JPH09155565A - Electron beam welding method and its welding machine - Google Patents

Electron beam welding method and its welding machine

Info

Publication number
JPH09155565A
JPH09155565A JP34638195A JP34638195A JPH09155565A JP H09155565 A JPH09155565 A JP H09155565A JP 34638195 A JP34638195 A JP 34638195A JP 34638195 A JP34638195 A JP 34638195A JP H09155565 A JPH09155565 A JP H09155565A
Authority
JP
Japan
Prior art keywords
welding
electron beam
electron
metal
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34638195A
Other languages
Japanese (ja)
Inventor
Hiroaki Kanayama
宏明 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAYAMA MACH KK
Original Assignee
KANAYAMA MACH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAYAMA MACH KK filed Critical KANAYAMA MACH KK
Priority to JP34638195A priority Critical patent/JPH09155565A/en
Publication of JPH09155565A publication Critical patent/JPH09155565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electron beam welding method capable of performing the deep penetration without generating any discharge phenomenon. SOLUTION: At least a first deflection coil 3 and a second deflection coil 4 are arranged between an electron gun 1 and a vacuum welding chamber to deflect the route of the electron beam B to be irradiated from the electron gun 1 by the deflection coils 3, 4, and the route of the electron beam B is an irradiation beam part to irradiate the electron beam from the electron gun 1, a deflected beam part to irradiate the electron beam from the beam part at an appropriate angle θ, and an irradiated beam part to irradiate the electron beam from the deflected beam part to a welded part of the welding metal D so as to prevent the electron gun 1 or the electron beam B from being affected by the metallic vapor, etc., generated from the welded part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電子ビームを利
用したビーム溶接方法とその溶接機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a beam welding method using an electron beam and a welding machine therefor.

【0002】[0002]

【従来の技術】アルミニウム合金(以下、アルミ系材料
と称する)を用いて製品を製作する場合、アルミ系材料
の溶接が困難であるため、アルミ系塊材より削り出す
か、分割製造してろう付けする手段が多く用いられてい
る。アルミ系材料の溶接手段として、非鉄金属や合金鋼
等の溶接に適したテイグ溶接(tungsten in
ert)が用いられている。このテイグ溶接によってア
ルミ系材料を溶接する場合、図4の如く金属材料D1,
D2,D3の接合部にV字形やU字形の開先J(溝とも
称する)を夫々形成するか、一方の材料接合部に開先J
を形成し、材料D1,D2,D3を突合わせ、その開先
Jにタングステンやタングステン合金を電極として、ヘ
リュウムやアルゴン等の不活性ガス雰囲気中で溶接Kす
るものである。
2. Description of the Related Art When a product is manufactured using an aluminum alloy (hereinafter referred to as an aluminum-based material), it is difficult to weld the aluminum-based material. Means of attaching are often used. Tungsten in suitable for welding non-ferrous metals and alloy steels as a welding means for aluminum-based materials
ert) is used. When aluminum-based material is welded by this TEG welding, as shown in FIG.
A V-shaped or U-shaped groove J (also referred to as a groove) is formed at the joint of D2 and D3, respectively, or a groove J is formed at one of the material joints.
Are formed, the materials D1, D2 and D3 are butted, and the groove J is welded K in an inert gas atmosphere such as helium or argon using tungsten or a tungsten alloy as an electrode.

【0003】アルミ系材料の溶接が困難な理由は以下の
通りである。 熱伝導が鋼の約4倍、比熱が鋼の約2倍、溶融潜熱
が鋼の約1・5倍であること。即ち、融点が低いにもか
かわらず、局部的に溶融させる事が難しく、多量の熱を
急速に供給する必要があること。 上記の性質によって、溶接母材が広範囲に溶接の影
響を受けやすいこと。 酸素との親和力が大きいので、溶接中に溶融池を不
活性ガス(アルゴン、ヘリュウム)で十分にシールドす
る必要がある。酸化被膜が生ずると、酸化被膜は薄いが
硬く、緻密で高融点(約2000度)のため、取除きが
困難である。溶接母材同志、及び溶接母材と溶加材との
融合を妨げる。 線膨脹係数が大きいため(鋼の約2倍)、溶接歪み
の発生も大きい。凝固収縮率が大きいため(鋼の約1・
5倍)、凝固割れ感受性も大きい。 電導度が大きいため、電気抵抗溶接では大容量の電
源が必要。 水素ガス吸収量が大きい。即ち、溶融アルミの水素
ガス吸収量が大きいにもかかわらず、固層への溶解度は
小さい(気孔の発生傾向大)。
The reasons why it is difficult to weld aluminum-based materials are as follows. Thermal conductivity is about 4 times that of steel, specific heat is about 2 times that of steel, and latent heat of fusion is about 1.5 times that of steel. That is, despite the low melting point, it is difficult to locally melt, and it is necessary to rapidly supply a large amount of heat. Due to the above properties, the welding base metal is susceptible to wide range welding. Due to its high affinity with oxygen, it is necessary to sufficiently shield the molten pool with inert gas (argon, helium) during welding. When an oxide film is formed, it is thin but hard, dense, and has a high melting point (about 2000 ° C.), which makes it difficult to remove. It prevents the welding base metal and the fusion of the welding base metal and the filler metal. Since the linear expansion coefficient is large (about twice that of steel), welding distortion is also large. Due to the large solidification shrinkage (about 1
5 times), and also has a high solidification cracking susceptibility. Because of its high conductivity, electric resistance welding requires a large capacity power supply. Large amount of hydrogen gas absorption. That is, although the molten aluminum absorbs a large amount of hydrogen gas, the solubility in the solid layer is small (the tendency for pores to be large).

【0004】近年、アルミ系材料を電子ビームやレーザ
ービーム等の高エネルギー密度熱源を用いて溶接するこ
とも試みられている。電子ビーム溶接方法は図1(B)
の如く、真空中で電子を高速度に加速させ、かつ高密度
に収束することによって得られた高エネルギー密度の電
子ビームBを溶接金属Dに照射し、溶融溶着するもの
で、電子ビームBの密度はアーク溶接の5000倍以上
にも達し、電子ビームBが溶接金属Dに照射すると、そ
の部分が瞬時的に発熱し、溶融、気化して溶着する。
In recent years, it has been attempted to weld an aluminum material using a high energy density heat source such as an electron beam or a laser beam. The electron beam welding method is shown in Fig. 1 (B).
As described above, the welding metal D is irradiated with the electron beam B having a high energy density obtained by accelerating the electrons at a high speed in a vacuum and converging the electrons at a high density to melt and weld the electron beam B. The density reaches 5000 times or more that of arc welding, and when the electron beam B irradiates the weld metal D, the portion instantaneously generates heat, melts, vaporizes, and welds.

【0005】電子ビーム溶接方法の特徴は以下の通りで
ある。 高真空中(10−4Torr)で溶接するため、酸
化物の混入がない。 エネルギー密度が大で、高速度溶接が可能である。 10mm程度の深溶け込みが可能で、しかも一回の溶
接で溶着し得る。 溶接母材の熱影響が少なく、母材の変形も少ない。 数値制御によって管理し得るため、再現性が高い。
The features of the electron beam welding method are as follows. Since welding is performed in a high vacuum (10-4 Torr), no oxide is mixed. High energy density enables high speed welding. Penetration of about 10 mm is possible, and welding can be performed with one welding. The heat effect of the welding base material is small and the base material is not deformed much. Reproducibility is high because it can be managed by numerical control.

【0006】[0006]

【発明が解決しようとする課題】アルミ系材料は熱伝導
度が非常に良いため、溶融溶接には大きな入熱が必要で
あり、そのため溶接による母材の熱変化や、溶接中にお
ける大気の巻き込みに起因した気孔の発生等による溶接
部の品質劣化を招き易い問題点がある。またアルミ系材
料を電子ビームによって溶接した場合、鉄鋼材料と比較
して放電現象(アーキングとも称する)が発生し易く、
微小の巣が多数存在する多孔性の内部欠陥(ポロシテイ
とも称する)を招きやすい問題点があった。
Since aluminum-based materials have very good thermal conductivity, a large amount of heat input is required for fusion welding. Therefore, the heat change of the base metal due to welding and the inclusion of air during welding are required. There is a problem that the quality of the welded portion is easily deteriorated due to the generation of pores due to the above. In addition, when an aluminum-based material is welded by an electron beam, a discharge phenomenon (also called arcing) is more likely to occur as compared with a steel material,
There is a problem that porous internal defects (also referred to as porosity) in which a large number of minute cavities are present are likely to be caused.

【0007】電子ビーム溶接時に発生する放電現象は、
汚れの程度と密接な関係にあるが、それ以上に加速電圧
と密接な関係にあり、加速電圧が高いほど汚れに対して
敏感になると考えられている。即ち、加速電圧を低くす
れば減少するが、加速電圧を低くするほど溶け込みが浅
くなるし、反対に加速電圧を高くして溶け込みを深くす
るほど放電現象が多発し、連続溶接が不可能になる。そ
の結果、10mm程度の肉厚しか連続溶接し得なかった。
The discharge phenomenon that occurs during electron beam welding is
Although it is closely related to the degree of dirt, it is more closely related to the acceleration voltage, and it is considered that the higher the acceleration voltage, the more sensitive it is to dirt. That is, the lower the accelerating voltage is, the more it decreases, but the lower the accelerating voltage is, the shallower the penetration becomes. On the contrary, the higher the accelerating voltage is and the deeper the penetration is, the more the electric discharge phenomenon occurs, and continuous welding becomes impossible. . As a result, continuous welding was possible only with a wall thickness of about 10 mm.

【0008】放電現象は電子ビームにより溶融した金属
中に含まれるガス成分や、イオン化された金属蒸気がビ
ーム進路を通って、陰極−陽極間に到達することによっ
て誘発されるか、または電子銃室内に浸入した異物(油
脂等)から生じるガス成分によっても誘発されるものと
考えられる。従って、電子銃が金属蒸気等によって汚染
するほど放電現象が多発し、その放電現象によってビー
ム溶接も一時停止するため、保守の頻度も高くなる問題
点があった。また真空度を加減したり、電子ビームの加
速等を調整しても、放電現象の発生を軽減することはで
きなかった。
The discharge phenomenon is induced by the gas component contained in the metal melted by the electron beam, the ionized metal vapor reaching the cathode-anode through the beam path, or the electron gun chamber. It is also considered to be induced by the gas component generated from the foreign matter (oil and fat etc.) that has penetrated into the. Therefore, as the electron gun is contaminated with metal vapor or the like, a discharge phenomenon occurs more frequently, and the beam welding is also temporarily stopped due to the discharge phenomenon, resulting in a problem that the frequency of maintenance becomes high. Moreover, even if the degree of vacuum is adjusted or the electron beam acceleration or the like is adjusted, the occurrence of the discharge phenomenon cannot be reduced.

【0009】アルミ系塊材から製品を削り出す場合、高
価な材料に無駄が多く、その分、コスト高となるし、ア
ルミ製品をテイグ溶接にて形成する場合、アルミ系材料
の溶接部に開先加工を要し、しかも開先に数度の溶接が
必要となるので、非能率的な問題点もあった。そこでこ
の発明は、従来技術の有するこのような問題点に鑑みて
なされたものであり、その目的とするところは、放電現
象を発生しないで深溶け込みし得る電子ビーム溶接方法
とその溶接機を提供することにある。
When a product is cut out from an aluminum-based lump material, there is much waste of expensive material, and the cost increases accordingly, and when forming an aluminum product by TIG welding, it is opened at the welded part of the aluminum-based material. There is also a problem of inefficiency because it requires pre-machining and requires welding of the groove several times. Therefore, the present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide an electron beam welding method and a welding machine therefor capable of deep penetration without causing a discharge phenomenon. To do.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の電子ビーム溶接方法は、電子銃から照射さ
れる電子ビームの進路を、途中から偏向して溶接金属の
溶接部に照射し、電子銃や電子ビームが溶接部から発生
する金属蒸気等から影響を受けないようにしたものであ
る。
In order to achieve the above object, the electron beam welding method of the present invention irradiates the welded portion of the weld metal by deflecting the course of the electron beam emitted from the electron gun from the middle. However, the electron gun and the electron beam are not affected by the metal vapor or the like generated from the welded portion.

【0011】本発明の電子ビーム溶接機は、電子銃と真
空溶接室の間に、少なくとも第一偏向コイルと第二偏向
コイルを配置し、該偏向コイルによって電子銃から照射
される電子ビームの進路を、電子銃から照射する照射元
ビーム部と、該ビーム部から適宜角度で照射する偏向ビ
ーム部、及び偏向ビーム部から溶接部に向けて照射する
照射先ビーム部によって途中から偏向し、電子銃や電子
ビームが溶接部から発生する金属蒸気等から影響を受け
ないようにしたものである。
In the electron beam welding machine of the present invention, at least the first deflection coil and the second deflection coil are arranged between the electron gun and the vacuum welding chamber, and the path of the electron beam emitted from the electron gun by the deflection coil is arranged. Is deflected from the middle by an irradiation source beam part irradiated from the electron gun, a deflection beam part irradiated from the beam part at an appropriate angle, and an irradiation destination beam part irradiated from the deflection beam part toward the welding part. The electron beam is not affected by the metal vapor generated from the weld.

【0012】[0012]

【発明の実施の形態】先ず本発明による電子ビーム溶接
方法の基本原理を図1(A)により説明すれば、電子銃
1より照射される電子ビームBの進路を、少なくとも偏
向コイル3,4によって途中から偏向するもので、電子
ビームBの進路を電子銃1から照射する照射元ビーム部
b1と、該ビーム部b1から適宜角度θで照射する偏向
ビーム部b2、及び偏向ビーム部b2から溶接金属Dの
溶接部に向けて照射する照射先ビーム部b3と成すもの
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the basic principle of the electron beam welding method according to the present invention will be described with reference to FIG. 1 (A). The course of the electron beam B emitted from the electron gun 1 is at least deflected by the deflection coils 3 and 4. The beam is deflected halfway, and the irradiation source beam part b1 for irradiating the path of the electron beam B from the electron gun 1, the deflection beam part b2 for irradiating the beam part b1 at an appropriate angle θ, and the deflection beam part b2 for welding metal The irradiation target beam portion b3 for irradiating the welding portion D is formed.

【0013】次に本発明による電子ビーム溶接機の実施
形態を図2に基づき説明すれば、第一真空室5の下に第
二真空室6を、該真空室6の下に真空溶接室7を設け、
第一真空室5に電子銃1を収め、第二真空室6の中間部
にレンズコイル2と第一偏向コイル3を配置すると共
に、下部に第二偏向コイル4を配置し、一系統の真空装
置8を第一真空室5と第二真空室6、及び真空室溶接室
7に接続するか、真空装置8を真空溶接室7とそれ以外
に分けて二系統に接続する。真空装置8を二系統に分け
て接続すると、電子銃1まで達する金属蒸気率を更に低
減することが可能である。また第一真空室5と第二真空
室6を一室に構成することも可能である。
Next, an embodiment of the electron beam welding machine according to the present invention will be described with reference to FIG. 2. A second vacuum chamber 6 is provided under the first vacuum chamber 5 and a vacuum welding chamber 7 is provided under the vacuum chamber 6. Is provided
The electron gun 1 is housed in the first vacuum chamber 5, the lens coil 2 and the first deflection coil 3 are arranged in the middle part of the second vacuum chamber 6, and the second deflection coil 4 is arranged in the lower part, so that a vacuum system for one system is formed. The device 8 is connected to the first vacuum chamber 5, the second vacuum chamber 6 and the vacuum chamber welding chamber 7, or the vacuum device 8 is divided into the vacuum welding chamber 7 and the others and connected to two systems. If the vacuum device 8 is divided into two systems and connected, it is possible to further reduce the metal vapor rate reaching the electron gun 1. It is also possible to configure the first vacuum chamber 5 and the second vacuum chamber 6 as one chamber.

【0014】レンズコイル2は電子銃1から照射するビ
ームBの進路上に配置するもので、静電レンズや磁界レ
ンズ、或いは収集用電子レンズを用いる。第一偏向コイ
ル3は電子銃1から照射するビームBの進路上に配置
し、第二偏向コイル4は偏向ビーム部b2と照射先ビー
ム部b3の進路交差部に配置するもので、両偏向コイル
3,4には静電偏向式、或いは電磁偏向式を用いる。真
空溶接室7の少なくとも一方に出入口71を設け、該出
入口71に扉72を開閉自在に、且つ密閉可能に備え、
出入口71より作業台73を室内外に出入するものであ
る。
The lens coil 2 is arranged on the path of the beam B emitted from the electron gun 1, and uses an electrostatic lens, a magnetic lens or a collecting electron lens. The first deflection coil 3 is arranged on the path of the beam B emitted from the electron gun 1, and the second deflection coil 4 is arranged at the intersection of the paths of the deflection beam part b2 and the irradiation destination beam part b3. Electrostatic deflection type or electromagnetic deflection type is used for 3 and 4. An inlet / outlet 71 is provided in at least one of the vacuum welding chambers 7, and a door 72 is provided at the inlet / outlet 71 so as to be openable / closable and sealable.
The workbench 73 is moved in and out through the doorway 71.

【0015】第二真空室6の上部にコラムバルブ61と
オリフィス62を設け、第一偏向コイル3より下方の第
二真空室6に、溶接状態を見る鏡63とCCDカメラ
(charge coupled device ca
mera)64を備えることが望ましい。真空装置8に
は、例えばロータリーポンプ、メカニカルブースターポ
ンプ、ディフュージョンポンプ等を用いる。
A column valve 61 and an orifice 62 are provided above the second vacuum chamber 6, and a mirror 63 for observing a welding state and a CCD (charge coupled device ca) are provided in the second vacuum chamber 6 below the first deflection coil 3.
It is desirable to include a mera 64. For the vacuum device 8, for example, a rotary pump, a mechanical booster pump, a diffusion pump or the like is used.

【0016】本発明による電子ビーム溶接方法とその溶
接機は上記の通りであるから、先ず作業台73の上に溶
接金属Dを配置し、該作業台73を真空溶接室7の出入
口71より内部に入れ、出入口71を扉72にて閉鎖し
た後、真空装置8を作動し、真空溶接室7と真空室5,
6を真空状態にする。次いで電子銃1より溶接金属Dに
向けて電子ビームBを照射すると、電子銃1より照射さ
れた電子ビームBは、先ず電子銃1の照射方向に沿って
照射元ビーム部b1が照射した後、偏向コイル3,4に
て照射元ビーム部b1から適宜角度θに偏向ビーム部b
2が照射し、更に偏向ビーム部b2から溶接金属Dに向
けて照射先ビーム部b3が照射する。
Since the electron beam welding method and the welding machine therefor according to the present invention are as described above, first, the welding metal D is placed on the work table 73, and the work table 73 is placed inside the entrance 71 of the vacuum welding chamber 7. , The door 71 is closed by the door 72, the vacuum device 8 is activated, the vacuum welding chamber 7 and the vacuum chamber 5,
6 is evacuated. Next, when the electron beam B is radiated from the electron gun 1 toward the weld metal D, the electron beam B radiated from the electron gun 1 is first radiated by the radiation source beam part b1 along the radiation direction of the electron gun 1, Deflection beam portion b is set at an appropriate angle θ from irradiation source beam portion b1 by deflection coils 3 and 4.
2, and the irradiation target beam part b3 irradiates the weld metal D from the deflected beam part b2.

【0017】電子銃1より照射した電子ビームBは、電
子銃1の照射部より外側に偏向照射されるので、例えビ
ーム溶接によって溶接部から金属蒸気が拡散発生して
も、発生した金属蒸気は真空装置8によって速やかに回
収され、溶接部から偏向している電子銃1に達すること
がない。その結果、電子銃1や電子ビームBに対する金
属蒸気等の影響が少なくなり、金属蒸気による放電現象
(金属蒸気に起因する絶縁破壊、或いは過電流の異常現
象を含む)も著しく低減するため、加速電圧を高め、電
子ビームBの威力を高めることができる。
Since the electron beam B radiated from the electron gun 1 is deflected and radiated to the outside of the irradiation portion of the electron gun 1, even if the metal vapor diffuses from the welded portion due to the beam welding, the generated metal vapor is generated. It is quickly recovered by the vacuum device 8 and does not reach the deflected electron gun 1 from the welded portion. As a result, the influence of the metal vapor or the like on the electron gun 1 and the electron beam B is reduced, and the discharge phenomenon due to the metal vapor (including the dielectric breakdown due to the metal vapor or the abnormal phenomenon of the overcurrent) is significantly reduced. The voltage can be increased and the power of the electron beam B can be increased.

【0018】[0018]

【実施例】本発明による電子ビーム溶接機(以下、D−
KMと称する)と従来電子ビーム溶接機(以下、S−T
Eと称する)による溶接状態を比較する。D−KMとS
−TEの性能は表1の通りである。
EXAMPLES An electron beam welding machine according to the present invention (hereinafter referred to as D-
KM) and conventional electron beam welder (hereinafter, S-T)
The welding state according to (E) is compared. D-KM and S
-TE performance is shown in Table 1.

【表1】 [Table 1]

【0019】D−KMとS−TEの溶接条件は表2の通
りである。
The welding conditions for D-KM and S-TE are shown in Table 2.

【表2】 [Table 2]

【0020】電子ビーム溶接に用いる溶接金属D(実施
例においては試験金属と称する)として、A5052
(JIS)のアルミ合金を用い、試験金属D1乃至試験
金属D3の厚さtを50mm、幅Sを23mm、長さLを3
00mmとし、試験金属D4の厚さtを50mm、幅Sを2
3mm、長さLを69mmとする。試験金属D1乃至試験金
属D3を図5の如く並列に順次ビーム溶接し、その一方
を再度ビーム溶接して、ビーム溶接によって生じた不規
則なビードEを化粧ビードFと成した後、並列にビーム
溶接した試験金属D1乃至試験金属D3の一端に、試験
金属D4をビーム溶接した。試験金属D1乃至試験金属
D4の接合部におけるビーム溶接の溶け込みと、接合部
以外におけるビーム溶接の溶け込みを比較するため、図
5の如く並列にビーム溶接した試験金属D1乃至試験金
属D3に跨がって電子ビームBを照射した。これをテス
ト溶接Tとする。
As a weld metal D (referred to as a test metal in the examples) used for electron beam welding, A5052 is used.
Using a (JIS) aluminum alloy, the test metal D1 to the test metal D3 have a thickness t of 50 mm, a width S of 23 mm, and a length L of 3
The test metal D4 has a thickness t of 50 mm and a width S of 2
3mm and length L is 69mm. The test metals D1 to D3 are sequentially beam-welded in parallel as shown in FIG. 5, one of them is beam-welded again to form the irregular beads E generated by the beam welding as the decorative beads F, and then the beams are beamed in parallel. The test metal D4 was beam-welded to one end of the welded test metal D1 to test metal D3. In order to compare the penetration of the beam welding in the joints of the test metals D1 to D4 and the penetration of the beam welding in the portions other than the joints, as shown in FIG. And electron beam B was irradiated. This is called test welding T.

【0021】D−KMによって電子ビーム溶接した試験
金属D1乃至試験金属D4の状態を外観について観測す
ると、図10の如くビーム照射側より反対側に溶け込み
が貫通していた。化粧ビードFを除く、ビーム照射側の
ビードE周辺には、かなり多くのスパッタ(ビーム溶接
中に飛び散るスラグや金属の粒)がみられ、ビードEは
不整であった。これはビーム加熱によって発生した金属
蒸気が狭く深いビーム孔を通って上昇する際、流れ込ん
できた溶融金属を吹出させたものと思われる。
When the appearances of the test metals D1 to D4, which were electron beam welded by the D-KM, were visually observed, the penetration penetrated from the beam irradiation side to the opposite side as shown in FIG. Except for the cosmetic beads F, a considerable amount of spatter (slag and metal particles scattered during beam welding) was found around the beads E on the beam irradiation side, and the beads E were irregular. This is probably because the metal vapor generated by the beam heating was blown out of the molten metal that had flowed in when it rose through the narrow and deep beam hole.

【0022】S−TEによって電子ビーム溶接した試験
金属D1乃至試験金属D4の状態を外観について観測す
ると、図11の如くビーム照射側のビードEに目立った
不整はみられないが、反対側に溶け込みの貫通形跡がな
いので、電子ビームBの照射は50mmに達していないこ
とがわかる。ビード幅はD−KMより若干太いので、ビ
ームBのエネルギー損失が多いと考えられる。また酸化
が著しかった。
Observing the appearance of the test metals D1 to D4 which were electron beam welded by S-TE, the beads E on the beam irradiating side were not conspicuously irregular as shown in FIG. 11, but melted on the opposite side. It can be seen that the irradiation of the electron beam B has not reached 50 mm because there is no trace of the penetration. Since the bead width is slightly thicker than D-KM, it is considered that the energy loss of the beam B is large. Also, the oxidation was remarkable.

【0023】D−KMによって電子ビーム溶接した試験
金属D1乃至試験金属D3を図6の如くC1に沿って縦
断し、その切断面C1における溶け込み深さを測定した
所、金属表面dより内部の3/4程度まで平行な溶け込
みが形成され、図12の如く溶け込み深さは約50mmに
達していた。これは加速電圧が高いことと、ビームBの
出力特性により、入熱初期段階(被溶接物表面)でのビ
ームBのエネルギー損失が少なく、ビーム孔が深く形成
されるものと考えられる。このことから少ない入熱量で
深い溶け込みが得られることが理解できる。
The test metals D1 to D3, which were electron beam welded by D-KM, were longitudinally cut along C1 as shown in FIG. 6, and the penetration depth at the cut surface C1 was measured. A parallel penetration was formed up to about / 4, and the penetration depth reached about 50 mm as shown in FIG. It is considered that this is because the energy loss of the beam B at the initial stage of heat input (surface of the object to be welded) is small and the beam hole is deeply formed due to the high accelerating voltage and the output characteristic of the beam B. From this, it can be understood that deep penetration can be obtained with a small heat input amount.

【0024】S−TEによって電子ビーム溶接した試験
金属D1乃至試験金属D3を、前記と同様に図6のC1
に沿って縦断し、その切断面C1における溶け込み深さ
を測定した所、図14(A)の如くビードEの形状は太
く、ビードEの先端に向かって徐々に細くなった形であ
る。溶け込み深さは約40mmに達するも、金属表面dで
のビームBのエネルギー損失が大きくなり、深い溶け込
みが得られないものと思われる。尚、S−TEの加速電
圧をD−KMより低く設定したのは、構造上、加速電圧
を120KV以上に上げると、電子銃1の近くで放電が
起き、ビーム溶接が困難になるためである。
The test metals D1 to D3 electron-beam welded by S-TE were replaced with C1 in FIG. 6 in the same manner as described above.
When the depth of penetration in the cut surface C1 was measured, the bead E was thick as shown in FIG. 14 (A), and was gradually tapered toward the tip of the bead E. Although the penetration depth reaches about 40 mm, the energy loss of the beam B on the metal surface d becomes large, and it is considered that deep penetration cannot be obtained. The S-TE accelerating voltage is set lower than the D-KM because, due to the structure, when the accelerating voltage is increased to 120 KV or more, electric discharge occurs near the electron gun 1 and beam welding becomes difficult. .

【0025】上記試験金属D1乃至試験金属D4におい
て、2本のビームBが交差する箇所を図6のC2に沿っ
て夫々切断し、その切断面C2における溶け込み深さを
測定した所、D−KMにあっては、そのマクロ組織は図
13の如く、ビードEの先端に多孔性の溶接欠陥は存在
するが、交差したビードEとの境界付近に多孔性の溶接
欠陥等はみられなかった。S−TEにあっては図14
(B)の如く、交差したビードEとの境界付近に欠陥は
みられなかった。
In the test metals D1 to D4, the intersections of the two beams B were cut along the line C2 in FIG. 6, and the penetration depth at the cut surface C2 was measured. In that case, as shown in FIG. 13, the macrostructure had a porous welding defect at the tip of the bead E, but no porous welding defect was found in the vicinity of the boundary with the intersecting bead E. FIG. 14 for S-TE
As shown in (B), no defect was found in the vicinity of the boundary with the intersecting bead E.

【0026】D−KMによって電子ビーム溶接した試験
金属D2と試験金属D3の溶接部を図7のC3の如く切
断し、その切断面C3における内部欠陥を測定した所、
化粧ビードFの先端に図15の如くブロック状の多孔性
の溶接欠陥が、溶接方向にほぼ規則的に分布していた。
多孔性の溶接欠陥は金属表面dより45〜50mmの範囲
にみられる。ビームBは溶接方向に安定して照射されて
いることがわかる。また継手接合部として有効な範囲
は、ビードE先端の多孔性の溶接欠陥、及びビードEの
表面を除去して、約40mmである。
When the welded portion of the test metal D2 and the test metal D3 which were electron beam welded by the D-KM was cut as indicated by C3 in FIG. 7 and the internal defect at the cut surface C3 was measured,
As shown in FIG. 15, block-shaped porous welding defects were almost regularly distributed in the welding direction at the tip of the decorative bead F.
Porous welding defects are found in the range of 45 to 50 mm from the metal surface d. It can be seen that the beam B is stably irradiated in the welding direction. Further, the effective range for the joint portion is about 40 mm after removing the porous welding defect at the tip of the bead E and the surface of the bead E.

【0027】S−TEによって電子ビーム溶接した試験
金属D2と試験金属D3の溶接部を前記と同様に図7の
C3に沿って切断し、その切断面C3における内部欠陥
を測定した所、化粧ビードFの先端には、図16の如く
深い溶け方向に細長い線状の多孔性の溶接欠陥が分布し
ていた。多孔性の溶接欠陥は金属表面dより25〜40
mmの範囲にみられ、化粧ビードFは多孔性の溶接欠陥が
二層になっており、継手接合部として有効な範囲は、2
4mm以下である。
The welded portions of the test metal D2 and the test metal D3 which were electron beam welded by S-TE were cut along the line C3 in FIG. 7 in the same manner as described above, and the internal defects at the cut surface C3 were measured. At the tip of F, slender linear porous welding defects were distributed in the deep melting direction as shown in FIG. Porous welding defects are 25-40 from the metal surface d
In the range of mm, the decorative bead F has two layers of porous welding defects, and the effective range as a joint joint is 2
It is 4 mm or less.

【0028】電子ビーム溶接した試験金属D1乃至試験
金属D4の微小割れについて測定した所、D−KMあっ
ては図8(A)の如くビードEの先端部に溶融金属の凝
固時にみられがちな微小割れはほとんどなかった。S−
TEにあっては図8(B)の如くビードEの先端部には
多数の微小割れがみられるので、継手接合部として使用
する場合、ビードE先端の多孔性の溶接欠陥と共に、こ
れらを除去しなければならない。
When microscopic cracks of the test metal D1 to the test metal D4 welded by electron beam were measured, the D-KM tends to be seen at the tip of the bead E during solidification of the molten metal as shown in FIG. 8 (A). There were few microcracks. S-
In TE, as shown in FIG. 8 (B), many microcracks are seen at the tip of the bead E, so when used as a joint joint, these are removed together with a porous welding defect at the tip of the bead E. Must.

【0029】実験の結果、D−KMとS−TEを比較す
ると、表3の如くD−KMはビードEの安定性、溶け込
み深さ、内部欠陥等の点でS−TEより優れていること
がわかる。
As a result of the experiment, comparing D-KM and S-TE, as shown in Table 3, D-KM is superior to S-TE in terms of stability of the bead E, penetration depth, internal defects and the like. I understand.

【表3】 [Table 3]

【0030】ビードEの先端に発生する多孔性の溶接欠
陥は、切削加工により後で除去することが可能であるか
ら、特に問題とならない。大型製品のビーム溶接にあっ
ては、ビームBの照射位置を考慮すると共に、継手位置
等にも工夫を必要とする。
The porous welding defect generated at the tip of the bead E can be removed later by cutting, so that it does not cause any problem. In beam welding of a large product, the irradiation position of the beam B is taken into consideration and a joint position and the like need to be devised.

【0031】アルミ合金A5052(JIS)の試験金
属Dに、下記の条件で電子ビームBを照射した所、中断
されることなく連続的にビーム溶接できた。 加速電圧 150KV 溶接電流 100mA 溶接速度 100mm/min 真空度 (5×10−4Torr) 溶け込み深さは図17の如く100mm以上に達した。
When a test metal D of aluminum alloy A5052 (JIS) was irradiated with an electron beam B under the following conditions, continuous beam welding could be performed without interruption. Acceleration voltage 150 KV Welding current 100 mA Welding speed 100 mm / min Vacuum degree (5 × 10 −4 Torr) Penetration depth reached 100 mm or more as shown in FIG.

【0032】真空溶接室7の出入口71より出入する作
業台73は、溶接室7の外部で溶接金属Dを取付け、そ
の作業台73を溶接室7の内部に走行し、溶接室7の出
入口71を遮蔽した後、作業台73を遠隔操作によって
微調整し、溶接金属Dを電子ビームBの照射位置に合致
するものである。電子ビームBの偏向角度θは、主に第
一偏向コイル3と第二偏向コイル4によって決定され
る。
The workbench 73 that enters and exits through the inlet / outlet 71 of the vacuum welding chamber 7 is mounted with the weld metal D outside the welding chamber 7, the workbench 73 travels inside the welding chamber 7, and the inlet / outlet 71 of the welding chamber 7 is installed. After the work is shielded, the workbench 73 is finely adjusted by remote control so that the welding metal D matches the irradiation position of the electron beam B. The deflection angle θ of the electron beam B is mainly determined by the first deflection coil 3 and the second deflection coil 4.

【0033】[0033]

【発明の効果】本発明の電子ビーム溶接方法とその溶接
機は上記構造のとおりであるから、次に記載する効果を
奏する。電子ビーム溶接が困難であった、蒸発しやすい
錫や亜鉛、マグネシュム等の成分を含む合金類(以下、
非鉄金属系と称する)、例えばアルミ系材料の超精密溶
接が薄板から厚板(0・1〜120mm)まで可能とな
り、しかも一回のビーム溶接で100mm以上の溶け込み
深さが得られるので、それにより非鉄金属系製品の製造
能率が向上し、コストを軽減し得る。更に真空中でビー
ム溶接するため、非鉄金属系母材中に不純物を含まない
均一なビーム溶接が可能となり、腐食による電気効率の
劣化を妨げ、品質向上も計れる。
The electron beam welding method of the present invention and the welding machine therefor have the above-described structure, and therefore have the following effects. Alloys containing components such as tin, zinc, and magnesium, which are difficult to e-beam weld and easily evaporate (hereinafter,
It is possible to perform ultra-precision welding of non-ferrous metal materials, such as aluminum-based materials, from thin plates to thick plates (0.1 to 120 mm), and with a single beam welding, a penetration depth of 100 mm or more can be obtained. As a result, the manufacturing efficiency of non-ferrous metal products can be improved and the cost can be reduced. Furthermore, since the beam welding is performed in a vacuum, it is possible to perform uniform beam welding in which the non-ferrous metal base material does not contain impurities, prevent deterioration of electrical efficiency due to corrosion, and improve quality.

【0034】一般溶接と比較して、金属母材に対する
開先加工が不要になるし、継続部に対するビーム溶接回
数も著しく少なくなるので、加工コストの低減が計れ
る。しかもビーム溶接の再現性と信頼性が大である。製
作台数増加に対応できる。 削り出し製品と比較して、材料費が安く、厚板の入手
に時間を要しない。しかも機械加工費が安く納期の短縮
が計れる。 金型鍛造品と比較して、金型費がいらないし、設計変
更に対応できる。しかも初回ロッドの始動が早い(金型
不要のため)。
Compared with general welding, the groove processing for the metal base material is not required and the number of beam welding for the continuous portion is significantly reduced, so that the processing cost can be reduced. Moreover, reproducibility and reliability of beam welding are great. It can cope with an increase in the number of products manufactured. Material cost is low compared to the machined product, and it does not take time to obtain the thick plate. Moreover, the machining cost is low and the delivery time can be shortened. Compared with die forging, it does not require die cost and can respond to design changes. Moreover, the starting of the first rod is quick (because no mold is required).

【0035】本発明による電子ビーム溶接は、従来電子
ビーム溶接されていた金属類、例えばステンレス鋼、炭
素鋼、低合金鋼、銅、ニッケル合、ジルコニウム、チタ
ン、モリブデン、タングステン等のビーム溶接に用い得
るは勿論、従来電子ビーム溶接が困難とされていた、例
えば蒸発しやすい錫や亜鉛、マグネシュム等の成分を含
む非鉄金属系のビーム溶接、及び特殊金属のビーム溶接
に、特に有効な効果を発揮するものである。
The electron beam welding according to the present invention is used for beam welding of metals which have been conventionally electron beam welded, such as stainless steel, carbon steel, low alloy steel, copper, nickel alloy, zirconium, titanium, molybdenum and tungsten. Of course, it is especially effective for electron beam welding, which has been difficult to obtain in the past, for example, non-ferrous metal-based beam welding containing components such as tin, zinc, and magnesium that easily evaporate, and beam welding of special metals. To do.

【0036】その結果、本発明による電子ビーム溶接
は、宇宙・航空機分野、電気・電力分野、化学・製鉄分
野、プラント・機械分野、複合素材に用いる、例えばバ
ルブ、タービンブレード、フィルター、ジャイロ管、ロ
ーター、インペラー、ポンプ部品、ギャーカップリン
グ、ライナー、ロール、フランジ、歯車、圧延クラッ
ド、クラッドパイプ、圧力容器、真空容器の製造に顕著
な効果を奏するものである。特に半導体製造装置やLC
D(カラー液晶ディスプレー)の製造分野において用い
る超高真空チャンバー(真空容器とも称する)の大型化
に伴い、材質もステンレス鋼からアルミ系材料へと変わ
りつつあるので、最適である。
As a result, the electron beam welding according to the present invention is used in space / aircraft fields, electric / electric power fields, chemical / steel manufacturing fields, plant / machine fields, and composite materials, for example, valves, turbine blades, filters, gyro tubes, It has a remarkable effect in manufacturing rotors, impellers, pump parts, gear couplings, liners, rolls, flanges, gears, rolled clad, clad pipes, pressure vessels, and vacuum vessels. Especially semiconductor manufacturing equipment and LC
This is optimal because the material is changing from stainless steel to aluminum-based material with the increase in size of ultra-high vacuum chambers (also called vacuum vessels) used in the field of D (color liquid crystal display) manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)(B)本発明による電子ビーム溶接方法
と従来電子ビーム溶接方法の比較図である。
1A and 1B are comparison diagrams of an electron beam welding method according to the present invention and a conventional electron beam welding method.

【図2】本発明による電子ビーム溶接機の基本構造を示
す概略図である。
FIG. 2 is a schematic view showing a basic structure of an electron beam welding machine according to the present invention.

【図3】(A)(B)電子ビーム溶接の溶接例を示す側
面図である。
FIG. 3 is a side view showing a welding example of (A) and (B) electron beam welding.

【図4】従来の溶接例を示す側面図である。FIG. 4 is a side view showing a conventional welding example.

【図5】試験金属のビーム溶接例を示す斜視図である。FIG. 5 is a perspective view showing an example of beam welding of a test metal.

【図6】電子ビームによる溶け込み深さの測定位置を示
す斜視図である。
FIG. 6 is a perspective view showing a measurement position of a penetration depth by an electron beam.

【図7】内部欠陥の測定位置を示す斜視図である。FIG. 7 is a perspective view showing measurement positions of internal defects.

【図8】(A)(B)ビーム溶接による溶け込み状態を
示す斜視図である。
8A and 8B are perspective views showing a melted state by beam welding.

【図9】アーク溶接とレーザ溶接、及び電子ビーム溶接
の比較斜視図である。
FIG. 9 is a comparative perspective view of arc welding, laser welding, and electron beam welding.

【図10】(A)(B)D−KMによる溶接状態を示す
ビーム照射側と反対側の外観写真である。
FIG. 10 (A) and (B) are external appearance photographs on the side opposite to the beam irradiation side, showing the welding state by D-KM.

【図11】(A)(B)S−TEによる溶接状態を示す
ビーム照射側と反対側の外観写真である。
FIG. 11 (A) and (B) are external appearance photographs on the side opposite to the beam irradiation side, showing the welding state by S-TE.

【図12】D−KMによる溶け込み状態を示す切断面C
1の写真である。
FIG. 12 is a cut surface C showing a melted state by D-KM.
It is a photograph of 1.

【図13】S−TEによる溶け込み状態を示す切断面C
1の写真である。
FIG. 13 is a cut surface C showing a state of penetration by S-TE.
It is a photograph of 1.

【図14】(A)(B)D−KMとS−TEによるビー
ム交差部の溶け込み状態を示す切断面C2の写真であ
る。
14 (A) and (B) are photographs of a cut surface C2 showing a melted state of a beam intersection portion by D-KM and S-TE.

【図15】D−KMによる化粧ビード部の溶け込み状態
を示す切断面C3の写真である。
FIG. 15 is a photograph of a cut surface C3 showing a melted state of a cosmetic bead portion by D-KM.

【図16】S−TEによる化粧ビード部の溶け込み状態
を示す切断面C3の写真である。
FIG. 16 is a photograph of a cut surface C3 showing a melting state of a decorative bead portion by S-TE.

【図17】本発明による電子ビーム溶接例を示す写真で
ある。
FIG. 17 is a photograph showing an example of electron beam welding according to the present invention.

【符号の説明】[Explanation of symbols]

1 電子銃 2 レンズコイル 3,4 偏向コイル 5,6 真空室 7 真空溶接室 8 真空装置 B 電子ビーム b1 照射元ビーム部、b2 偏向ビーム部、b3 照
射先ビーム部 E ビード、F 化粧ビード D,D1,D2,D3,D4 溶接金属(試験金属)、
a 金属表面 C1,C2,C3 切断面 A アーク溶接部、G ビーム溶接部、R レーザ溶接
部 T テスト溶接 θ ビーム偏向角度
DESCRIPTION OF SYMBOLS 1 Electron gun 2 Lens coil 3,4 Deflection coil 5,6 Vacuum chamber 7 Vacuum welding chamber 8 Vacuum device B Electron beam b1 Source beam part, b2 Deflection beam part, b3 Target beam part E Bead, F Cosmetic bead D, D1, D2, D3, D4 Weld metal (test metal),
a Metal surface C1, C2, C3 Cut surface A Arc weld, G beam weld, R Laser weld T Test welding θ Beam deflection angle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子銃(1)から照射される電子ビーム
(B)の進路を、途中から偏向して溶接金属(D)の溶
接部に照射する電子ビーム溶接方法。
1. An electron beam welding method in which the course of an electron beam (B) emitted from an electron gun (1) is deflected from the middle to irradiate the welded portion of the weld metal (D).
【請求項2】 電子銃(1)と真空溶接室(7)の間
に、少なくとも第一偏向コイル(3)と第二偏向コイル
(4)を配置し、該偏向コイル(3,4)によって電子
銃(1)から照射される電子ビーム(B)の進路を途中
から偏向し、電子銃(1)や電子ビーム(B)が溶接部
から発生する金属蒸気等から影響を受けないようにした
電子ビーム溶接機。
2. At least a first deflection coil (3) and a second deflection coil (4) are arranged between the electron gun (1) and the vacuum welding chamber (7), and the deflection coils (3, 4) are used. The course of the electron beam (B) emitted from the electron gun (1) is deflected from the middle so that the electron gun (1) and the electron beam (B) are not affected by metal vapor or the like generated from the welded portion. Electron beam welder.
【請求項3】 電子銃(1)から照射される電子ビーム
(B)の進路が、電子銃(1)から照射する照射元ビー
ム部(b1)と、該ビーム部(b1)から適宜角度
(θ)で照射する偏向ビーム部(b2)、及び偏向ビー
ム部(b2)から溶接金属(D)に向けて照射する照射
先ビーム部(b3)から成る請求項2記載の電子ビーム
溶接機。
3. The path of the electron beam (B) emitted from the electron gun (1) is set at an appropriate angle from the irradiation source beam portion (b1) emitted from the electron gun (1) and the beam portion (b1). 3. The electron beam welding machine according to claim 2, comprising a deflected beam portion (b2) for irradiating with θ) and an irradiation destination beam portion (b3) for irradiating the welded metal (D) from the deflected beam portion (b2).
JP34638195A 1995-12-11 1995-12-11 Electron beam welding method and its welding machine Pending JPH09155565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34638195A JPH09155565A (en) 1995-12-11 1995-12-11 Electron beam welding method and its welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34638195A JPH09155565A (en) 1995-12-11 1995-12-11 Electron beam welding method and its welding machine

Publications (1)

Publication Number Publication Date
JPH09155565A true JPH09155565A (en) 1997-06-17

Family

ID=18383040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34638195A Pending JPH09155565A (en) 1995-12-11 1995-12-11 Electron beam welding method and its welding machine

Country Status (1)

Country Link
JP (1) JPH09155565A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248091A (en) * 2006-03-14 2007-09-27 Jeol Ltd Sample preparation apparatus and method
CN103358014A (en) * 2013-07-31 2013-10-23 成都国光电气股份有限公司 Vacuum electron beam welding process for slow wave assemblies of terahertz travelling wave tube
CN103785939A (en) * 2012-11-02 2014-05-14 中国科学院沈阳自动化研究所 Aluminum alloy vacuum electron beam welding method
CN110773858A (en) * 2019-11-20 2020-02-11 桂林航天工业学院 Electron beam welding device and welding method
CN111673259A (en) * 2020-07-13 2020-09-18 广东省焊接技术研究所(广东省中乌研究院) Split type electron beam deflection coil and electron beam equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248091A (en) * 2006-03-14 2007-09-27 Jeol Ltd Sample preparation apparatus and method
CN103785939A (en) * 2012-11-02 2014-05-14 中国科学院沈阳自动化研究所 Aluminum alloy vacuum electron beam welding method
CN103358014A (en) * 2013-07-31 2013-10-23 成都国光电气股份有限公司 Vacuum electron beam welding process for slow wave assemblies of terahertz travelling wave tube
CN110773858A (en) * 2019-11-20 2020-02-11 桂林航天工业学院 Electron beam welding device and welding method
CN111673259A (en) * 2020-07-13 2020-09-18 广东省焊接技术研究所(广东省中乌研究院) Split type electron beam deflection coil and electron beam equipment
CN111673259B (en) * 2020-07-13 2023-10-31 广东省焊接技术研究所(广东省中乌研究院) Split type electron beam deflection yoke and electron beam apparatus

Similar Documents

Publication Publication Date Title
Węglowski et al. Electron beam welding–Techniques and trends–Review
Blondeau Metallurgy and mechanics of welding: processes and industrial applications
KR101791113B1 (en) Deposition of superalloys using powdered flux and metal
Li et al. Laser welding techniques for titanium alloy sheet
WO2006133034A1 (en) Direct metal deposition using laser radiation and electric arc
Lee et al. Effect of plasma current on surface defects of plasma-MIG welding in cryogenic aluminum alloys
KR20040103920A (en) Refractory metal and alloy refining by laser forming and melting
KR20150110815A (en) Cladding of alloys using cored feed material comprising powdered flux and metal
US20120223057A1 (en) Gas tungsten arc welding using flux coated electrodes
JP2005501737A (en) Hybrid laser-arc welding method with gas flow control
Wang et al. Interaction between laser-induced plasma/vapor and arc plasma during fiber laser-MIG hybrid welding
Reisgen et al. Welding of thick plate copper with laser beam welding under vacuum
JPH09155565A (en) Electron beam welding method and its welding machine
US3566071A (en) Method of metals joining
Korzhyk et al. Analysis of the current state of the processes of hybrid laser-plasma welding
Tseng et al. Effect of process parameters of micro-plasma arc welding on morphology and quality in stainless steel edge joint welds
Prasad et al. Effect of process parameters of pulsed current micro plasma arc welding on weld pool geometry of Inconel 625 welds
KR20040058615A (en) Apparatus for Eliminating of Coating Material on Coated Metal Plate and Welding Method Using That
Cottrell Electron beam welding—a critical review
JPH1076363A (en) Method for improving strength of high energy density heat source weld zone
CN106064278A (en) A kind of galvanized steel plain sheet laser lap welding method based on parital vacuum atmosphere
Pieters et al. Laser welding of zinc coated steel in overlap configuration with zero gap
CN110560867A (en) Vacuum electron beam welding method for aluminum alloy water-cooled joint
Legait Formation and distribution of porosity in Al-Si welds
Hassel et al. Cutting and welding of high-strength steels using non-vacuum electron beam as a universal tool for material processing