
【図6】図1のエンジンとその他のエンジンの炭化水素
の排出量の比較特性線図である6 is a comparative characteristic diagram of hydrocarbon emissions of the engine of FIG. 1 and other engines.
【図7】図1のエンジンとその他のエンジンの窒素酸化
物の排出量の比較特性線図であるFIG. 7 is a comparative characteristic diagram of nitrogen oxide emissions of the engine of FIG. 1 and other engines.
【図8】図1のエンジンとその他のエンジンのパティキ
ュレートの排出量の比較特性線図であるFIG. 8 is a comparative characteristic diagram of particulate emissions of the engine of FIG. 1 and other engines.
【図9】図1のエンジンとその他のエンジンの一酸化炭
素の排出量の比較特性線図であるFIG. 9 is a comparison characteristic diagram of carbon monoxide emissions of the engine of FIG. 1 and other engines.
【図10】図1のエンジンとその他のエンジンの燃費率
の比較特性線図であるFIG. 10 is a comparison characteristic diagram of fuel efficiency of the engine of FIG. 1 and other engines.
【図11】図1のエンジンとその他のエンジンの排煙濃
度の比較特性線図であるFIG. 11 is a comparison characteristic diagram of smoke emission concentrations of the engine of FIG. 1 and other engines.
【図12】図1のエンジン(勾配型A)とその他のエン
ジン(勾配型B)の形状データを説明する図である。FIG. 12 is a diagram illustrating shape data of the engine (gradient type A) and other engines (gradient type B) in FIG.
【図13】従来の渦流室付きエンジンの要部概略断面図
である。FIG. 13 is a schematic sectional view of a main part of a conventional engine with a swirl chamber.
【図14】図13のエンジンの燃焼行程時における要部
概略断面図である。14 is a schematic cross-sectional view of a main part of the engine of FIG. 13 during a combustion stroke.
1 シリンダブロック 3 シリンダヘッド 10 渦流室 101 ドーム壁面 102 筒状壁面 11 口金 111 下向き流偏向側低壁面 112 上向き流対向側低壁面 113 勾配壁面 114 環状傾斜面 12 噴口 121 上開口 122 下開口 123 噴口の内壁面 h 突壁部 f1 上向き流 f2 下向き流 f3 低壁流 F 縦向き旋回流 Pf ピストン頂面 C 主室 H1 下向き流偏向側低壁厚さ H2 上向き流対向側低壁厚さ DESCRIPTION OF SYMBOLS 1 Cylinder block 3 Cylinder head 10 Eddy flow chamber 101 Dome wall surface 102 Cylindrical wall surface 11 Cap 111 Downward deflecting side low wall surface 112 Upward flow opposite side low wall surface 113 Slope wall surface 114 Circular inclined surface 12 Injection port 121 Upper opening 122 Lower opening 123 Injection port Inner wall surface h Protruding wall portion f1 Upstream flow f2 Downstream flow f3 Low wall flow F Vertical swirling flow Pf Piston top surface C Main chamber H1 Downflow deflection side low wall thickness H2 Upstream flow opposite side low wall thickness
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F02B 1/00 - 23/10 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) F02B 1/00-23/10
Claims (1)
主室と渦流室とに挾まれた口金上の噴口を通して上記渦
流室にエアを流入させ、上記渦流室内に旋回流を生成さ
せ燃料を噴射し着火させ上記噴口より上記主室に噴出さ
せて燃焼を完了させる渦流室付きエンジンにおいて、上
記渦流室は上記噴口の上開口を中央部として環状に形成
される筒状壁面と、上記筒状壁面の上記噴口と反対端側
に形成されると共に上記噴口からの上向き流を下向き流
に偏向させるドーム壁面と、上記筒状壁面の噴口端側に
少なくとも上記上開口の上記旋回流と直交する方向の長
さと同等の幅に亘って上記ピストン頂面と略平行に形成
されると共に上記下向き流を上記噴口の上開口に向けて
流れる低壁流に偏向させる下向き流偏向側低壁面と、上
記筒状壁面の噴口端側に形成されると共に上記噴口の上
開口を挾んで上記下向き流偏向側低壁面と反対側に形成
され上記ピストン頂面に対して上記下向き流偏向側低壁
面より大きく突出して形成される上向き流対向側低壁面
と、上記下向き流偏向側低壁面と上記上向き流対向側低
壁面との間を連続的に結ぶと共に上記噴口の上開口を挾
んで形成される一対の勾配壁面とを備えたことを特徴と
する渦流室付きエンジン。An air flows from the main chamber on the top surface of the piston of the engine through the injection port on the mouthpiece sandwiched between the main chamber and the vortex chamber into the vortex chamber, thereby generating a swirling flow in the vortex chamber. In the engine with a swirl chamber that injects, ignites, and injects from the nozzle into the main chamber to complete combustion, the swirl chamber has a cylindrical wall surface formed in an annular shape with the upper opening of the nozzle as a center, and the cylinder A dome wall formed at the end of the cylindrical wall opposite to the nozzle and deflecting an upward flow from the nozzle into a downward flow, and a dome wall at the nozzle end of the cylindrical wall.
At least the length of the upper opening in the direction orthogonal to the swirling flow
A downward-deflection-side low wall surface formed substantially parallel to the piston top surface over the same width as the above, and deflecting the downward flow into a low-wall flow flowing toward the upper opening of the injection port; and the cylindrical wall surface. And is formed on the side opposite to the downward flow deflecting side low wall across the upper opening of the injection port, and is formed so as to protrude more than the downward flow deflecting side low wall with respect to the piston top surface. And a pair of sloped walls formed continuously across the downward flow deflecting side low wall surface and the upward flow opposite side low wall surface and sandwiching the upper opening of the injection port. An engine with a swirl chamber, characterized in that it is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11489893A JP2921328B2 (en) | 1993-03-12 | 1993-05-17 | Engine with swirl chamber |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-51781 | 1993-03-12 | ||
JP5178193 | 1993-03-12 | ||
JP11489893A JP2921328B2 (en) | 1993-03-12 | 1993-05-17 | Engine with swirl chamber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06317154A JPH06317154A (en) | 1994-11-15 |
JP2921328B2 true JP2921328B2 (en) | 1999-07-19 |
Family
ID=26392347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11489893A Expired - Fee Related JP2921328B2 (en) | 1993-03-12 | 1993-05-17 | Engine with swirl chamber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2921328B2 (en) |
-
1993
- 1993-05-17 JP JP11489893A patent/JP2921328B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06317154A (en) | 1994-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3163906B2 (en) | In-cylinder injection spark ignition engine | |
JPH041166B2 (en) | ||
JPS6125891B2 (en) | ||
US4000731A (en) | Internal combuston engines | |
JP2921328B2 (en) | Engine with swirl chamber | |
JP3332694B2 (en) | Combustion chamber of subchamber internal combustion engine | |
JP2552579Y2 (en) | Combustion chamber of a swirl chamber type diesel engine | |
JPS6329016A (en) | Subchamber type diesel combustion chamber | |
JPS58185925A (en) | Combustion chamber for diesel engine | |
JPH0143467Y2 (en) | ||
JP2552596Y2 (en) | Combustion chamber of a swirl chamber type diesel engine | |
JP2716892B2 (en) | Combustion chamber of a swirl chamber type diesel engine | |
JPS60116816A (en) | Combustion chamber of swirl chamber type diesel engine | |
JP2971247B2 (en) | Combustion chamber of a swirl chamber type diesel engine | |
JPS6318126A (en) | Direct injection type diesel engine | |
JPH0134657Y2 (en) | ||
JPH0618035Y2 (en) | Combustion chamber of a sub-chamber internal combustion engine | |
JPH0143468Y2 (en) | ||
JP2921322B2 (en) | Engine with swirl chamber | |
JP2603561B2 (en) | Diesel engine swirl chamber | |
JPS63162926A (en) | Combustion chamber of internal combustion engine | |
JPH09112275A (en) | Precombustion room structure for diesel engine | |
JPH10212957A (en) | Combustion chamber structure for diesel engine | |
JPS63198720A (en) | Combustion chamber of direct injection type diesel engine | |
JP2000303844A (en) | Cylinder injection type spark ignition internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990330 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080430 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100430 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100430 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110430 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |