JPH09155745A - Super abrasive grain wheel and its manufacture - Google Patents

Super abrasive grain wheel and its manufacture

Info

Publication number
JPH09155745A
JPH09155745A JP34483495A JP34483495A JPH09155745A JP H09155745 A JPH09155745 A JP H09155745A JP 34483495 A JP34483495 A JP 34483495A JP 34483495 A JP34483495 A JP 34483495A JP H09155745 A JPH09155745 A JP H09155745A
Authority
JP
Japan
Prior art keywords
base metal
ceramics
abrasive grain
aluminum alloy
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34483495A
Other languages
Japanese (ja)
Other versions
JP3359482B2 (en
Inventor
Shigemitsu Tanaka
重光 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Noritake Diamond Industries Co Ltd
Original Assignee
Noritake Co Ltd
Noritake Diamond Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Noritake Diamond Industries Co Ltd filed Critical Noritake Co Ltd
Priority to JP34483495A priority Critical patent/JP3359482B2/en
Publication of JPH09155745A publication Critical patent/JPH09155745A/en
Application granted granted Critical
Publication of JP3359482B2 publication Critical patent/JP3359482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To directly mount and fix a super-abrasive grain layer on a ceramics reinforced aluminum alloy pedestal wherein a matrix is formed by means of an intermetallic compound resulting from a reaction between aluminum and ceramics. SOLUTION: When a matrix is forced by means of an intermetallic compound, melting point of a ceramics reinforced aluminum alloy pedestal increases, whereby it is possible that an abrasive grain layer is directly mounted on the aluminum alloy pedestal, which was not realized previously. This makes it possible to obtain a lightweight super abrasive grain wheel which reduces a load of a spindle motor, has a high specific tensile strength, and enhances an adhesive strength between the pedestal and the abrasive grain layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超硬、セラミック
ス、硝子あるいは工具鋼等の各種研削作業に使用され
る、台金に砥粒層を固定した超砥粒ホイールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superabrasive grain wheel having an abrasive grain layer fixed to a base metal, which is used for various grinding operations of cemented carbide, ceramics, glass, tool steel and the like.

【0002】[0002]

【従来の技術】高速回転で使用される超砥粒ホイール
は、取付孔周りに最大の応力がかかるため、通常取付孔
周りが台金材料の破壊強度に達した場合に破壊する。こ
のため、超砥粒ホイールには、破損する危険が少ない台
金の強度、研削盤に負担をかけないホイールの軽量性、
さらには安価で容易に製造可能なこと等が要求される。
2. Description of the Related Art A super-abrasive wheel used at high speed is subjected to the maximum stress around the mounting hole, and therefore is usually broken when the surrounding strength of the mounting hole reaches the breaking strength of the base metal material. For this reason, the superabrasive wheel has the strength of a base metal that is less likely to be damaged, the weight of the wheel that does not burden the grinder,
Further, it is required to be inexpensive and easily manufactured.

【0003】超砥粒ホイールは、結合剤の種類によっ
て、レジンボンドホイール、メタルボンドホイール及び
ビトリファイドボンドホイール等に分類される。樹脂系
の結合剤を用いるレジンボンドホイールは、低弾性率、
低強度の特性を活かして、切れ味に富み良好な仕上面を
与える。また、金属系の結合剤を用いるメタルボンドホ
イールは、高弾性率、高強度の特性を活かして、ホイー
ルの寿命が長く加工物の寸法精度が良好である。ガラス
系の結合剤を用いるビトリファイドボンドホイールは、
高弾性率、低強度の特性を活かして、切れ味に富み加工
物の寸法精度が良好である。
Superabrasive wheels are classified into resin bond wheels, metal bond wheels, vitrified bond wheels and the like depending on the type of binder. Resin bond wheels that use resin-based binders have a low elastic modulus,
Leveraging the low-strength characteristics, it provides a sharp and rich finished surface. Further, a metal bond wheel using a metal-based binder has a long wheel life and good dimensional accuracy of a workpiece by utilizing the characteristics of high elasticity and high strength. Vitrified bond wheels that use glass-based binders
Utilizing the characteristics of high elastic modulus and low strength, it has excellent sharpness and good dimensional accuracy of processed products.

【0004】このような超砥粒ホイールにおいて、近年
の加工能率および加工精度向上の要請から、従来の周速
度である30m/sec程度から、さらに高速の60〜
200m/sec程度に耐え得る材料の開発が要求され
るようになった。
In such a superabrasive wheel, due to the recent demand for improvement in machining efficiency and machining accuracy, the conventional peripheral speed of about 30 m / sec is increased to a higher speed of 60 to 60.
Development of materials capable of withstanding about 200 m / sec has been required.

【0005】1960年代の後半には高速研削用研削盤
の実用機が公表され、特に、Sheffield社は、
外径760mmのホイールを使用して90m/secの
周速を実現した。ホイール周速が150m/secを越
える超高速研削用研削盤は1990年代に実用化され、
1995年時点では豊田工機より、外径250mmのホ
イールで160m/sec、また三菱重工より外径38
0mmのホイールで200m/secの研削盤が実用化
された。今後さらに研削盤の改良により、200m/s
ecを越える周速の実用化も近いと思われる。
In the latter half of the 1960's, practical machines for high-speed grinding machines were announced. In particular, Sheffield Co.
A wheel with an outer diameter of 760 mm was used to achieve a peripheral speed of 90 m / sec. An ultra-high speed grinding machine with a wheel peripheral speed of over 150 m / sec was put into practical use in the 1990s,
As of 1995, Toyoda Machinery used a wheel with an outer diameter of 250 mm for 160 m / sec, and Mitsubishi Heavy Industries an outer diameter of 38 mm.
A 200 m / sec grinder was put into practical use with a 0 mm wheel. 200m / s due to further improvement of grinder
It seems that the practical use of the peripheral speed exceeding ec is near.

【0006】超砥粒ホイールを回転させると、回転速度
の2乗に比例して急激に遠心力が増加し、これによって
合金及び砥粒層が変形、破損する危険性が高まる。この
ため、高速研削用超砥粒ホイールには、高強度の砥粒層
を使用すること、砥粒層と台金の接着強度を確保するこ
とは勿論のこと、特に台金自体の安全を確保することが
重要になる。
When the superabrasive wheel is rotated, the centrifugal force rapidly increases in proportion to the square of the rotation speed, which increases the risk of deformation and damage of the alloy and the abrasive layer. For this reason, it is of course necessary to use a high-strength abrasive layer for the super-abrasive wheel for high-speed grinding, to secure the adhesive strength between the abrasive layer and the base metal, and especially to ensure the safety of the base metal itself. It becomes important to do.

【0007】この対策として、台金材料にアルミニウム
合金や鋼材を熱処理した高強度のものを用い、また台金
と砥粒層の接着強度を向上させるため、砥粒層の成形と
台金への接着とを同時に行う、いわゆる直付け法が採用
されている。
As a countermeasure for this, a high strength material obtained by heat treating an aluminum alloy or a steel material is used as the base metal material, and in order to improve the adhesive strength between the base metal and the abrasive grain layer, the formation of the abrasive grain layer and the base metal A so-called direct attachment method, in which the adhesion and the adhesion are performed at the same time, is adopted.

【0008】しかしながら、合金鋼はホイールの重量が
重いため、低速回転の場合には特に問題がないものの、
これを高速で回転させるためには、研削盤のスピンドル
剛性及び主軸モータの出力を飛躍的に大きくする必要が
あり実用的ではない。
However, since alloy steel has a heavy wheel weight, there is no particular problem in the case of low speed rotation,
In order to rotate this at a high speed, it is necessary to dramatically increase the spindle rigidity of the grinder and the output of the spindle motor, which is not practical.

【0009】このような欠点を解消するため、台金の材
料として比強度に優れた炭素繊維強化熱硬化プラスチッ
ク(以下、CFRPという)等の、繊維強化プラスチッ
クを使用する方法が、特開平6−91541号公報,特
開平6−91542号公報に開示されている。
In order to solve such a drawback, a method of using a fiber reinforced plastic such as carbon fiber reinforced thermosetting plastic (hereinafter referred to as CFRP) having a high specific strength as a material of the base metal is disclosed in Japanese Patent Laid-Open No. It is disclosed in Japanese Patent Publication No. 91541 and Japanese Patent Laid-Open No. 6-91542.

【0010】[0010]

【発明が解決しようとする課題】このCFRPは、マト
リクスとして、熱変形温度が130℃であるエポキシ等
の樹脂を使用しているため、砥粒層の成形と同時に台金
に焼付け接着する直付け法を用いた場合、焼結時の熱に
よってCFRPが熱劣化を起こし、砥粒層と台金の接着
力が弱くなり、またCFRP台金自体の強度も低下し、
結果として高速回転用としては不適切なものとなる。
Since this CFRP uses a resin such as epoxy having a heat distortion temperature of 130 ° C. as a matrix, it is directly attached to the base metal by baking and bonding at the same time as forming the abrasive grain layer. When the method is used, CFRP is thermally deteriorated by heat during sintering, the adhesive force between the abrasive grain layer and the base metal is weakened, and the strength of the CFRP base metal itself is reduced.
As a result, it becomes unsuitable for high-speed rotation.

【0011】例えば、砥粒層がメタルボンドの場合、焼
結温度は約650〜1300℃、ビトリファイドボンド
の場合約700〜900℃、またポリイミドレジンボン
ドの場合約350〜500℃であり、しかもポリイミド
レジンボンドのプレス成形圧力は、350〜700MP
aとCFRPが変形する高圧であるため、上記したよう
にCFRP台金への直付けによる砥粒層の成形は困難で
ある。
For example, when the abrasive grain layer is a metal bond, the sintering temperature is about 650 to 1300 ° C., the vitrified bond is about 700 to 900 ° C., and the polyimide resin bond is about 350 to 500 ° C. Resin bond press molding pressure is 350-700MP
Since a and CFRP are deformed at a high pressure, it is difficult to form the abrasive grain layer by directly attaching to the CFRP base metal as described above.

【0012】この対策として、CFRP台金を使用した
場合、直付け法を用いることなく、従来製法のように、
予め砥粒層をチップ形状に成形し、これを台金に接着す
る方法が考えられる。これによれば、軽量であるCFR
Pの利点を活かしつつ、かつCFRP台金に砥粒層を接
着することができる。しかしながら、砥粒層の焼成時
に、チップに変形や収縮が発生して寸法が変化するた
め、台金とチップの曲率を高精度に製作することは困難
であり、その結果、台金と砥粒層の接着層の厚さにバラ
ツキが発生し、接着強度が不安定となる。また、加工時
間が長くなり、製造コストが高くなるという問題もあ
る。
As a countermeasure against this, when a CFRP base metal is used, the direct manufacturing method is not used and the conventional manufacturing method is used.
A method of forming the abrasive grain layer into a chip shape in advance and adhering it to the base metal is considered. According to this, it is lightweight CFR
The abrasive grain layer can be bonded to the CFRP base metal while utilizing the advantage of P. However, it is difficult to manufacture the curvature of the base metal and the chip with high accuracy because the chip is deformed or contracted during firing of the abrasive grain layer to change the dimensions. The thickness of the adhesive layer of the layers varies, and the adhesive strength becomes unstable. There is also a problem that the processing time becomes long and the manufacturing cost becomes high.

【0013】また特開平3−104566号公報には、
比強度に優れ高周速に耐え得る強度を持った炭化珪素セ
ラミックス繊維強化アルミニウム台金製の砥石が開示さ
れているが、同公報に開示された炭化珪素セラミックス
繊維強化アルミニウム合金においても、その融点は約6
50℃と砥粒層の焼結温度に対して低く、上記したCF
PRと同じような問題が生じ、台金と砥粒層の接着力に
すぐれた直付け法を採用することは困難である。
Further, Japanese Patent Laid-Open No. 3-104566 discloses that
Although a grindstone made of a silicon carbide ceramic fiber reinforced aluminum base metal having excellent specific strength and strength capable of withstanding a high peripheral speed is disclosed, even in the silicon carbide ceramic fiber reinforced aluminum alloy disclosed in the publication, its melting point is also disclosed. Is about 6
50 ° C., which is low with respect to the sintering temperature of the abrasive layer, and has the above-mentioned CF
The same problem as PR occurs, and it is difficult to adopt the direct attachment method which is excellent in the adhesive force between the base metal and the abrasive grain layer.

【0014】そこで本発明が解決すべき課題は、比強度
に優れたセラミックス強化アルミニウム合金製台金の特
質を活かしつつ、しかもかかる台金への砥粒層の直付け
成形を可能にすることにある。
Therefore, the problem to be solved by the present invention is to utilize the characteristics of a ceramic-reinforced aluminum alloy base metal having an excellent specific strength, and to enable the direct attachment of an abrasive layer to the base metal. is there.

【0015】[0015]

【課題を解決するための手段】本発明の超砥粒ホイール
は、上記課題を解決するために、アルミニウムとセラミ
ックスとが反応した金属間化合物によってマトリックス
が形成されたセラミックス強化アルミニウム合金製台金
に、直付けにより超砥粒層が固着されたことを特徴とす
る。これによって、メタルボンド,ビトリファイドボン
ド,ポリイミドレジンボンドの焼結温度で品質劣化や変
形などの無い軽量の台金が得られる。
In order to solve the above-mentioned problems, the superabrasive wheel of the present invention is a ceramic-reinforced aluminum alloy base metal in which a matrix is formed by an intermetallic compound in which aluminum reacts with ceramics. The super abrasive grain layer is fixed by direct attachment. As a result, it is possible to obtain a lightweight base metal having no quality deterioration or deformation at the sintering temperature of metal bond, vitrified bond, or polyimide resin bond.

【0016】[0016]

【発明の実施の形態】本発明の超砥粒ホイールは、アル
ミニウムとセラミックスとが反応した金属間化合物によ
ってマトリックスが形成されたセラミックス強化アルミ
ニウム合金製台金に、直付けにより超砥粒層が固着され
たものである。
BEST MODE FOR CARRYING OUT THE INVENTION The superabrasive grain wheel of the present invention is such that a superabrasive grain layer is fixed by direct attachment to a ceramics-reinforced aluminum alloy base metal in which a matrix is formed by an intermetallic compound in which aluminum and ceramics have reacted. It was done.

【0017】ここで、金属間化合物(intermetallic co
mpound) とは、2種以上の金属及び非金属の元素が簡単
な整数比で結合してできた化合物で、成分金属元素と異
なる特有の物理的、化学的性質を示すもので、アルミニ
ウムとセラミックスとを高温下にて反応させることによ
り生成する。このアルミニウムとセラミックスとが反応
した金属間化合物は高融点であるために、複合材全体の
融点も高くなり、これによって、セラミックス強化アル
ミニウム合金製台金の特質を活かしつつ、かつ融点を高
くすることができる。
Here, the intermetallic compound
mpound) is a compound formed by combining two or more kinds of metal and non-metal elements in a simple integer ratio, and shows unique physical and chemical properties different from the constituent metal elements. Aluminum and ceramics It is produced by reacting and at a high temperature. Since the intermetallic compound obtained by the reaction of aluminum and ceramics has a high melting point, the melting point of the entire composite material is also high, which allows the melting point to be increased while utilizing the characteristics of the ceramic-reinforced aluminum alloy base metal. You can

【0018】本発明においては、アルミニウムとセラミ
ックスとを反応させて金属間化合物を得るのに、高圧鋳
造法を採用する。具体的には、鋳型の中に、セラミック
ス繊維の予成形体を置いて、それにアルミニウム溶湯を
3〜10MPaの圧力で鋳込む。これによって、鋳型中
のセラミックスとアルミニウム溶湯とが反応して金属間
化合物を生成する。従来アルミニウムとその他の金属、
非金属を反応させて金属間化合物を生成するのに一般的
に採用されているルツボ法では、ガス巣、引け巣、組織
の不均一などの欠陥が発生するが、高圧鋳造法では、鋳
込み凝固が完了するまで高い圧力をかけて強制的に成形
するので、このような欠陥のない鋳物が得られる。その
際、鋳造圧力が3MPa未満であると、ガス巣、引け
巣、組織の不均一が発生しやすく、また10MPaを越
えると特別な鋳型が必要となるなど設備上の問題が発生
し好ましくない。これによって、融点が1200〜13
00℃以上のセラミックス強化アルミニウム合金が得ら
れる。
In the present invention, a high pressure casting method is employed to obtain an intermetallic compound by reacting aluminum and ceramics. Specifically, a ceramic fiber preform is placed in a mold, and an aluminum melt is cast into the mold at a pressure of 3 to 10 MPa. As a result, the ceramics in the mold react with the molten aluminum to produce an intermetallic compound. Conventional aluminum and other metals,
The crucible method, which is generally used for reacting non-metals to produce intermetallic compounds, causes defects such as gas cavities, shrinkage cavities, and nonuniformity of the structure. Since a high pressure is applied until the molding is completed, the casting is obtained without such defects. At that time, if the casting pressure is less than 3 MPa, gas cavities, shrinkage cavities, and nonuniformity of the structure are likely to occur, and if it exceeds 10 MPa, there is a problem in equipment such as a special mold is required, which is not preferable. This gives a melting point of 1200-13
A ceramics-reinforced aluminum alloy having a temperature of 00 ° C. or higher can be obtained.

【0019】また、セラミックスとしては、ホウ酸アル
ミニウム,アルミナ,炭化珪素,窒化珪素,酸化亜鉛,
酸化マグネシウム,チタン酸カリウムの1種または2種
以上の繊維状のものを使用することができる。特に繊維
状のものを使用することによって、塊状のものと比べ、
材料の強度が大きくなる。また、セラミックス繊維は、
長さ10〜30μm,径0.5〜1.0μmの範囲が望
ましい。長さや径が上記範囲外であれば材料の強度が低
くなり好ましくない。
As ceramics, aluminum borate, alumina, silicon carbide, silicon nitride, zinc oxide,
Fibers of one kind or two or more kinds of magnesium oxide and potassium titanate can be used. Especially by using fibrous ones,
Increases the strength of the material. Also, the ceramic fiber is
It is desirable that the length is 10 to 30 μm and the diameter is 0.5 to 1.0 μm. If the length or diameter is out of the above range, the strength of the material becomes low, which is not preferable.

【0020】高周速で使用するのに適したレジンボンド
ホイールを調査するために、ポリイミド樹脂37容量
%、銅粉24容量%、ニッケルコートダイヤモンド砥粒
39容量%からなるポリイミド樹脂レジンボンド砥粒層
Aと、アルミニウム合金鋳物、機械構造物用炭素鋼、ク
ロムモリブデン鋼鋼材(調質材),高圧鋳造法のセラミ
ックス繊維強化アルミニウム合金,CFRPの4種類の
台金材料(表1参照)で構成される、直径350mm、
厚さ20mm、中心穴径30mm、砥粒層厚さ3mmの
JIS形状1A1ストレート円筒形状の、レジンボンド
ホイールの高速回転時の応力を、有限要素法解析ソフト
を用いて解析した。この場合、各材料の引張り強度及び
各材料と砥粒層の接着強度はテストピースから求めた。
In order to investigate a resin bond wheel suitable for use at a high peripheral speed, a polyimide resin resin bond abrasive consisting of 37% by volume of polyimide resin, 24% by volume of copper powder and 39% by volume of nickel-coated diamond abrasive grains. Layer A and aluminum alloy castings, carbon steel for machine structures, chrome molybdenum steel (tempered material), ceramic fiber reinforced aluminum alloy of high pressure casting method, CFRP (see Table 1) 350mm diameter,
The stress during high-speed rotation of the resin bond wheel of JIS shape 1A1 straight cylindrical shape having a thickness of 20 mm, a central hole diameter of 30 mm, and an abrasive grain layer thickness of 3 mm was analyzed using finite element method analysis software. In this case, the tensile strength of each material and the adhesive strength between each material and the abrasive layer were determined from the test piece.

【0021】[0021]

【表1】 [Table 1]

【0022】高速回転時にホイールに加わる応力は、台
金の穴径周り、また砥粒層では台金との界面の接線方向
の応力σtがそれぞれ最大になるため、その点に着目し
て解析を行った。この条件を用いて、周速100m/s
ecで使用することを想定し、JISの一般砥石の規定
を参考にして、安全係数を2として、最高使用周速度の
2倍の周速200m/secで回転させた場合の応力を
解析した。表2にその結果を示す。
The stress applied to the wheel during high-speed rotation is around the hole diameter of the base metal, and in the abrasive grain layer, the stress σt in the tangential direction at the interface with the base metal is the maximum, and therefore analysis is focused on this point. went. Using this condition, the peripheral speed is 100m / s
Assuming that it is used in ec, referring to the standard of JIS general grindstone, with a safety factor of 2, the stress when rotating at a peripheral speed of 200 m / sec which is twice the maximum peripheral speed was analyzed. Table 2 shows the results.

【0023】[0023]

【表2】 [Table 2]

【0024】台金の安全率を台金材料別に考察した結果
(表3参照)、従来のアルミニウム合金鋳物、機械構造
用炭素鋼の台金の安全率は3程度となっている。またク
ロムモリブデン鋼鋼材(調質材)、高圧鋳造法のセラミ
ックス繊維強化アルミニウム合金の台金の安全率は7〜
9程度と高くなっている。特にCFRPの安全率は15
程度と突出している。
As a result of considering the safety factor of the base metal for each base metal material (see Table 3), the safety factor of the base metal of the conventional aluminum alloy casting and carbon steel for machine structure is about 3. In addition, the safety factor of base metal of chrome molybdenum steel material (tempered material) and ceramics fiber reinforced aluminum alloy of high pressure casting method is 7-
It is as high as about 9. Especially, the safety factor of CFRP is 15
The degree is outstanding.

【0025】[0025]

【表3】 [Table 3]

【0026】また、砥粒層の接着強度に関して台金材料
別に考察した結果(表4参照)、従来の機械構造用炭素
鋼、クロムモリブデン鋼鋼材(調質材)の砥粒層の接着
強度の安全率は40程度となっている。また、高圧鋳造
法のセラミックス繊維強化アルミニウム合金の接着強度
の安全率は60程度と高くなっている。
As a result of considering the adhesive strength of the abrasive grain layer for each base metal material (see Table 4), the adhesive strength of the abrasive grain layer of the conventional carbon steel for machine structure and chrome molybdenum steel (tempered material) The safety factor is about 40. Further, the safety factor of the adhesive strength of the ceramics fiber reinforced aluminum alloy produced by the high pressure casting method is as high as about 60.

【0027】[0027]

【表4】 [Table 4]

【0028】結果は、アルミニウム合金鋳物およびCF
RPでは直付け自体が不可能で比較の対象にならず、本
発明品において明らかな優位性が見られた。
The results show that aluminum alloy castings and CF
With RP, direct attachment itself was not possible and it was not a target for comparison, and a clear superiority was observed in the product of the present invention.

【0029】[0029]

【実施例】【Example】

〔実施例1〕高圧鋳造法のセラミックス繊維強化アルミ
ニウム合金の、外径344mmの円筒状台金を芯型と
し、これを内径350mm円筒状外型、及び、2個のパ
ンチからなる金型の中央に配置した隙間に、ポリイミド
樹脂37容量%、炭化珪素24容量%、ニッケルコート
ダイヤモンド砥粒39容量%からなる粉末状砥粒層原料
を充填してパンチで1MPaをかけてプレスし、500
℃まで加熱した。次いで、この型に対して350MPa
の圧力をかけ、30分間保持し成形した。その後金型を
50℃まで冷却し、成形物を取り出した。
[Example 1] A cylindrical base metal of ceramic fiber reinforced aluminum alloy of high pressure casting method having an outer diameter of 344 mm was used as a core die, and this was used as a core outer die and a center of a die composed of two punches. The powdery abrasive grain layer raw material consisting of 37% by volume of polyimide resin, 24% by volume of silicon carbide, and 39% by volume of nickel-coated diamond abrasive grains is filled in the gap arranged at, and pressed with a punch at 1 MPa to press 500
Heated to ° C. Then 350 MPa for this mold
Molding was carried out by applying pressure for 30 minutes. After that, the mold was cooled to 50 ° C., and the molded product was taken out.

【0030】これによって、各種材料の台金の外周に砥
粒層を成形と同時に焼き付け接着したレジンボンドホイ
ールを得た。
As a result, a resin bond wheel was obtained in which an abrasive grain layer was formed on the outer periphery of a base metal of various materials and baked and adhered at the same time.

【0031】また、比較対象のため、外周曲率175m
m、内周曲率172mm、中心角15°の弧状の穴を有
した外型、及び2個の押しパンチからなる金型の隙間
に、ポリイミド樹脂37容量%、炭化珪素24容量%、
ニッケルコートダイヤモンド砥粒39容量%からなる粉
末状砥粒層原料を充填した。
For comparison, the outer peripheral curvature is 175 m.
m, an inner peripheral curvature of 172 mm, an outer die having an arcuate hole with a central angle of 15 °, and a die consisting of two pressing punches, in a gap between the polyimide resin, 37% by volume, and silicon carbide, 24% by volume.
A powdery abrasive grain layer raw material consisting of 39% by volume of nickel-coated diamond abrasive grains was filled.

【0032】上記金型に1MPaをかけてプレスし、5
00℃まで加熱した。次いで、この型に対して350M
Paの圧力をかけ、この状態を30分間保持し、成形し
た。その後金型を50℃まで冷却して、弧状の成形物を
取り出した。
Pressing the above mold by applying 1 MPa, 5
Heated to 00 ° C. Then 350M for this mold
A pressure of Pa was applied, this state was maintained for 30 minutes, and molding was performed. After that, the mold was cooled to 50 ° C., and the arc-shaped molded product was taken out.

【0033】上記砥粒層24個を、表1に示すクロムモ
リブデン鋼鋼材(調質材)、高圧鋳造法のセラミックス
繊維強化アルミニウム合金からなる外径344mmの台
金の外周にエポキシ樹脂接着剤を用いて、硬化温度15
0℃、硬化時間4時間で接着固定した。
An epoxy resin adhesive is applied to the outer periphery of a base metal having an outer diameter of 344 mm, which is made of a chromium molybdenum steel material (tempered material) shown in Table 1 and a ceramics fiber reinforced aluminum alloy of high pressure casting method. Using, curing temperature 15
Adhesion was fixed at 0 ° C. for 4 hours for curing.

【0034】これによって、各種材料の台金の外周に砥
粒層を接着したレジンボンドホイール2種類を得た。
As a result, two types of resin bond wheels were obtained in which the abrasive grain layer was adhered to the outer circumference of the base metal of various materials.

【0035】この砥粒層チップを成形し、その後台金に
接着する従来製法の2種、および、成形と同時に焼き付
け接着する本発明製法の1種、合計3種のスペックを、
各スペックに対し10個、合計30個のホイールで回転
試験を行った。
Three types of specifications, that is, two types of the conventional manufacturing method of molding the abrasive grain layer chip and then adhering it to the base metal, and one type of the manufacturing method of the present invention in which the abrasive grain layer chip is baked and bonded simultaneously with the molding, are specified.
A rotation test was conducted with a total of 30 wheels, 10 for each specification.

【0036】試験周速は、ホイール周速200m/se
cで使用することを想定し、JISの一般砥石の規定を
参考にして、安全係数を2として、最高使用周速度(J
IS−R6241)の2倍の周速400m/secで回
転試験を行った。表5にその結果を示す。
The test peripheral speed is a wheel peripheral speed of 200 m / se.
Assuming that it will be used in c, the safety factor is set to 2 and the maximum peripheral speed (J
The rotation test was performed at a peripheral speed of 400 m / sec which is twice that of IS-R6241). Table 5 shows the results.

【0037】[0037]

【表5】 [Table 5]

【0038】従来の接着法のホイールでは、各チップ毎
に接着強度のバラツキがあり、ホイール周速210〜4
00m/secにおいて、30〜50%のホイールに砥
粒層の剥離が発生した。これに対し、本発明品では、接
着強度が安定しているため、試験周速の400m/se
cにおいても全く剥離は発生しなかった。
In the conventional adhesion method wheel, there are variations in the adhesion strength among the chips, and the wheel peripheral speeds 210 to 4 are used.
At 00 m / sec, peeling of the abrasive grain layer occurred on 30 to 50% of the wheels. On the other hand, in the product of the present invention, since the adhesive strength is stable, the test peripheral speed of 400 m / se
No peeling occurred in c.

【0039】〔実施例2〕表1に示すクロムモリブデン
鋼鋼材(調質材)、高圧鋳造法のセラミックス繊維強化
アルミニウム合金の2種類の材料の外径344mmの円
筒状台金を芯型とし、これを内径350mmの円筒状外
型、及び、2個のパンチからなる金型の中央に配置した
隙間に、Cu粉50容量%、Sn粉25容量%、ダイヤ
モンド砥粒25容量%からなる粉末状砥粒層原料を充填
してパンチでプレスし、接触圧をかけて700℃まで加
熱した。次いで、この金型に対して、50MPaの圧力
をかけ成形した。これによって、各種材料の外周に砥粒
層を成形と同時に焼き付け接着したメタルボンドホイー
ルを得た。
[Example 2] A cylindrical base metal having an outer diameter of 344 mm of two kinds of materials, a chromium molybdenum steel steel material (tempered material) and a ceramics fiber reinforced aluminum alloy of high pressure casting method shown in Table 1, was used as a core type, This is a powder containing 50% by volume of Cu powder, 25% by volume of Sn powder, and 25% by volume of diamond abrasive grains in a gap arranged in the center of a cylindrical outer die having an inner diameter of 350 mm and a die consisting of two punches. The raw material for the abrasive grain layer was filled, pressed with a punch, and heated to 700 ° C. by applying contact pressure. Then, a pressure of 50 MPa was applied to this mold to perform molding. As a result, a metal bond wheel was obtained in which an abrasive grain layer was formed on the outer periphery of various materials and baked and adhered at the same time.

【0040】このホイールを用いて、周速200m/s
ecで使用することを想定し、JISの一般砥石の規定
を参考にして安全係数を2として、最高使用周速度(J
IS−R6241)の2倍の周速400m/secで回
転試験を行い、主軸モータの消費電力を測定した。表6
にその結果を示す。
Using this wheel, a peripheral speed of 200 m / s
Assuming that it will be used in ec, the safety factor is set to 2 with reference to JIS general grindstone regulations, and the maximum peripheral speed (J
A rotation test was performed at a peripheral speed of 400 m / sec, which is twice that of IS-R6241), and the power consumption of the spindle motor was measured. Table 6
Shows the results.

【0041】[0041]

【表6】 [Table 6]

【0042】結果は両メタルボンドホイールとも砥粒層
の剥離はないが、機械構造用炭素鋼台金の場合、孔周辺
に変形を生じた。また高速回転時の消費電力について
は、機械構造用炭素鋼を台金としたメタルボンドホイー
ルは1700Wと高い値を示した。一方、本発明品では
1350Wであった。
As a result, both metal bond wheels did not peel off the abrasive grain layer, but in the case of the carbon steel base metal for machine structure, deformation occurred around the holes. Regarding the power consumption during high-speed rotation, the metal bond wheel using carbon steel for machine structure as a base showed a high value of 1700W. On the other hand, the product of the present invention was 1350W.

【0043】[0043]

【発明の効果】本発明によって以下の効果を発揮するこ
とができる。
According to the present invention, the following effects can be exhibited.

【0044】(1)金属間化合物でマトリックスを形成
することによって、セラミックス強化アルミニウム合金
製台金の融点が高くなり、従来不可能であったアルミニ
ウム合金製台金への砥粒層の直付けが可能となった。
(1) By forming a matrix with an intermetallic compound, the melting point of the ceramics-reinforced aluminum alloy base metal becomes high, which makes it impossible to directly attach the abrasive layer to the aluminum alloy base metal, which has been impossible in the past. It has become possible.

【0045】(2)これによって、軽量でスピンドルモ
ータに負担をかけず比強度に優れ、しかも台金と砥粒層
の接着力の高い超砥粒ホイールが得られた。
(2) As a result, a super-abrasive wheel that is lightweight, has excellent specific strength without burdening the spindle motor, and has high adhesion between the base metal and the abrasive layer can be obtained.

【0046】(3)CFRPと比較して、高圧鋳造法の
セラミックス繊維強化アルミニウム合金には、繊維の方
向性がないため、設計の自由度が高く、台金の破損が発
生しにくい。
(3) Compared with CFRP, the ceramic fiber reinforced aluminum alloy produced by the high pressure casting method has no fiber orientation, so that the degree of freedom in design is high and the base metal is less likely to be damaged.

【0047】(4)鉄系の材料と比較して、高圧鋳造法
のセラミックス繊維強化アルミニウム合金は比剛性に優
れるため、高速回転においても台金が膨張せず、被加工
物の寸法精度が確保できる。
(4) Compared with iron-based materials, the ceramic fiber reinforced aluminum alloy of the high pressure casting method has excellent specific rigidity, so that the base metal does not expand even at high speed rotation, and the dimensional accuracy of the workpiece is secured. it can.

【0048】(5)砥粒層の成形と台金への固定が同時
にできるようになり、従来の接着製法の欠点であった接
着強度のバラツキがなくなり、接着強度が安定した。ま
た製造工程が簡略化され生産性がよく、加工コストの低
減が達成できる。
(5) Since the abrasive grain layer can be molded and fixed to the base metal at the same time, the variation of the adhesive strength, which is a drawback of the conventional adhesive manufacturing method, is eliminated, and the adhesive strength is stable. Further, the manufacturing process is simplified, the productivity is good, and the processing cost can be reduced.

【0049】(6)CFRP等の材料と比較して、熱伝
導率が高く放熱性に優れ、また、従来の鉄系の材料と比
較して劣ることはなく、研削中に発生した研削ポイント
の熱を効果的に除去し、切れ味と寿命を向上できる。
(6) Compared with a material such as CFRP, it has a high thermal conductivity and an excellent heat dissipation property, and is not inferior to a conventional iron-based material. It can effectively remove heat and improve sharpness and life.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムとセラミックスとが反応し
た金属間化合物によってマトリックスが形成されたセラ
ミックス強化アルミニウム合金製台金に、直付けにより
超砥粒層が固着された超砥粒ホイール。
1. A superabrasive grain wheel in which a superabrasive grain layer is fixed by direct attachment to a ceramics-reinforced aluminum alloy base metal in which a matrix is formed by an intermetallic compound in which aluminum reacts with ceramics.
【請求項2】 前記セラミックス強化アルミニウム合金
の融点が1200〜1300℃以上であることを特徴と
する請求項1記載の超砥粒ホイール。
2. The superabrasive wheel according to claim 1, wherein the melting point of the ceramics-reinforced aluminum alloy is 1200 to 1300 ° C. or higher.
【請求項3】 前記セラミックスが、ホウ酸アルミニウ
ム,アルミナ,炭化珪素,窒化珪素,酸化亜鉛,酸化マ
グネシウム,チタン酸カリウムの1種または2種以上の
繊維状であることを特徴とする請求項1記載の超砥粒ホ
イール。
3. The fibrous material of one or more of aluminum borate, alumina, silicon carbide, silicon nitride, zinc oxide, magnesium oxide, potassium titanate, and the like. The described superabrasive wheel.
【請求項4】 前記セラミックス繊維が、長さ10〜3
0μm,径0.5〜1.0μmの範囲であることを特徴
とする請求項3記載の超砥粒ホイール。
4. The ceramic fiber has a length of 10 to 3
The superabrasive wheel according to claim 3, wherein the superabrasive wheel has a diameter of 0 µm and a diameter of 0.5 to 1.0 µm.
【請求項5】 アルミニウムとセラミックスとを高圧鋳
造法により反応させて金属間化合物を生成し、これによ
ってセラミックス強化アルミニウム合金製の台金を形成
し、その後同台金に焼結法によって超砥粒層を直付け成
形することを特徴とする超砥粒ホイールの製造方法。
5. An aluminum and ceramics are reacted by a high pressure casting method to produce an intermetallic compound, whereby a base metal made of a ceramics reinforced aluminum alloy is formed, and thereafter a superabrasive grain is sintered on the base metal by a sintering method. A method for manufacturing a superabrasive wheel, which comprises directly forming a layer.
【請求項6】 請求項3記載のセラミックス繊維を用い
ることを特徴とする請求項5記載の超砥粒ホイールの製
造方法。
6. The method of manufacturing a superabrasive wheel according to claim 5, wherein the ceramic fiber according to claim 3 is used.
【請求項7】 前記鋳造圧力が3〜10MPaであるこ
とを特徴とする請求項5又は6記載の超砥粒ホイールの
製造方法。
7. The method of manufacturing a superabrasive wheel according to claim 5, wherein the casting pressure is 3 to 10 MPa.
JP34483495A 1995-12-05 1995-12-05 Super abrasive wheel and method of manufacturing the same Expired - Lifetime JP3359482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34483495A JP3359482B2 (en) 1995-12-05 1995-12-05 Super abrasive wheel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34483495A JP3359482B2 (en) 1995-12-05 1995-12-05 Super abrasive wheel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09155745A true JPH09155745A (en) 1997-06-17
JP3359482B2 JP3359482B2 (en) 2002-12-24

Family

ID=18372341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34483495A Expired - Lifetime JP3359482B2 (en) 1995-12-05 1995-12-05 Super abrasive wheel and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3359482B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176771A (en) * 1995-10-27 1997-07-08 Osaka Diamond Ind Co Ltd Super-abrasive grindstone and its production
JP2018528871A (en) * 2015-07-24 2018-10-04 テリー エイ. ルイス、 Thread repair tool and method for making and using the same
DE102020115476A1 (en) 2020-06-10 2021-12-16 Rhodius Schleifwerkzeuge Gmbh & Co. Kg Abrasive with an abrasive skeleton

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176771A (en) * 1995-10-27 1997-07-08 Osaka Diamond Ind Co Ltd Super-abrasive grindstone and its production
JP2018528871A (en) * 2015-07-24 2018-10-04 テリー エイ. ルイス、 Thread repair tool and method for making and using the same
DE102020115476A1 (en) 2020-06-10 2021-12-16 Rhodius Schleifwerkzeuge Gmbh & Co. Kg Abrasive with an abrasive skeleton

Also Published As

Publication number Publication date
JP3359482B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
EP2012354B1 (en) Method of producing a base plate for a power module
CZ20003542A3 (en) Grinding tool
JP3017471B2 (en) Abrasive tools suitable for mounting on grinding equipment
JP2003512937A (en) Thin whetstone rigidly connected
CN107398836A (en) A kind of bonding agent, semiconductor packages processing ultra-thin emery wheel and preparation method thereof
JP3359482B2 (en) Super abrasive wheel and method of manufacturing the same
KR100611936B1 (en) Base disk type grinding wheel
JPH0129842B2 (en)
CN112997300B (en) Heat radiation member and method for manufacturing same
JP2001030175A (en) Super grinding particle cutter
JP3189535B2 (en) Grinding wheel
JP3135086B2 (en) Resin bond wheel manufacturing method
JPS62213966A (en) Manufacture of grinding wheel
JP4674821B2 (en) Super abrasive wheel and manufacturing method thereof
JP3410438B2 (en) Super abrasive wheel for high speed grinding
CN219275578U (en) CBN grinding wheel with ceramic corundum as matrix
CN215318114U (en) Resin binder superhard grinding wheel substrate
JPH08294868A (en) Grinding/polishing tool and manufacture thereof
JP5499619B2 (en) Manufacturing method of grinding wheel core and manufacturing method of grinding wheel
JP3009081B2 (en) Lightweight superabrasive metal bond wheel and method of manufacturing the same
JPH10128523A (en) Metal-ceramic composite material and its production
CN112828779A (en) Preparation method of aluminum-based grinding wheel and grinding wheel
JP4538716B2 (en) Metal bond grindstone and its manufacturing method
JP2002103232A (en) Grinding tool and its manufacturing method
JP2003251566A (en) Super abrasive grain cutting wheel with cermet as base plate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term