JPH09157714A - Furnace bottom structure in blast furnace and operation of blast furnace - Google Patents

Furnace bottom structure in blast furnace and operation of blast furnace

Info

Publication number
JPH09157714A
JPH09157714A JP31817895A JP31817895A JPH09157714A JP H09157714 A JPH09157714 A JP H09157714A JP 31817895 A JP31817895 A JP 31817895A JP 31817895 A JP31817895 A JP 31817895A JP H09157714 A JPH09157714 A JP H09157714A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
core
hearth
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31817895A
Other languages
Japanese (ja)
Inventor
Akihiko Shinotake
篠竹昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31817895A priority Critical patent/JPH09157714A/en
Publication of JPH09157714A publication Critical patent/JPH09157714A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To take an operational action for stopping temp. rising in detecting the temp. rise tendency of the side wall part of the furnace hearth in a blast furnace and to surely and quickly allow the resulted effect to act on the temp. rising position. SOLUTION: The structure of the furnace bottom in the blast furnace having four or more of iron tapping holes, is constituted of two or more sets of the iron tapping holes having mutually different height positions, by using two or more of the iron tapping holes having the same height position as one set. In the blast furnace operation, tapping the molten iron while changing over plural iron tapping holes having the same height position by using the blast furnace having this furnace bottom structure, in the case the temp. shown with a temp. sensor 13 arranged at the sidewall peat of the furnace hearth shows the raising tendency, the iron tapping holes in the set tapping upto this time are changed over so as to tap the molten iron from the iron tapping holes in the set having the different height position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の出銑口の構
造に関する炉底構造およびその構造を有する出銑口を活
用して行なう高炉操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace bottom structure relating to the structure of a tap hole of a blast furnace, and a method of operating a blast furnace utilizing the tap hole having the structure.

【0002】[0002]

【従来の技術】高炉炉内の炉床部分には、炉芯と呼ばれ
るコークスの充填された領域が存在し、その充填コーク
スの空隙部分に、鉱石が還元・溶融されて生じた溶銑・
溶滓がたまっている。炉底レンガとしては、通常カーボ
ンを主成分とする耐火物が使われている。溶銑の流れ
は、炉体の侵食プロフィルや侵食面上に生成した凝固層
の形状、炉芯下端の形状、炉芯内の通液性などによって
異なる。例えば、炉芯全体が完全に沈下して炉底に接触
しているときに比べると、炉芯全体が浮上して炉底との
間に狭い隙間ができているときにはこの隙間を多くの溶
銑が流れ、また、炉芯の中心部が炉底に接触し、周辺部
が浮いて隙間があるときには、この隙間を通って出銑口
へ向かう環状の流れができる。溶銑が多く流れる部分に
位置する炉底あるいは炉床側壁部の耐火物は熱負荷を多
く受ける。一方、通常の高炉操業では、炉底部あるいは
炉床側壁部の耐火物に埋設した温度計により耐火物の温
度変化を監視し、間接的に炉底部あるいは炉床側壁部の
温度状況を評価している。
2. Description of the Related Art In the hearth of a blast furnace, there is a coke-filled area called a core, and the voids in the coke are filled with molten iron produced by reducing or melting ore.
The molten slag has accumulated. As the hearth brick, a refractory containing carbon as a main component is usually used. The flow of the hot metal differs depending on the erosion profile of the furnace body, the shape of the solidified layer formed on the eroded surface, the shape of the lower end of the core, the liquid permeability in the core, and the like. For example, compared to when the entire furnace core is completely submerged and in contact with the furnace bottom, when the entire furnace core floats and a narrow gap is created between the furnace core and In addition, when the center of the furnace core comes into contact with the furnace bottom and the peripheral part floats and there is a gap, an annular flow is made through this gap toward the taphole. The refractory at the bottom of the hearth or the side wall of the hearth, which is located in the part where a large amount of hot metal flows, receives a large amount of heat load. On the other hand, in normal blast furnace operation, the temperature change of the refractory is monitored by a thermometer embedded in the refractory at the bottom of the hearth or the side wall of the hearth, and the temperature condition of the bottom of the hearth or the side wall of the hearth is indirectly evaluated. There is.

【0003】こうして、監視している耐火物温度に上昇
傾向がみられる場合には、耐火物の侵食を防ぐために対
策をとる必要がある。その対策としては、例えば特開平
3−274207号公報に示されているような外部から
の冷却を制御する方法、特開平3−24211号公報に
示されているような羽口からTiを含む原料を吹き込む
方法、あるいは、特開平1−225711号公報に示さ
れているような炉頂からの装入物や送風条件を制御して
炉芯の通気・通液性をまず変え、これによって溶銑の流
れを変更せしめる方法などが通常取られる。
Thus, when the temperature of the refractory to be monitored tends to rise, it is necessary to take measures to prevent the corrosion of the refractory. As a countermeasure, for example, a method of controlling cooling from the outside as shown in Japanese Patent Laid-Open No. 3-274207, or a raw material containing Ti from tuyere as shown in Japanese Patent Laid-Open No. 3-24211. The method of blowing air, or by controlling the charge and air blowing conditions from the furnace top as shown in Japanese Patent Laid-Open No. 1-225711, the air permeability and liquid permeability of the furnace core are first changed, whereby the hot metal Methods such as changing the flow are usually taken.

【0004】[0004]

【発明が解決すべき課題】しかしながら、特開平3−2
74207号公報のように、外部からの冷却を制御する
方法では、炉内の溶銑の流れが多く、熱負荷の大きい箇
所を強冷却することが望ましいが、冷却構造の設備的制
約により強く冷却すべき箇所と弱くすべき箇所を細かく
コントロールすることは困難である。加えてこの方法
は、まず冷却の効果により炉内における溶銑凝固層の生
成を促進し、この凝固層の生成により溶銑の流路を変更
せしめて耐火物を保護しようとするもので、対策を開始
してから効果が現れるまでにかなりの時間を要する。
However, JP-A-3-2
As described in Japanese Patent No. 74207, in a method of controlling cooling from the outside, it is desirable to strongly cool a portion having a large amount of hot metal flow in the furnace and a large heat load, but it is strongly cooled due to facility restrictions of the cooling structure. It is difficult to finely control what should be weakened and what should be weakened. In addition, this method first promotes the formation of a hot metal solidification layer in the furnace due to the effect of cooling, and changes the hot metal flow path to protect the refractory by the formation of this solidification layer. It takes a considerable amount of time for the effects to appear.

【0005】また、特開平3−24211号公報のよう
に羽口からTiを含む原料を投入する方法は、溶銑中に
TiCやTiNなどチタンベアと呼ばれる凝固物を生成
させ、この凝固物を炉底あるいは炉床側壁部の耐火物に
付着せしめて耐火物を保護しようとするものである。し
かし、羽口から投入されたチタン化合物の多くは、酸化
チタンとしてスラグ成分となり、スラグとともに出滓さ
れてしまって歩留まりが悪い。また溶銑側へ入り込んだ
場合もTiは溶銑の流れに乗って移動するので、チタン
ベアを意図した場所に生成・作用させることが難しい。
Further, the method of introducing a raw material containing Ti from the tuyere as in JP-A-3-24211 produces a solidified product called titanium bear such as TiC or TiN in the hot metal, and the solidified product is the bottom of the furnace. Alternatively, it is intended to protect the refractory by attaching it to the refractory on the side wall of the hearth. However, most of the titanium compounds introduced from the tuyere become slag components as titanium oxide and are slag with the slag, resulting in poor yield. Also, when Ti enters the hot metal side, Ti moves along with the flow of the hot metal, so that it is difficult to generate and act the titanium bear in an intended place.

【0006】さらに、特開平1−225711号公報の
ように、炉頂からの装入物や送風条件を制御して炉芯の
通気・通液性をまず変え、これによって溶銑の流れを変
更せしめる方法は、効果が現れるまでに多大な日数を要
し、また、特定の場所に集中して効果を生ぜしめること
が非常に難しい。
Further, as disclosed in Japanese Patent Laid-Open No. 1-225711, the ventilation and liquid permeability of the furnace core are first changed by controlling the charge from the top of the furnace and the blowing conditions, thereby changing the flow of hot metal. The method takes a great number of days for the effect to appear, and it is very difficult to concentrate the effect on a specific place to produce the effect.

【0007】本発明は、炉床側壁部の温度上昇傾向を検
知した際に、この温度上昇を停止させるべく操業アクシ
ョンをとって、その効果を温度上昇部位に的確に、かつ
速やかに発現させることが可能な高炉炉底構造及び高炉
操業方法を提供することを課題とする。
In the present invention, when the temperature rise tendency of the hearth side wall is detected, an operation action is taken to stop the temperature rise, and the effect is accurately and quickly exhibited in the temperature rise region. It is an object of the present invention to provide a blast furnace bottom structure and a blast furnace operating method capable of achieving the above.

【0008】[0008]

【課題を解決するための手段】本発明者らは、高炉操業
時における炉床側壁耐火物の温度変動の解析や、実験室
での模型実験による検討を重ねた結果、高炉炉床部にお
ける溶銑の流れは、炉芯下端の位置と形状により大きな
影響を受けることを見出した。一般に、炉芯が炉底から
浮上している場合、炉芯内部に比べて、炉芯下端と炉底
の間の空隙の方が抵抗が少ないため、溶銑がこの空隙を
より多く流れることは以前から知られている(例えば鉄
と鋼70(1984),p.2224)。本発明者らの
知見によれば、炉芯下端と炉底の間の空隙が大きくなっ
た場合、溶銑はこの間隙のうちでも炉芯下端の直下部を
特に多く流れる。従って、炉芯下端の直下部に相当する
炉床側壁部が最も溶銑流による熱負荷を受けやすい。本
発明は、温度測定により、高炉炉床側壁部において熱負
荷の大きい部位が生じたと推定された場合に、炉芯下端
の位置を上方もしくは下方に移動せしめて当該部位の熱
負荷を軽減しようとするものである。
Means for Solving the Problems The inventors of the present invention have analyzed the temperature fluctuations of the refractory material on the side wall of the hearth during the operation of the blast furnace and conducted a model experiment in a laboratory to find out that It has been found that the flow of is greatly affected by the position and shape of the lower end of the core. Generally, when the core is floating from the bottom of the furnace, the gap between the lower end of the core and the bottom of the core has less resistance than the inside of the core, so more hot metal flows through this gap. (For example, Iron and Steel 70 (1984), p. 2224). According to the knowledge of the present inventors, when the gap between the lower end of the core and the bottom of the furnace becomes large, the hot metal flows particularly much below the lower end of the core in this gap. Therefore, the hearth side wall portion corresponding to the portion directly below the lower end of the furnace core is most likely to be subjected to the heat load due to the hot metal flow. In the present invention, when it is estimated by temperature measurement that a site having a large heat load occurs in the blast furnace hearth side wall part, the position of the lower end of the furnace core is moved upward or downward to reduce the heat load of the site. To do.

【0009】すなわち、本発明の要旨とするところは、
(1)4本以上の出銑口を有する高炉の炉底構造におい
て、同一高さ位置にある2本以上の出銑口を1組とし
て、高さ位置が互いに異なる2組以上の出銑口によって
構成された高炉炉底構造、及び(2)、(1)の炉底構
造を有する高炉を用い、同一高さ位置にある複数の出銑
口を切り換えながら出銑する高炉操業において、炉床側
壁部に設けた温度センサが示す温度が上昇傾向を示した
場合に、それまで出銑していた組の出銑口とは異なる高
さ位置の組の出銑口から出銑するように切り換える高炉
操業方法、にある。
That is, the gist of the present invention is as follows.
(1) In a bottom structure of a blast furnace having four or more tap holes, two or more tap holes at the same height position are set as one set, and two or more sets of tap holes at different height positions are set. In a blast furnace operation in which a blast furnace having a blast furnace bottom structure configured according to (1) and (2) and (1) has a bottom structure and the tapping is performed while switching a plurality of tapping ports at the same height, When the temperature indicated by the temperature sensor provided on the side wall shows a rising tendency, switch to tap from the tap hole of the group at a height position different from the tap hole of the group that had been tapping until then. Blast furnace operation method.

【0010】高炉の炉内は、上部から順に、炉頂から装
入された鉱石とコークスの充填層が交互に積み重なった
塊状帯、鉱石が半溶融状態となった融着帯、鉱石が還元
溶融してコークスの間を滴下する炉芯とに分けられ、炉
芯部分には上方からの荷重がかかっている。ただし、融
着帯より上方の荷重の大部分と融着帯以下の荷重の一部
分は、羽口から吹き込まれた熱風ガスによる浮力と、炉
内側壁によって支えられている。一方、炉底部には、鉱
石が還元溶融して生成した溶銑とスラグが液体となって
溜まっている。炉芯コークスは、この溶銑とスラグの液
体プールに浸かっている状態にあり、溶銑や溶融スラグ
はコークスに比べてかなり比重が大きいことから、溶銑
及びスラグより浮力を受ける。炉芯部分にかかる力のバ
ランスは上方からかかってくる荷重と浮力によって決ま
るが、浮力の方が大きい場合、炉芯の下端部は炉底から
離れて浮上する。浮力は炉底に溜まっている溶銑やスラ
グが多いほど大きくなるので、貯銑・貯滓量が多いほど
炉芯は浮上しやすくなる。また、半径方向では、中心部
に比べて外周部の方が前記した熱風ガスによる浮力と内
壁からの力を受けやすいので、より浮上しやすい。
In the furnace of the blast furnace, a lump zone in which ore and coke packed layers charged alternately from the top of the blast furnace are alternately stacked, a fusion zone in which the ore is in a semi-molten state, and the ore is reduced and melted. Then, it is divided into a furnace core for dripping between the coke, and a load is applied to the furnace core portion from above. However, most of the load above the cohesive zone and part of the load below the cohesive zone are supported by the buoyancy of the hot air gas blown from the tuyere and the inner wall of the furnace. On the other hand, in the bottom of the furnace, the hot metal and slag generated by the reduction and melting of the ore are accumulated as a liquid. The core coke is in a state of being immersed in this liquid pool of hot metal and slag, and since the hot metal and molten slag have a considerably larger specific gravity than coke, they receive buoyancy from the hot metal and slag. The balance of the force applied to the core is determined by the load applied from above and the buoyancy. When the buoyancy is larger, the lower end of the core floats away from the bottom of the furnace. The buoyancy increases as the amount of hot metal and slag that accumulates on the bottom of the furnace increase, so the more the amount of pig iron and slag, the easier it is for the core to float. Further, in the radial direction, the outer peripheral portion is more likely to receive the buoyancy due to the hot air gas and the force from the inner wall than the central portion, so that the outer peripheral portion is more easily floated.

【0011】溶銑およびスラグは、鉱石の還元溶融によ
り滴下して炉底部に溜まる一方、出銑口より排出され
る。そこで、炉底部には出銑口に向かう溶銑およびスラ
グの流れができる。溶銑はスラグより比重が大きいため
下方に存在し、この溶銑の流れが炉底または炉床側壁部
の耐火物に熱負荷を与える。溶銑の流れは炉芯下端の浮
沈状態によって大きく影響される。炉芯が浮上した時に
できる炉芯下端と炉底の間の空隙は、炉芯のコークス充
填領域に比べて通液抵抗が小さい。従って、図1のよう
に炉芯5が完全に沈下して炉底についているときに対比
してみると、図2のように炉芯全体が浮上して炉芯5と
炉底との間に狭い隙間ができているときは、この隙間を
溶銑が多く流れる。また、図3のように、炉芯5の中心
部が炉底についており、周辺部が浮いて隙間があるとき
には、この隙間を通って出銑口2へ向かう環状の流れが
できる。本発明者らの知見によれば、炉床部において
は、炉芯5と炉底の間の空隙のうち、炉芯下端の直下部
を最も多くの溶銑が流れ、したがって熱負荷も最大とな
る。図中1は高炉炉体(耐火物)、3は送風羽口、4は
レースウェイ、6は溶銑レベル、7はスラグレベルを示
す。
The hot metal and slag are dropped by the reduction melting of the ore and accumulated in the bottom of the furnace while being discharged from the tap hole. Therefore, hot metal and slag flows toward the tap hole at the bottom of the furnace. Since the hot metal has a higher specific gravity than the slag, it exists below the slag, and this hot metal flow exerts a heat load on the refractory material at the bottom of the hearth or the side wall of the hearth. The flow of hot metal is greatly affected by the floating and sinking conditions at the lower end of the core. The space between the lower end of the core and the bottom of the furnace, which is formed when the core floats, has a smaller liquid flow resistance than the coke filling region of the core. Therefore, as shown in FIG. 1, when the core 5 is completely submerged and is attached to the bottom of the furnace, the whole core floats up as shown in FIG. When a narrow gap is created, a large amount of hot metal flows through this gap. Further, as shown in FIG. 3, when the center of the furnace core 5 is the bottom of the furnace and the peripheral part floats and there is a gap, an annular flow is made through this gap to the tap hole 2. According to the knowledge of the present inventors, in the hearth, the most hot metal flows directly under the lower end of the furnace core among the voids between the furnace core 5 and the furnace bottom, and therefore the heat load becomes maximum. . In the figure, 1 is a blast furnace body (refractory), 3 is a blast tuyere, 4 is a raceway, 6 is a hot metal level, and 7 is a slag level.

【0012】一般に、同一高さ位置にある複数の出銑口
を適宜切り換えながら出銑している従来の操業では、炉
芯下端の位置がほぼ一定領域に定着する傾向があり、こ
の炉芯下端の直下部に相当する炉床側壁部に溶銑の流れ
が集中して熱負荷を多く受けるようになるため、当該位
置の耐火物温度が上昇する。そこで、この温度上昇傾向
が見られた場合には、使用する出銑口を異なる高さ位置
のものに切り換えることによって、炉底部の貯銑量を増
加または減少せしめ、溶銑の浮力を増加または減少させ
て炉芯下端の位置を上昇または下降せしめる。これによ
り、溶銑流が集中して熱負荷を大きく受ける位置を上方
または下方に移動し、特定部位の耐火物が集中的に侵食
されることを防ごうとするものである。
Generally, in a conventional operation in which a plurality of tap holes at the same height position are appropriately switched and tapped, the lower end of the core tends to settle in a substantially constant region. Since the hot metal flow concentrates on the side wall of the hearth, which is directly below, and receives a large heat load, the refractory temperature at that position rises. Therefore, when this temperature rise tendency is observed, the hot metal buoyancy is increased or decreased by switching the tap hole to be used to one with a different height position to increase or decrease the amount of pig iron stored at the bottom of the furnace. Then, the position of the lower end of the furnace core is raised or lowered. As a result, the position where the hot metal flow is concentrated and receives a large heat load is moved upward or downward, and the refractory in a specific portion is prevented from being intensively eroded.

【0013】[0013]

【発明の実施の形態】図4は、本発明の高炉炉底構造の
1例を示し、同一高さ位置にある2本の出銑口を1組と
して2組の出銑口から構成された計4本の出銑口を有す
る炉底構造を持つ高炉を示す。図中8は高炉炉内を示
す。すなわち、この高炉においては、1号出銑口9と3
号出銑口11が火入れ時の炉底面上3mの高さに、2号
出銑口10と4号出銑口12が火入れ時の炉底面上4m
の高さにある。また、水平面上の位置関係については、
2、3、4号の各出銑口は1号出銑口を基準として高炉
の中心軸の回りに、炉頂からみて右回りにそれぞれ80
°、180°、260°回転した位置に存在する。な
お、この高炉の内容積は4100m3 である。一方この
高炉の炉床側壁耐火物内には、温度センサ13が埋め込
まれている。埋め込み位置は、高さ方向が0.8mの間
隔で、各高さについて周方向に15ないし20点づつ設
置されている。埋め込み深さは外側鉄皮より0.1m内
部、一部の高さでは0.1m内部および0.2m内部の
両方に設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 4 shows an example of the bottom structure of a blast furnace of the present invention, which is composed of two sets of tapholes with two tapholes at the same height position as one set. A blast furnace having a bottom structure with a total of four tap holes is shown. In the figure, 8 indicates the inside of the blast furnace. That is, in this blast furnace, No. 1 tap holes 9 and 3
No. 2 taphole 11 is 3m above the bottom of the furnace when burning, and No. 2 taphole 10 and No. 4 12 are 4m above the bottom of the furnace when burning.
At the height of Also, regarding the positional relationship on the horizontal plane,
No.2, No. 3 and No. 4 tapholes are 80 around the center axis of the blast furnace with respect to No. 1 taphole, and clockwise from the top of the furnace.
It exists at a position rotated by 180 °, 180 °, and 260 °. The internal volume of this blast furnace is 4100 m 3 . On the other hand, a temperature sensor 13 is embedded in the hearth side wall refractory material of this blast furnace. The embedding positions are set at intervals of 0.8 m in the height direction, and 15 to 20 points are installed in the circumferential direction at each height. The embedding depth is set within 0.1 m from the outer skin, and within some heights, both inside 0.1 m and inside 0.2 m.

【0014】まず初めに、以下に述べる操業の状況を図
5(a)に示す。
First, FIG. 5 (a) shows the operation situation described below.

【0015】図4のような炉底構造を有する高炉におい
て、1号出銑口9と3号出銑口11を切り換えて使う操
業を行っていたところ、初期の炉底面より約0.5m上
方に相当する炉床側壁部で鉄皮より0.1m内部に埋め
込んである温度センサの指示する耐火物温度θ1 が、周
方向の各位置において、1週間継続して平均1℃/日上
昇した。そこで、この原因を検討し、炉内炉床部分にあ
る炉芯の周辺部が炉底より浮上し、炉芯下端部直下に該
当する部位の周辺部に溶銑の流れが集中したことにある
ものと判断して、1号と3号の出銑口より1m上方に位
置する2号出銑口および4号出銑口を用いて出銑を行う
方法に変更した()。
In a blast furnace having a furnace bottom structure as shown in FIG. 4, an operation was performed in which the No. 1 tap hole 9 and the No. 3 tap hole 11 were switched, and about 0.5 m above the initial bottom of the furnace. The refractory temperature θ 1 indicated by the temperature sensor embedded 0.1 m inside the iron shell on the side wall of the hearth corresponding to 1 ° C increased by 1 ° C / day on average for 1 week continuously at each position in the circumferential direction. . Therefore, we examined the cause of this and found that the peripheral part of the core in the hearth part of the furnace floated above the bottom of the furnace, and the hot metal flow was concentrated in the peripheral part of the part directly below the lower end of the core. Therefore, the method was changed to the method of tapping using the tapping holes of No. 2 and No. 4 which are located 1 m above the tapping holes of No. 1 and No. 3 ().

【0016】この変更の結果、上昇傾向を示していた部
位の側壁部耐火物温度θ1 は、6日後に上昇が停止し、
10日後より下降傾向に転じて、25日後には上昇傾向
が開始する以前とほぼ同じ温度にまで下降して落ち着い
た。これは、使用していた出銑口よりも高い位置にある
出銑口を使用する操業に切り換えたことによって炉内の
貯銑量が増加し、溶銑の浮力が増加して炉芯がさらに浮
上し、炉芯下端の位置が上方に移動したことによって、
温度が上昇していた部位の炉内周辺部に溶銑の流れが集
中しなくなったためと推定される。
As a result of this change, the side wall refractory temperature θ 1 at the portion showing the rising tendency stopped rising after 6 days,
After 10 days, the temperature started to decline, and after 25 days, the temperature decreased to almost the same temperature as before the upward trend began and then settled down. This is because the amount of pig iron stored in the furnace is increased by switching to the operation that uses the tap hole located at a position higher than the tap hole that was being used, the buoyancy of the hot metal is increased, and the core further rises. Then, because the position of the lower end of the furnace core moved upward,
It is highly probable that the hot metal flow no longer concentrated on the periphery of the furnace where the temperature had risen.

【0017】これ以降しばらくは2号出銑口10と4号
出銑口12を切り換えて使う操業を行っていたが、今度
は、初期の炉底面より約1.3m上方に相当する炉床側
壁部の耐火物温度θ2 が、周方向の各位置において上昇
傾向を示した。そこで、この原因も前と同様浮上した炉
芯下端部の直下に該当する部位の周辺部に溶銑の流れが
集中したことにあるものと判断して、今度は2号と4号
の出銑口より1m下方に位置する1号出銑口および3号
出銑口を用いて出銑を行う方法に再度変更した()。
After that, for a while, the operation was performed by switching the No. 2 tap hole 10 and No. 4 tap hole 12, but this time, the hearth side wall corresponding to about 1.3 m above the initial bottom of the furnace. The refractory temperature θ 2 of the part showed a rising tendency at each position in the circumferential direction. Therefore, it was judged that the cause of this was that the hot metal flow was concentrated in the peripheral area of the portion just below the lower end of the furnace core, which was levitated as before, and this time, the tap holes of No. 2 and 4 were tapped. The method was changed again to perform tapping using No. 1 taphole and No. 3 taphole located 1 m below.

【0018】この変更の結果、上昇傾向を示していた部
位の側壁部耐火物温度θ2 は、5日後に上昇が停止し、
8日後より下降傾向に転じて20日後には上昇傾向が開
始する以前とほぼ同じ温度にまで下降して落ち着いた。
これは、使用していた出銑口よりも低い位置にある出銑
口を使用する操業に切り換えたことによって炉内の貯銑
量が減少し、溶銑の浮力が減少して炉芯が沈下し、炉芯
下端の位置が下方に移動したことによって、温度が上昇
していた部位の炉内周辺部に溶銑の流れが集中しなくな
ったためと考えられる。
As a result of this change, the side wall refractory temperature θ 2 at the portion showing the rising tendency stopped rising after 5 days,
After 8 days, it started to decline, and after 20 days, the temperature had dropped to about the same temperature as before it began to rise and settled down.
This is because the amount of pig iron stored in the furnace is reduced by switching to the operation that uses the tap hole that is lower than the tap hole that was being used, the buoyancy of the hot metal is reduced, and the furnace core sinks. It is considered that the position of the lower end of the furnace core moved downward, so that the flow of hot metal did not concentrate on the inner peripheral portion of the furnace where the temperature was rising.

【0019】一方、本発明に示したような構造の高炉を
用いず、同一高さ位置に4本の出銑口を持つ高炉を用い
た従来法により操業した比較例を図5(b)に示す。
On the other hand, a comparative example in which a blast furnace having four tapholes at the same height is operated by the conventional method without using the blast furnace having the structure shown in FIG. 5 is shown in FIG. 5 (b). Show.

【0020】出銑口は適宜切り換えて操業を行っていた
ところ、ある時初期の炉底面より約0.5m上方に相当
する炉床側壁部で鉄皮より0.1m内部に埋め込んであ
る温度センサの指示する耐火物温度θ1 ’が周方向の各
位置において1週間継続して平均1℃/日上昇した。そ
こで、羽口からTiを含む鉄鉱石を10kg/t−pi
g吹き込み、チタンベアを生成させて炉床側壁部の耐火
物を保護することを試みた()。このTi吹き込みを
開始してからθ1 ’の上昇傾向が見られなくなり、下降
を開始するまでに20日を要した()。この時点で、
溶銑の品質確保のため、Tiを含む鉄鉱石の吹き込み量
を6kg/t−pigに減じ、さらに温度θ1 ’の下降
傾向が15日間続いたところでTi吹き込みを打ち切っ
た()。こうして、θ1 ’が上昇開始する前の温度レ
ベルにまで低下するのにTi吹き込みを開始から数えて
60日を要した。
When the operation was carried out by appropriately switching the tap hole, a temperature sensor embedded at 0.1 m inside the iron skin at the side wall of the hearth, which was about 0.5 m above the bottom of the furnace at one time. It rose an average 1 ° C. / day refractory temperature theta 1 which instructs the 'is continued for 1 week at each position in the circumferential direction. Therefore, 10 kg / t-pi of iron ore containing Ti was extracted from the tuyere.
It was attempted to protect the refractory on the side wall of the hearth by injecting g and producing titanium bear (). After the Ti injection was started, the rising tendency of θ 1 'was no longer observed, and it took 20 days to start the decrease (). at this point,
In order to secure the quality of the hot metal, the blowing rate of the iron ore containing Ti was reduced to 6 kg / t-pig, and the blowing of Ti was stopped when the downward tendency of the temperature θ 1 ′ continued for 15 days (). Thus, it took 60 days from the start of Ti blowing to decrease to the temperature level before θ 1 ′ started to rise.

【0021】[0021]

【発明の効果】本発明によれば、高炉炉床側壁部の耐火
物温度が上昇傾向を示した場合に出銑口の高さ位置を切
り換えることによって炉内の貯銑量を増加または減少さ
せ、その結果として、炉芯下端の位置を上昇または下降
させて炉芯下端直下の特定高さ位置への溶銑流の集中を
防ぎ、当該位置の耐火物の侵食を防止することができ
る。この方法は、従来の種々の方法に比べてより直接的
に溶銑流を制御することができるため、効果が早く現れ
る。したがって、従来法では耐火物の温度上昇を検知し
て対策を開始してから効果が出るまでに長期間を要し、
この間に耐火物の侵食が進んでしまうことがあるが、本
発明ではこのような侵食の進展を防ぐことができ、その
結果として、高炉の寿命を延ばし、設備コストを削減す
ることが可能となる。
According to the present invention, when the refractory temperature on the side wall of the hearth of the blast furnace tends to increase, the height position of the taphole is switched to increase or decrease the amount of pig iron stored in the furnace. As a result, it is possible to raise or lower the position of the lower end of the furnace core to prevent the hot metal flow from concentrating at a specific height position immediately below the lower end of the furnace core, and to prevent corrosion of the refractory at that position. This method can control the hot metal flow more directly as compared with the various conventional methods, and therefore the effect appears earlier. Therefore, in the conventional method, it takes a long time from when the temperature rise of the refractory is detected and the countermeasure is started to when the effect is obtained,
Although refractory erosion may progress during this time, the present invention can prevent the progress of such erosion, and as a result, the life of the blast furnace can be extended and the facility cost can be reduced. .

【0022】加えて、従来法で耐火物の保護を試みる場
合、前述の冷却制御法によれば、熱損失が増えて燃料比
が増加する、同じくTi吹き込み法によれば、溶銑の成
分が変化して溶銑品質が低下する、装入物や送風の制御
法によれば、生産性が低下するなど、制御の副作用とし
て負の影響が現れることがあるが、本発明の方法ではこ
れらの操業条件の変更は必要がなく、コスト増や品質・
生産性の低下を伴わない。
In addition, when attempting to protect refractories by the conventional method, the above-mentioned cooling control method increases the heat loss and increases the fuel ratio. Similarly, the Ti blowing method changes the composition of the hot metal. Then, the hot metal quality is deteriorated, and according to the control method of the charging material or the blast, the productivity may be decreased, and a negative effect may appear as a side effect of the control, but in the method of the present invention, these operating conditions are used. There is no need to change the
No reduction in productivity.

【0023】したがって本発明は高炉炉床部の温度上昇
に対して、高炉の生産性と溶銑品質を確保しながら操業
アクションをとることを可能とし、その結果、高炉の寿
命を延ばすことができるので、設備コストを低減する効
果が得られる。
Therefore, according to the present invention, it is possible to take an operation action against the temperature rise of the blast furnace hearth while securing the productivity and the hot metal quality of the blast furnace, and as a result, the life of the blast furnace can be extended. The effect of reducing the equipment cost can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高炉炉床部の模式図で炉芯が沈下している場合
を示す。
FIG. 1 is a schematic view of a hearth of a blast furnace showing a case where a furnace core is submerged.

【図2】高炉炉床部の模式図で炉芯全体が浮上している
場合を示す。
FIG. 2 is a schematic view of the hearth of the blast furnace, showing a case where the entire furnace core is floating.

【図3】高炉炉床部の模式図で炉芯の周辺部のみが浮上
している場合を示す。
FIG. 3 is a schematic diagram of the hearth of the blast furnace, showing a case where only the periphery of the furnace core is floating.

【図4】本発明の高炉炉底構造を示す図で(a)は平面
図、(b)は側面図。
FIG. 4 is a diagram showing a blast furnace bottom structure of the present invention, (a) is a plan view and (b) is a side view.

【図5】(a)は本発明を用いた操業例を示す図、
(b)は従来法による操業例を示す図。
FIG. 5 (a) is a diagram showing an operation example using the present invention,
(B) is a figure which shows the operation example by the conventional method.

【符号の説明】[Explanation of symbols]

1…高炉炉体(耐火物) 2…出銑口 3…送風羽口 4…レースウェイ 5…炉芯 6…溶銑レベル 7…スラグレベル 8…高炉炉内 9…1号出銑口 10…2号出銑口 11…3号出銑口 12…4号出銑口 13…温度センサ 1 ... Blast Furnace Furnace Body (Refractory) 2 ... Tap Mouth 3 ... Blow Tuyere 4 ... Raceway 5 ... Furnace Core 6 ... Hot Metal Level 7 ... Slag Level 8 ... Blast Furnace 9 ... No. 1 Tap Hole 10 ... 2 No. 1 tap hole 11 ... No. 3 tap hole 12 ... No. 4 tap hole 13 ... Temperature sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 4本以上の出銑口を有する高炉の炉底構
造において、同一高さ位置にある2本以上の出銑口を1
組として、高さ位置が互いに異なる2組以上の出銑口に
よって構成された高炉炉底構造。
1. In a furnace bottom structure of a blast furnace having four or more tap holes, two or more tap holes at the same height position are provided.
A blast furnace bottom structure composed of two or more sets of tap holes whose height positions are different from each other.
【請求項2】 請求項1に記載の炉底構造を有する高炉
を用い、同一高さ位置にある複数の出銑口を切り換えな
がら出銑する高炉操業において、炉床側壁部に設けた温
度センサが示す温度が上昇傾向を示した場合に、それま
で出銑していた組の出銑口とは異なる高さ位置の組の出
銑口から出銑するように切り換える高炉操業方法。
2. A temperature sensor provided on a side wall of a hearth in a blast furnace operation using the blast furnace having the hearth structure according to claim 1 for tapping while switching a plurality of tap holes at the same height. When the temperature indicated by indicates a rising tendency, the blast furnace operating method is to switch to tapping from the tapping port of the set at a height different from the tapping port of the set that had been tapping until then.
JP31817895A 1995-12-06 1995-12-06 Furnace bottom structure in blast furnace and operation of blast furnace Withdrawn JPH09157714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31817895A JPH09157714A (en) 1995-12-06 1995-12-06 Furnace bottom structure in blast furnace and operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31817895A JPH09157714A (en) 1995-12-06 1995-12-06 Furnace bottom structure in blast furnace and operation of blast furnace

Publications (1)

Publication Number Publication Date
JPH09157714A true JPH09157714A (en) 1997-06-17

Family

ID=18096336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31817895A Withdrawn JPH09157714A (en) 1995-12-06 1995-12-06 Furnace bottom structure in blast furnace and operation of blast furnace

Country Status (1)

Country Link
JP (1) JPH09157714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959138A (en) * 2022-06-06 2022-08-30 攀钢集团工程技术有限公司 Iron notch frame combined brick and composition process thereof
CN115820957A (en) * 2022-11-29 2023-03-21 武汉钢铁有限公司 Method for forming self-protection layer in blast furnace hearth erosion area

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959138A (en) * 2022-06-06 2022-08-30 攀钢集团工程技术有限公司 Iron notch frame combined brick and composition process thereof
CN115820957A (en) * 2022-11-29 2023-03-21 武汉钢铁有限公司 Method for forming self-protection layer in blast furnace hearth erosion area
CN115820957B (en) * 2022-11-29 2024-04-19 武汉钢铁有限公司 Method for forming self-protection layer of erosion area of blast furnace hearth

Similar Documents

Publication Publication Date Title
JPS62238985A (en) Melting furnace and method for melting metal
KR20150009575A (en) Method for charging raw material into bell-less blast furnace
US6693947B1 (en) Method to protect the anode bottoms in batch DC electric arc furnace steel production
CN1434145A (en) Method for producing continuous casting alloy steel containing S and Al
JPH09157714A (en) Furnace bottom structure in blast furnace and operation of blast furnace
JPH10298623A (en) Structure for furnace bottom of blast furnace and operation of blast furnace
JP2000336416A (en) Device for controlling speed of tapping iron and slag in blast furnace
US6174492B1 (en) Forebay for am Metallurgical furnace
JPH10330824A (en) Operation of electric furnace
WO2009087183A1 (en) Cooling of a metallurgical smelting reduction vessel
KR100225249B1 (en) Remaining slag control method of of slopping control
KR20230167924A (en) Electric furnace
JP2000212613A (en) Control of distribution of charged material in blast furnace
JP2000328114A (en) Operation of blast furnace
JPH0390505A (en) Method for reducing remaining iron at the time of blowing down in blast furnace
JPH0673415A (en) Method for protecting furnace bottom in blast furnace by controlling molten iron flow
KR20240016791A (en) Electric furnace
JPH05331521A (en) Steel tapping hole in refining furnace for steel-making
JP4734738B2 (en) Brick stacking method near the tap
KR20000043781A (en) Method of controlling distribution of proper charged material for high pulverized coal ratio
JPH08327249A (en) Steel scrap melting furnace
JPH0625722A (en) Method for protecting furnace bottom surface in blast furnace
JPH0978110A (en) Operation of blast furnace
KR20240016794A (en) Electric furnace
JP2002146415A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304