JPH10330824A - Operation of electric furnace - Google Patents

Operation of electric furnace

Info

Publication number
JPH10330824A
JPH10330824A JP9139593A JP13959397A JPH10330824A JP H10330824 A JPH10330824 A JP H10330824A JP 9139593 A JP9139593 A JP 9139593A JP 13959397 A JP13959397 A JP 13959397A JP H10330824 A JPH10330824 A JP H10330824A
Authority
JP
Japan
Prior art keywords
furnace
gas
temp
hearth
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9139593A
Other languages
Japanese (ja)
Inventor
Kenji Hamaogi
健司 濱荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9139593A priority Critical patent/JPH10330824A/en
Publication of JPH10330824A publication Critical patent/JPH10330824A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a lower temp. zone with the developing position changed in an early stage by measuring the temp. distribution in a furnace hearth with plural temp. sensors in the furnace hearth refractor, estimating an existing position of the low temp. zone in the furnace, controlling gas blowing quantity from tuyeres on the furnace hearth, forming molten metal stream from the high temp. zone to the low temp. zone and promoting the melting. SOLUTION: At the time of melting raw material of scrap, etc., charged in an electric furnace, the gas is blown into the molten metal 1 in the furnace form the tuyeres 7 for gas blowing arranged in the furnace hearth 13 and the melting and refining reaction of the charged mateal in the furnace are promoted by utilizing this stirring force of the gas. At this time, the temp. distribution in the furnace hearth is measured with plural temp. sensors 10 embedded into the furnace hearth refractory 3 and the existing position of the low temp. zone in the furnace caused by remaining the unmelting scrap is estimated from the temp. distribution in the furnace hearth. Based on the estimated position, the gas blowing quantity from the tuyeres 7 is controlled through a gas flow rate control device 11 so as to flow the molten metal 1 from the high temp. zone to the low temp. zone, and promote the melting of scrap.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電気炉内の溶融
金属を効率良く撹拌し、溶解を促進する電気炉の操業方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating an electric furnace, which efficiently stirs molten metal in an electric furnace to promote melting.

【0002】[0002]

【従来の技術】従来、金属の溶解、精錬に用いる電気炉
において、生産性向上のため、高速溶解が指向されてお
り、スクラップ等の装入原料を溶解する過程で、炉壁か
らの助燃バーナや炉体上部の酸素吹き込みランスが使用
されている。
2. Description of the Related Art Conventionally, in an electric furnace used for melting and refining a metal, high-speed melting has been aimed at in order to improve productivity. In the process of melting a raw material such as scrap, an auxiliary burner from a furnace wall is required. And an oxygen blowing lance at the top of the furnace body are used.

【0003】しかしながら、一般に電気炉は、その直径
に対して、深さが極めて浅い形状を特徴としているた
め、溶融金属浴の撹拌効率は低い。さらに、電極から発
生したアークからの熱も溶融金属表面のみに供給される
ため、溶融金属浴内に熱対流が発生し難く、金属浴の表
層が高温で底層が低温といった温度分布を形成し易い。
したがって、電気炉操業の溶融期においては、炉内底部
でのスクラップ溶解速度の低下、また、精錬期において
は反応速度の低下を招く。
However, since the electric furnace is generally characterized by a shape whose depth is extremely shallow with respect to its diameter, the stirring efficiency of the molten metal bath is low. Further, since the heat from the arc generated from the electrode is also supplied only to the molten metal surface, heat convection hardly occurs in the molten metal bath, and the temperature distribution such that the surface layer of the metal bath is high and the bottom layer is low is easy to form. .
Therefore, in the melting period of the electric furnace operation, the scrap melting rate at the furnace bottom decreases, and in the refining period, the reaction rate decreases.

【0004】そこで、これらを解決する手段として、炉
床に設けた複数の羽口より、酸化性または不活性ガスを
吹き込み、このガスによる撹拌効果を利用する方法が提
案されている。
[0004] To solve these problems, a method has been proposed in which an oxidizing or inert gas is blown from a plurality of tuyeres provided on a hearth to utilize the stirring effect of the gas.

【0005】例えば、特開昭63−4011号公報に
は、スクラップ装入直後から溶解が完了するまで、炉底
部の羽口からガスを連続的または間欠的に吹き込み、炉
底部に溜まった溶鋼をスプラッシュとしてスクラップに
付着させ、伝熱促進を図る方法が提示されている。
For example, Japanese Unexamined Patent Publication (Kokai) No. 63-4011 discloses that gas is continuously or intermittently blown from a tuyere at the bottom of a furnace until the melting is completed immediately after charging of scrap to remove molten steel accumulated at the bottom of the furnace. A method of attaching heat to scrap as splash to promote heat transfer has been proposed.

【0006】また、特開平6−18174号公報、特開
平3−77251号公報、および特開昭63−1367
号公報では、電極配置から必然的に決まる場所、例えば
電極から離れた領域に発生する溶融金属中の低温領域に
対して、高温の溶融金属を循環させるべく配置された複
数個の炉床羽口からガスを吹き込むことにより撹拌効率
を向上させ、低温領域を解消する方法が開示されてい
る。
Further, Japanese Patent Application Laid-Open No. 6-18174, Japanese Patent Application Laid-Open No. 3-77251, and
In the gazette, a plurality of hearth tuyeres arranged to circulate a high-temperature molten metal to a place inevitably determined by the electrode arrangement, for example, a low-temperature region in the molten metal generated in a region away from the electrode. A method is disclosed in which the stirring efficiency is improved by injecting a gas from, and the low-temperature region is eliminated.

【0007】さらに、特公平7−113517号公報で
は、溶融金属の深さと炉直径が、炉底からのガス吹き込
み撹拌に対して最適となる炉形状の炉体を用いて、少な
いガス吹き込み量で撹拌効率を向上させる方法が開示さ
れている。
Furthermore, Japanese Patent Publication No. Hei 7-113517 discloses that a furnace having a furnace shape in which the depth of the molten metal and the furnace diameter are optimal for gas blowing and stirring from the furnace bottom is used, and a small amount of gas is blown. A method for improving the stirring efficiency is disclosed.

【0008】[0008]

【発明が解決しようとする課題】一般的に電気炉に装入
される金属源には、各種サイズのスクラップが用いられ
ており、これらには、嵩密度の非常に低い軽量物から、
嵩密度の大きな重量物まで含まれている。これらのスク
ラップの供給状況において、嵩密度の低いものが使用さ
れた場合、操業の溶解初期において既に溶解した金属が
スクラップ間隙にまで入り込み、熱交換が活発になされ
ることに加え、溶融金属の流動とともに移動し、短時間
での溶解が可能となる。
Generally, scraps of various sizes are used as a metal source to be charged into an electric furnace.
Even heavy materials with large bulk density are included. In the situation of supplying these scraps, if a material with a low bulk density is used, the metal already melted in the initial stage of the operation of the operation enters the scrap gap, heat exchange is activated, and the molten metal flows. And dissolves in a short time.

【0009】これとは逆に、嵩密度の高い重量物のスク
ラップの場合、溶融金属との接触が少ないため、熱交換
速度が低下し溶解時間が長くなる。さらに、この場合、
溶融金属の流動に関わらずスクラップは移動することも
なく、炉底にこれら残留スクラップを中心とした低温領
域が形成される結果、溶解終了までに非常に長い加熱時
間を要し電力原単位の増大を招く。このような、嵩密度
の高い残留スクラップを起点とする低温領域の発生が問
題となるのは、スクラップの装入分布により発生場所が
操業チャ−ジ毎に変化することである。
On the contrary, in the case of a heavy scrap having a high bulk density, since the contact with the molten metal is small, the heat exchange rate is reduced and the melting time is lengthened. Furthermore, in this case,
Scrap does not move regardless of the flow of the molten metal, and a low-temperature region centered on these residual scraps is formed at the bottom of the furnace.As a result, it takes a very long heating time until melting is completed, and the power consumption increases. Invite. The problem of the occurrence of such a low-temperature region starting from the residual scrap having a high bulk density is that the location of occurrence varies depending on the operation charge due to the distribution of the charged scrap.

【0010】前記の公報に記載されている底吹きガスに
よる撹拌促進技術は、常に同じ位置に発生する低温領
域、例えば上部電極直下から離れた炉壁近傍に発生する
低温領域や、助燃バ−ナの火炎方向から離れた位置に存
在する低温領域に対しては有効である。すなわち、これ
らの方法により対応できるのは、固定的な場所に発生す
る低温領域に限定され、嵩密度の高い重量物スクラップ
を起点とする低温領域のように、発生場所が変化する低
温領域には対応できない。本発明の目的は、上記のよう
に発生位置が変化する低温領域を早期に解消する電気炉
のガス吹き込み操業方法を提供することにある。
The technique of promoting agitation by bottom-blown gas described in the above-mentioned publications is based on a low-temperature region which is always generated at the same position, for example, a low-temperature region which is generated near a furnace wall distant from immediately below the upper electrode, or an auxiliary burner. This is effective for a low-temperature region existing at a position away from the flame direction. That is, what can be dealt with by these methods is limited to a low-temperature region generated in a fixed place, and a low-temperature region in which the generated place changes, such as a low-temperature region starting from a heavy scrap having a high bulk density. I can not cope. An object of the present invention is to provide a gas blowing operation method for an electric furnace, which quickly eliminates a low-temperature region where the generation position changes as described above.

【0011】[0011]

【課題を解決すための手段】本発明者は、前記低温領域
を早期に解消し、溶解時間の短縮による生産性の向上、
および電力原単位の低減を図ることができる電気炉のガ
ス吹き込み操業方法を開発すべく、種々の試験をおこな
い、以下の知見を得た。
The inventor of the present invention has solved the above-mentioned low-temperature region at an early stage, and has improved the productivity by shortening the melting time.
Various tests were conducted to develop a gas blowing operation method for an electric furnace capable of reducing the power consumption, and the following findings were obtained.

【0012】(a)炉床羽口からのガス吹き込み量の調
整により溶融金属の流動パターンを制御し、任意の溶融
金属の高温領域から低温領域に溶融金属流を向かわせる
ことができる。 (b)炉床耐火物中に埋設された複数の温度センサにて
測定した炉床温度分布により低温領域の発生場所の推定
が可能である。
(A) The flow pattern of the molten metal can be controlled by adjusting the amount of gas blown from the hearth tuyere, so that the flow of the molten metal can be directed from a high-temperature region to a low-temperature region of any molten metal. (B) The location of the low-temperature region can be estimated from the hearth temperature distribution measured by a plurality of temperature sensors buried in the hearth refractory.

【0013】本発明は、上記の知見に基づいてなされた
ものであり、その要旨は、『炉床部に設けた羽口より炉
内溶融金属中にガスを吹き込み、ガスによる攪拌力を利
用して、炉内装入物の溶解、精錬反応を促進する電気炉
の操業方法において、炉床耐火物中に埋設した複数の温
度センサにて計測した炉床温度分布から、未溶解スクラ
ップの残存による炉内低温領域の存在位置を推定し、こ
れに基づき炉床羽口からのガス吹き込み量を制御するこ
とにより、高温領域から低温領域に向かう溶融金属流を
形成し、溶解を促進することを特徴とする電気炉の操業
方法』にある。
The present invention has been made based on the above findings, and the gist of the invention is that "gas is blown into the molten metal in the furnace from a tuyere provided on the hearth, and a stirring force by the gas is used. In the method of operating an electric furnace, which promotes melting and refining reactions of furnace interior materials, the furnace temperature distribution measured by a plurality of temperature sensors buried in the hearth refractory indicates that the furnace has not melted due to remaining unmelted scrap. By estimating the location of the inner low-temperature region and controlling the amount of gas blown from the hearth tuyere based on this, a molten metal flow from the high-temperature region to the low-temperature region is formed to promote melting. Of operating electric furnaces

【0014】[0014]

【発明の実施の形態】図1は本発明で用いる電気炉の一
例を示した縦断面図である。溶融金属1の上方に設けら
れた上部電極2、炉床耐火物3中に埋設された炉底電極
4、炉体側壁部分に配された水冷パネル5および炉体上
部を覆う炉蓋6より炉体12が構成されている。炉床1
3にはガス吹き込み用羽口7が埋設されており、ガス吹
き込み用羽口7にガスを供給するガス供給装置8と各羽
口へのガス流量を制御するガス流量バルブ9が設置され
ている。また、炉床耐火物中には温度測定用の温度セン
サ10が埋設されており、これより得た炉床温度から羽
口へのガス流量を制御するためのガス流量制御器11が
設置されている。
FIG. 1 is a longitudinal sectional view showing an example of an electric furnace used in the present invention. The upper electrode 2 provided above the molten metal 1, the hearth electrode 4 embedded in the hearth refractory 3, the water cooling panel 5 arranged on the side wall of the furnace body, and the furnace cover 6 covering the upper part of the furnace body. The body 12 is configured. Hearth 1
A gas injection tuyere 7 is buried in 3, and a gas supply device 8 for supplying gas to the gas injection tuyere 7 and a gas flow valve 9 for controlling a gas flow to each tuyere are installed. . A temperature sensor 10 for temperature measurement is embedded in the hearth refractory, and a gas flow controller 11 for controlling a gas flow to the tuyere from the hearth temperature obtained from the temperature sensor 10 is installed. I have.

【0015】図2は、炉床部に設けたガス吹き込み用羽
口の位置を俯瞰した概略図で、●は炉床羽口の位置を示
す。図3は、炉床耐火物中に埋設された温度センサの配
置を俯瞰した概略図で、●は温度センサの位置を示す。
温度センサとしては、熱電対温度計が一般に使用され
る。図4、図5および図6は、図1に示す一般的な上部
電極2と炉底電極4により構成された電気炉において、
炉床羽口からガスを吹き込んだ場合の溶融金属の流動を
示す模式図である。●は炉床羽口位置、○は上部電極位
置、矢印は溶融金属の流れ方向、斜線部は上昇流および
下降流の発生場所を示している。
FIG. 2 is a schematic view showing a bird's-eye view of the positions of the gas injection tuyeres provided in the hearth, and the black circles indicate the positions of the hearth tuyeres. FIG. 3 is a schematic view of a bird's-eye view of the arrangement of temperature sensors buried in a hearth refractory, and ● indicates the position of the temperature sensor.
As a temperature sensor, a thermocouple thermometer is generally used. FIGS. 4, 5 and 6 show an electric furnace composed of the general top electrode 2 and bottom electrode 4 shown in FIG.
It is a schematic diagram which shows the flow of the molten metal when gas is blown from the hearth tuyere. ● indicates the hearth tuyere position, ○ indicates the position of the upper electrode, arrows indicate the flow direction of the molten metal, and hatched portions indicate the locations where the ascending and descending flows are generated.

【0016】図4は、図2に示す対称配置された炉床羽
口4ヶ所から同量のガス吹き込みがなされた場合で、同
図(a)は溶融金属表面、同図(b)は、同図(a)の
XーX線断面での溶融金属の流動を示す。この場合、炉
内中央部の炉低部に向かう高温下降流が発生している。
FIG. 4 shows a case where the same amount of gas is blown from the four symmetrically arranged hearth tuyeres shown in FIG. 2, wherein FIG. 4 (a) is a molten metal surface, and FIG. The flow of the molten metal in the cross section taken along the line XX of FIG. In this case, a high-temperature descending flow toward the furnace lower part in the central part of the furnace occurs.

【0017】図5は、図2の羽口7A、7Bおよび7C
の3ヶ所よりガスを吹き込み、羽口7Dからのガス吹き
込みを中止した場合で、同図(a)は溶融金属表面、同
図(b)は、同図(a)のYーY線断面での流動を示
す。この場合においては、ガス吹き込みを中止した羽口
7D位置近傍の炉底部に向かう高温下降流が発生する。
図6は、図2の羽口7Aおよび7Bの2ヶ所からガスを
吹き込み、羽口7Cおよび7Dからのガス吹き込みを中
止した場合であり、同図(a)は溶融金属表面、同図
(b)は同図(a)のZ−Z線断面での流動を示す。こ
の場合においては、ガス吹き込みを中止した羽口7Cと
7Dの間の炉底部に向かう高温下降流が発生する。
FIG. 5 shows the tuyeres 7A, 7B and 7C of FIG.
In this case, gas was blown from the three locations described above, and gas blowing from the tuyere 7D was stopped. FIG. 3A is a molten metal surface, and FIG. 3B is a cross section taken along line YY in FIG. Shows the flow of In this case, a high-temperature descending flow is generated toward the furnace bottom near the tuyere 7D where the gas injection is stopped.
FIG. 6 shows a case where gas is blown from two locations of tuyeres 7A and 7B in FIG. 2 and gas blowing from tuyeres 7C and 7D is stopped. FIG. 6 (a) shows a molten metal surface, and FIG. ) Shows the flow in the cross section taken along the line ZZ in FIG. In this case, a high-temperature descending flow toward the furnace bottom occurs between the tuyeres 7C and 7D where the gas injection is stopped.

【0018】図7は、前記のガス吹き込み条件、すなわ
ち羽口4ヶ所、3ヶ所および2ヶ所からのガス吹き込み
に対応する高温下降流の発生場所を示している。●はガ
ス吹き込み位置を示す。すなわち、羽口4ヶ所、3ヶ
所、および2ヶ所からのガス吹き込みに対応し、それぞ
れ同図(a)、同図(b)および同図(c)の斜線部に
示す位置の炉底部に向かう高温下降流の誘導による熱供
給が可能となる。したがって、同図の斜線部に示す位置
に、嵩密度の高い重量物のスクラップの溶け残りに起因
する低温領域が発生した場合、それぞれの対応する羽口
からのガス吹き込みにより低温領域への熱供給が可能と
なる。
FIG. 7 shows the above-mentioned gas blowing conditions, that is, locations where high-temperature descending flows are generated corresponding to gas blowing from four, three and two tuyeres. ● indicates the gas injection position. That is, it corresponds to gas injection from four, three, and two tuyeres, and heads toward the furnace bottom at the positions indicated by the hatched portions in FIGS. (A), (b), and (c), respectively. Heat can be supplied by induction of a high-temperature descending flow. Therefore, when a low-temperature region is generated at the position indicated by the hatched portion in FIG. 3 due to the undissolved scrap of heavy material having a high bulk density, heat is supplied to the low-temperature region by blowing gas from the corresponding tuyere. Becomes possible.

【0019】図8は、低嵩密度のスクラップに高嵩密度
のスクラップを加えた装入物を溶解した場合の温度セン
サによる炉床温度分布の推移を示す模式図であり、記号
A〜Mは図3に示す温度センサに対応する。図9は、図
8の場合における高嵩密度のスクラップの投入位置を示
す説明図であり、斜線部Sは投入位置、●はガス吹き込
み羽口の位置を示す。
FIG. 8 is a schematic diagram showing the transition of the hearth temperature distribution by the temperature sensor when the charge obtained by adding the high bulk density scrap to the low bulk density scrap is melted. This corresponds to the temperature sensor shown in FIG. FIG. 9 is an explanatory diagram showing the position of the high bulk density scrap in the case of FIG. 8, in which the hatched portion S indicates the charging position and ● indicates the position of the gas blowing tuyere.

【0020】図8に示すように、高嵩密度のスクラップ
を投入した近傍、すなわち、温度センサD、E、G、H
およびLの部分の温度上昇が遅く、この位置に溶け残り
スクラップを基点とする低温領域が存在することが推測
される。すなわち、炉床耐火物中に埋設された複数の温
度センサにより計測される炉床温度分布を比較すること
により、低温領域の発生場所が推定可能となる。
As shown in FIG. 8, the temperature sensors D, E, G, H
It is guessed that the temperature rise of the portions L and L is slow, and a low-temperature region starting from the undissolved scrap exists at this position. That is, by comparing hearth temperature distributions measured by a plurality of temperature sensors buried in the hearth refractory, it is possible to estimate the location of the low-temperature region.

【0021】したがって、炉床温度の測定より低温領域
の発生位置が推定され、この低温領域に対し、羽口から
のガス吹き込み制御により高温溶融金属流を誘導するこ
とができるので、低温領域の発生が早期に解消し、スク
ラップの全量溶解時間の短縮が可能となる。
Therefore, the generation position of the low-temperature region is estimated from the measurement of the hearth temperature, and a high-temperature molten metal flow can be induced in this low-temperature region by controlling gas injection from the tuyere. Can be eliminated at an early stage, and the time required for dissolving the entire amount of scrap can be reduced.

【0022】なお、ガス吹き込み用羽口は、炉床半径の
1/2の箇所に、同心円上に、点対称に、4ヶ所以上設
けることが望ましい。また、ガス吹き込み制御は、具体
的には、低温領域の検出された近傍の羽口からの送風流
量を、他の羽口より相対的に減少もしくは停止すること
によりおこなわれる。
It is desirable that four or more gas injection tuyeres be provided at a half of the hearth radius on a concentric circle and point-symmetrically. Further, the gas blowing control is specifically performed by reducing or stopping the air flow from the tuyeres near the detected low-temperature region relative to the other tuyeres.

【0023】[0023]

【実施例】【Example】

(実施例1)電気炉は、炉容量50ton、炉床内径5
mのものを使用した。炉床部には、図2に示すように、
ガス吹き込み用羽口4ヶ所を90度間隔に配置し、羽口
内径は、1.0cmとした。温度センサとして、熱電対
温度計を図3に示す炉床部の13ヶ所に設置した。
(Example 1) The electric furnace has a furnace capacity of 50 ton and a hearth inner diameter of 5
m. In the hearth, as shown in FIG.
Four gas injection tuyeres were arranged at 90 ° intervals, and the inner diameter of the tuyeres was 1.0 cm. Thermocouple thermometers were installed at 13 places on the hearth shown in FIG. 3 as temperature sensors.

【0024】単体重量が250kg以下の低嵩密度スク
ラップを49ton装入するとともに、単体重量が1t
onの高嵩密度のスクラップを投入し、スクラップ総量
50ton、スクラップ比率100%で炭素鋼を溶解し
た。
A low bulk density scrap having a unit weight of 250 kg or less is charged with 49 tons, and the unit weight is 1 ton.
On, high bulk density scrap was charged, and carbon steel was melted at a total scrap of 50 ton and a scrap ratio of 100%.

【0025】図10は、高嵩密度のスクラップ投入場所
の位置を示す説明図で、●はガス吹き込み羽口を示す。
同図に示すように、高嵩密度のスクラップをSの位置に
投入した。電力による熱投入量は25.6MJ/秒と
し、羽口4ヶ所より、それぞれ流量20Nm3 /時間の
Arガスを15分間吹き込んだ。この時点で、温度セン
サによる炉床温度分布に基づき、昇温が遅れている部分
の温度を上げるため、図1に示すガス流量制御器ならび
にガス流量バルブにて、ガス吹き込み量の調整を実施し
た。すなわち、羽口7D近傍、すなわち、温度センサ
D,E、G、HおよびLの部分の温度上昇が遅れている
ため、図7(b)に示したガス吹き込み位置と溶融金属
の流動との対応関係に基づき、図2に示す羽口7A、7
Bおよび7Cの3ヶ所からは、それぞれ流量25Nm3
/時間のガスを吹き込み、羽口7Dからは、閉塞防止の
為に流量2.5Nm3 /時間のArガスのみにガス吹き
込み条件を変更し、全量溶解した。
FIG. 10 is an explanatory view showing the position of a high bulk density scrap charging place, and ● represents a gas blowing tuyere.
As shown in the figure, a high bulk density scrap was placed at the position S. The amount of heat input by electric power was 25.6 MJ / sec, and Ar gas at a flow rate of 20 Nm 3 / hour was blown in from each of the four tuyeres for 15 minutes. At this time, based on the hearth temperature distribution by the temperature sensor, in order to raise the temperature of the portion where the temperature rise was delayed, the gas blowing amount was adjusted by the gas flow controller and the gas flow valve shown in FIG. . That is, since the temperature rise near the tuyere 7D, that is, the temperature sensors D, E, G, H, and L, is delayed, the correspondence between the gas injection position and the flow of the molten metal shown in FIG. Based on the relationship, the tuyere 7A, 7 shown in FIG.
From the three locations B and 7C, the flow rate was 25 Nm 3
/ Hour gas was blown into the tuyere 7D, and in order to prevent clogging, the gas blowing conditions were changed to only Ar gas at a flow rate of 2.5 Nm 3 / hour, and the entire amount was dissolved.

【0026】なお、比較例では、炉床温度分布に基づく
ガス吹き込み量の制御は行わず、溶解開始から完了ま
で、羽口4ヶ所から、それぞれ流量20Nm3 /時間で
Arガスの吹き込みを行った以外は、実施例1と同じ条
件で溶解した。
In the comparative example, the control of the gas injection amount based on the hearth temperature distribution was not performed, and Ar gas was injected at a flow rate of 20 Nm 3 / hour from each of the four tuyeres from the start to the end of melting. Except for the above, dissolved under the same conditions as in Example 1.

【0027】図11に実施例1、図12に比較例1の温
度センサによる炉床温度分布の推移を示す。実施例1に
おいては、吹き込み条件の変更後、高嵩密度のスクラッ
プ投入位置近傍、すなわち、温度センサD,E、G、H
およびLの部分の昇温速度が大きくなっており、比較例
1に比べ、低温領域の早期解消に至っている。
FIG. 11 shows the transition of the hearth temperature distribution by the temperature sensor of Example 1 and FIG. In the first embodiment, after changing the blowing conditions, the temperature sensors D, E, G, H
The rate of temperature increase in the portions L and L is large, and the low-temperature region is eliminated earlier than in Comparative Example 1.

【0028】表1に、実施例1の試験結果を比較例1と
対比して示す。
Table 1 shows the test results of Example 1 in comparison with Comparative Example 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1に示すように、実施例1の全量溶解時
間は、約62分となり、比較例1に比べ、約13分短縮
した。また、実施例1の電力原単位は、約1.90×1
3MJ/tonとなり、比較例1に比べ、約17%低
減した。
As shown in Table 1, the total dissolution time of Example 1 was about 62 minutes, which was about 13 minutes shorter than Comparative Example 1. In addition, the unit power consumption of the first embodiment is about 1.90 × 1
0 3 MJ / ton, which is about 17% lower than that of Comparative Example 1.

【0031】(実施例2)実施例1と同じ電気炉、同じ
量および構成のスクラップを用い、単体重量1tonの
高嵩密度のスクラップは、図10に示すTの位置に投入
した。電力による熱投入量は、実施例1と同じとし、羽
口4ヶ所より、それぞれ、流量20Nm3/時間のAr
ガスを15分間吹き込んだ。この時点で、温度センサに
よる炉床温度分布に基づき、昇温が遅れている羽口7C
と7D間の温度を上げるため、羽口7Aおよび7Bの2
ヶ所からは、それぞれ、流量30Nm3 /時間のガスを
吹き込み、羽口7C、7Dからは、閉塞防止用のため
に、それぞれ、流量2.5Nm3 /時間のArガスのみ
にガス吹き込み条件を変更し、全量溶解した。
Example 2 Using the same electric furnace, the same amount and the same constitution as in Example 1, a high bulk density scrap having a unit weight of 1 ton was put into a position T shown in FIG. The amount of heat input by electric power was the same as in Example 1, and Ar flow rate of 20 Nm 3 / hour was obtained from four tuyeres.
Gas was bubbled in for 15 minutes. At this point, based on the hearth temperature distribution by the temperature sensor, the tuyere
In order to increase the temperature between the tuyeres 7A and 7B,
The gas is blown at a flow rate of 30 Nm 3 / hour from each of the three locations, and the gas blowing conditions are changed from the tuyeres 7C and 7D to only Ar gas at a flow rate of 2.5 Nm 3 / hour to prevent clogging. Then, the whole amount was dissolved.

【0032】比較例2は、比較例1と同様にガス吹き込
みの制御は行わず、溶解開始から完了まで、羽口4ヶ所
から、それぞれ流量20Nm3 /時間でArガスの吹き
込みをおこなった以外は、実施例2と同じ条件で実施し
た。
Comparative Example 2 was the same as Comparative Example 1, except that the gas injection was not controlled, and that Ar gas was injected from the four tuyeres at a flow rate of 20 Nm 3 / hour from the start to the end of melting. The operation was performed under the same conditions as in Example 2.

【0033】図13に実施例2、図14に比較例2の温
度センサによる炉床温度分布の推移を示す。実施例2で
は、ガス吹き込み条件の変更後、高嵩密度のスクラップ
投入位置近傍K、D、HおよびEの昇温速度が大きくな
っており、比較例2に比べ、低温領域の早期解消に至っ
ている。表2に、実施例2の結果を比較例2と対比して
示す。
FIG. 13 shows the transition of the hearth temperature distribution by the temperature sensor of Example 2 and FIG. In Example 2, after the gas blowing conditions were changed, the heating rates of K, D, H, and E near the high-bulk-density scrap charging position increased, and the low-temperature region was eliminated earlier than Comparative Example 2. I have. Table 2 shows the results of Example 2 in comparison with Comparative Example 2.

【0034】[0034]

【表2】 [Table 2]

【0035】表2に示すように、実施例2の全溶解は約
60分で完了しており、比較例2に比べ約18分短縮し
た。また、実施例2の電力原単位は、約1.84×10
3 MJ/tonとなり、比較例2に比べ約23%低減し
た。このように、低温領域の発生位置に対応したガス吹
き込み量の制御により、溶解時間の短縮および電力原単
位の低減効果は明らかである。
As shown in Table 2, the total dissolution of Example 2 was completed in about 60 minutes, which was about 18 minutes shorter than Comparative Example 2. In addition, the unit power consumption of the second embodiment is about 1.84 × 10
3 MJ / ton, which is about 23% lower than that of Comparative Example 2. As described above, by controlling the gas injection amount corresponding to the generation position of the low-temperature region, the effect of shortening the melting time and reducing the power consumption is apparent.

【0036】[0036]

【発明の効果】本発明方法によれば、装入物のスクラッ
プの嵩密度分布により発生する低温領域の発生位置に対
し、これに対応した羽口よりガス吹き込み量の制御を実
施することにより、高温溶融金属流を低温領域へ指向す
ることができ、低温領域の早期解消が可能となり、全量
溶解に要する時間を短縮できる。その結果、電気炉生産
性の向上および電力原単位の低減を図ることができる
等、経済的効果をもたらす。
According to the method of the present invention, by controlling the amount of gas blown from the tuyere corresponding to the position of the low temperature region generated by the bulk density distribution of the scrap of the charge, The high-temperature molten metal flow can be directed to the low-temperature region, the low-temperature region can be eliminated early, and the time required for melting the entire amount can be reduced. As a result, it is possible to improve the productivity of the electric furnace and to reduce the electric power consumption, thereby bringing about economic effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電気炉操業方法を実施するための
電気炉の概略を示す説明図である。
FIG. 1 is an explanatory view schematically showing an electric furnace for carrying out an electric furnace operating method according to the present invention.

【図2】本発明を実施するための電気炉の炉床耐火物中
に埋設されたガス吹き込み用羽口の位置を示す概略図あ
る。
FIG. 2 is a schematic view showing a position of a tuyere for gas injection buried in a hearth refractory of an electric furnace for carrying out the present invention.

【図3】本発明を実施するための電気炉の炉床耐火物中
に埋設された温度センサの位置を示す概略図ある。
FIG. 3 is a schematic diagram showing a position of a temperature sensor buried in a hearth refractory of an electric furnace for carrying out the present invention.

【図4】炉床羽口4ヶ所からガスを吹き込んだ場合の溶
融金属の流動を示す模式図である。
FIG. 4 is a schematic diagram showing a flow of a molten metal when gas is blown from four places of a hearth tuyere.

【図5】炉床羽口3ヶ所からガスを吹き込んだ場合の溶
融金属の流動を示す模式図である。
FIG. 5 is a schematic diagram showing a flow of a molten metal when gas is blown from three places of a hearth tuyere.

【図6】炉床羽口2ヶ所からガスを吹き込んだ場合の溶
融金属の流動を示す模式図である。
FIG. 6 is a schematic diagram showing a flow of a molten metal when gas is blown from two places of a hearth tuyere.

【図7】炉床羽口からのガス吹き込みによる高温下降流
の発生場所を示す模式図で、同図(a)は羽口4ヶ所、
同図(b)は羽口3ヶ所、同図(c)は羽口2ヶ所から
の場合である。
FIG. 7 is a schematic view showing a place where a high-temperature descending flow is generated by gas injection from a hearth tuyere. FIG.
FIG. 3B shows the case from three tuyeres, and FIG. 3C shows the case from two tuyeres.

【図8】低嵩密度のスクラップに高嵩密度のスクラップ
を加えた装入物を溶解した場合の温度センサによる炉床
温度分布の推移を示す模式図である。
FIG. 8 is a schematic diagram showing a transition of a hearth temperature distribution by a temperature sensor when a charge obtained by adding high bulk density scrap to low bulk density scrap is melted.

【図9】図8の場合の高嵩密度のスクラップ投入位置を
示す説明図である。
FIG. 9 is an explanatory view showing a high bulk density scrap input position in the case of FIG. 8;

【図10】実施例における高嵩密度のスクラップ投入位
置を示す説明図である。
FIG. 10 is an explanatory diagram showing a high bulk density scrap charging position in the embodiment.

【図11】実施例1の温度センサによる炉床温度分布の
推移を示す説明図である。
FIG. 11 is an explanatory diagram showing a transition of a hearth temperature distribution by the temperature sensor according to the first embodiment.

【図12】比較例1の温度センサによる炉床温度分布の
推移を示す説明図である。
FIG. 12 is an explanatory diagram showing a transition of a hearth temperature distribution by the temperature sensor of Comparative Example 1.

【図13】実施例2の温度センサによる炉床温度分布の
推移を示す説明図である。
FIG. 13 is an explanatory diagram showing transition of a hearth temperature distribution by the temperature sensor according to the second embodiment.

【図14】比較例2の温度センサによる炉床温度分布の
推移を示す説明図である。
FIG. 14 is an explanatory diagram showing a transition of a hearth temperature distribution by the temperature sensor of Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 溶融金属 8 ガス供給装置 2 上部電極 9 ガス流量バルブ 3 炉床耐火物 10 温度センサ 4 炉底電極 11 ガス流量制御器 5 水冷パネル 12 炉体 6 炉蓋 13 炉床 7 ガス吹き込み用羽口 REFERENCE SIGNS LIST 1 molten metal 8 gas supply device 2 upper electrode 9 gas flow valve 3 hearth refractory 10 temperature sensor 4 hearth electrode 11 gas flow controller 5 water cooling panel 12 furnace body 6 furnace cover 13 hearth 7 tuyere for gas injection

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉床部に設けた羽口より炉内溶融金属中
にガスを吹き込み、ガスによる攪拌力を利用して、炉内
装入物の溶解、精錬反応を促進する電気炉の操業方法に
おいて、炉床耐火物中に埋設した複数の温度センサにて
計測した炉床温度分布から、未溶解スクラップの残存に
よる炉内低温領域の存在位置を推定し、これに基づき炉
床羽口からのガス吹き込み量を制御することにより、高
温領域から低温領域に向かう溶融金属流を形成し、溶解
を促進することを特徴とする電気炉の操業方法。
A method of operating an electric furnace in which a gas is blown into a molten metal in a furnace from a tuyere provided in a hearth portion, and a melting and refining reaction of materials inside the furnace is promoted by utilizing a stirring force by the gas. In the hearth temperature distribution measured by a plurality of temperature sensors embedded in the hearth refractory, the location of the low-temperature region in the furnace due to the remaining unmelted scrap was estimated, and based on this, A method for operating an electric furnace, comprising forming a molten metal flow from a high-temperature region to a low-temperature region by controlling a gas blowing amount to promote melting.
JP9139593A 1997-05-29 1997-05-29 Operation of electric furnace Withdrawn JPH10330824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9139593A JPH10330824A (en) 1997-05-29 1997-05-29 Operation of electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9139593A JPH10330824A (en) 1997-05-29 1997-05-29 Operation of electric furnace

Publications (1)

Publication Number Publication Date
JPH10330824A true JPH10330824A (en) 1998-12-15

Family

ID=15248888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9139593A Withdrawn JPH10330824A (en) 1997-05-29 1997-05-29 Operation of electric furnace

Country Status (1)

Country Link
JP (1) JPH10330824A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115408A (en) * 2006-10-31 2008-05-22 Nisshin Steel Co Ltd Melting apparatus
EP2792755A1 (en) * 2013-04-16 2014-10-22 ABB Technology Ltd A method and a control system for controlling a melting and refining process
JP2016151036A (en) * 2015-02-17 2016-08-22 新日鐵住金株式会社 Agitation method in arc type bottom-blown electric furnace
WO2020096158A1 (en) * 2018-11-07 2020-05-14 에이블맥스(주) Method for operating electric furnace by using scrap density
CN113621753A (en) * 2021-07-30 2021-11-09 中冶赛迪工程技术股份有限公司 Device and method for direct current arc furnace bottom electrode and bottom blowing cooperative steelmaking

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115408A (en) * 2006-10-31 2008-05-22 Nisshin Steel Co Ltd Melting apparatus
EP2792755A1 (en) * 2013-04-16 2014-10-22 ABB Technology Ltd A method and a control system for controlling a melting and refining process
CN104109732A (en) * 2013-04-16 2014-10-22 Abb技术有限公司 A Method And A Control System For Controlling A Melting And Refining Process
JP2014210972A (en) * 2013-04-16 2014-11-13 エービービーテクノロジーエルティーディー. Method of controlling melt and refinery processes, and control system
US9599401B2 (en) 2013-04-16 2017-03-21 Abb Schweiz Ag Method and a control system for controlling a melting and refining process
JP2016151036A (en) * 2015-02-17 2016-08-22 新日鐵住金株式会社 Agitation method in arc type bottom-blown electric furnace
WO2020096158A1 (en) * 2018-11-07 2020-05-14 에이블맥스(주) Method for operating electric furnace by using scrap density
KR20200052554A (en) * 2018-11-07 2020-05-15 에이블맥스(주) Operating method of electric arc furnace using density of scrab
CN113621753A (en) * 2021-07-30 2021-11-09 中冶赛迪工程技术股份有限公司 Device and method for direct current arc furnace bottom electrode and bottom blowing cooperative steelmaking
CN113621753B (en) * 2021-07-30 2022-11-18 中冶赛迪工程技术股份有限公司 Device and method for direct current arc furnace bottom electrode and bottom blowing cooperative steelmaking

Similar Documents

Publication Publication Date Title
KR910006037B1 (en) Method for smelting reduction of iron ore
JP5620030B2 (en) Method and control system for controlling a melting process
JP4745731B2 (en) Method of melting hot metal with cupola
KR910001577B1 (en) Method of bottom blowing operation of a steel making electric furnace
CN105392905B (en) Exhaust gas treatment method and exhaust gas treatment device
JP6369910B2 (en) Starting the smelting process
BR112012029016B1 (en) DIRECT REDUCTION PROCESS AND SLAG PRODUCT
JP2013537259A (en) Direct smelting process
JPH10330824A (en) Operation of electric furnace
JPH01127613A (en) Method and apparatus for refining molten metal
US5112387A (en) Producing stainless steels in electric arc furnaces without secondary processing
JP5963212B2 (en) Direct smelting method
JP2000337776A (en) Method for improving secondary combustion rate and heating efficiency of melting furnace, or the like
JP2718093B2 (en) Electric furnace with tuyere
WO2009087183A1 (en) Cooling of a metallurgical smelting reduction vessel
JPH09165613A (en) Scrap melting method
EP1431403A1 (en) Direct smelting furnace and process therefor
JPH0768574B2 (en) Metal oxide smelting reduction method and smelting reduction furnace
JPH09202911A (en) Method for melting scrap under condition excellent in thermal efficiency
RU2299246C1 (en) Open hearth furnace and method for steel melting in it
JPS62274020A (en) Method and apparatus for producing high-chromium alloy
JPH1150118A (en) Smelting reduction equipment and its operation
JP2001207208A (en) Method for melting cold iron source
JPH04346612A (en) Structure of electric furnace and its operation
JPH10183213A (en) Operation of smelting reduction equipment and furnace body structure therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803