JPH09155141A - Absorption device of carbon dioxide gas in exhaust gas - Google Patents

Absorption device of carbon dioxide gas in exhaust gas

Info

Publication number
JPH09155141A
JPH09155141A JP7325690A JP32569095A JPH09155141A JP H09155141 A JPH09155141 A JP H09155141A JP 7325690 A JP7325690 A JP 7325690A JP 32569095 A JP32569095 A JP 32569095A JP H09155141 A JPH09155141 A JP H09155141A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
liquid
regeneration
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7325690A
Other languages
Japanese (ja)
Inventor
Naoki Oda
直己 尾田
Shigeru Nozawa
滋 野澤
Rikuo Yamada
陸雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP7325690A priority Critical patent/JPH09155141A/en
Publication of JPH09155141A publication Critical patent/JPH09155141A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PROBLEM TO BE SOLVED: To prevent the structure of a regeneration tower in an absorption tower of carbon dioxide gas from becoming complicated and to reduce heat consumption of the regeneration tower. SOLUTION: The packed bed of a regeneration part in a regeneration tower is divided into at least two steps of the upper step 42 of the regeneration part and the lower step 43 of the regeneration part in the direction of height. A carbon dioxide gas-rich absorption liquid line 4 is branched into the upper step carbon dioxide gas-rich absorption liquid line 40 and the lower step carbon dioxide gas-rich absorption liquid line 41. Means are provided by which carbon dioxide gas-rich absorption liquid is supplied from the line 40 to the upper step 42 and supplied from the line 41 to the lower step 43. Further, means are provided by which absorption liquid is drawn out from the lower part of the upper step 42 and steam is directly introduced into the lower part of the upper step 42 from a reboiler 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収液を再生する
再生塔リボイラへの入熱を低減するに好適な排ガス中の
炭酸ガス吸収装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for absorbing carbon dioxide gas in exhaust gas suitable for reducing heat input to a regenerator reboiler for regenerating an absorbent.

【0002】[0002]

【従来の技術】近年、化石燃料の消費量増加により大気
中の炭酸ガス濃度が高くなり、地球温暖化が懸念されて
いる。炭酸ガス排出量を西暦2000年には1990年
のレベルに引き下げることが世界的な目標として挙げら
れている。しかし、大気中の炭酸ガス濃度の上昇には歯
止めがかからず地球温暖化は深刻になるものとの見通し
は否定できない。従って、各国の経済成長に伴って将来
のエネルギ需要の増大を考慮すると、炭酸ガスの除去・
回収の新技術開発は急務と云わねばならない。炭酸ガス
の除去・回収にはアルカノールアミンを吸収剤に用いる
アミン吸収法が知られている。このアミン吸収法による
典型的な炭酸ガス吸収装置を説明する。図3は従来の排
ガス中の炭酸ガス吸収装置の構成を示すフローチャート
である。 本図に示すように図示せざる燃焼装置から発
生した炭酸ガスを含む排ガス11は、図示せざるファン
により昇圧され吸収塔1の塔底部に導入される。排ガス
11は吸収塔1の吸収塔吸収部12を上昇する間に吸収
塔吸収部12の上部から流下してくるモノエタノールア
ミン(以降MEAと称する)の水溶液である吸収液と向
流接触し、炭酸ガスが吸収される。炭酸ガスが除かれた
排ガス7は図示せざる煙突または系外へ導かれる。炭酸
ガスを吸収した炭酸ガスリッチ吸収液は吸収塔1の塔底
からポンプにより吸収液熱交換器8を経由して炭酸ガス
リッチ吸収液ライン4で再生塔2へ供給される。炭酸ガ
スリッチ吸収液は再生塔2の再生塔再生部13を流下す
る間に再生塔再生部13の下部から上昇してくるリボイ
ラ3からの吸収液蒸気と向流接触し、炭酸ガスが脱離
(ストリッピング)される。リボイラ3からの蒸気は吸
収液を炭酸ガスの脱離に必要な温度に高める熱源とな
り、吸収液中の炭酸ガスをストリッピングするキャリア
ガスともなる。
2. Description of the Related Art In recent years, carbon dioxide concentration in the atmosphere has increased due to an increase in consumption of fossil fuels, and there is a concern about global warming. It is listed as a global goal to reduce carbon dioxide emissions to the level of 1990 in the year 2000. However, it cannot be denied that the rise in carbon dioxide concentration in the atmosphere will not stop and global warming will become serious. Therefore, considering the future increase in energy demand accompanying the economic growth of each country,
It must be called an urgent task to develop new technologies for recovery. An amine absorption method using an alkanolamine as an absorbent is known for removing and recovering carbon dioxide. A typical carbon dioxide gas absorption device by this amine absorption method will be described. FIG. 3 is a flow chart showing the configuration of a conventional carbon dioxide gas absorption device for exhaust gas. As shown in this figure, the exhaust gas 11 containing carbon dioxide gas generated from a combustion device (not shown) is pressurized by a fan (not shown) and introduced into the bottom of the absorption tower 1. The exhaust gas 11 comes into countercurrent contact with an absorption liquid which is an aqueous solution of monoethanolamine (hereinafter referred to as MEA) flowing down from the upper part of the absorption tower absorption part 12 while rising in the absorption tower absorption part 12 of the absorption tower 1, Carbon dioxide is absorbed. The exhaust gas 7 from which carbon dioxide has been removed is guided to a chimney (not shown) or the outside of the system. The carbon dioxide rich absorption liquid that has absorbed carbon dioxide is supplied from the bottom of the absorption tower 1 to the regeneration tower 2 in the carbon dioxide rich absorption liquid line 4 via the absorption liquid heat exchanger 8 by a pump. The carbon dioxide rich absorption liquid comes into countercurrent contact with the absorption liquid vapor from the reboiler 3 rising from the lower part of the regeneration tower regeneration part 13 while flowing down the regeneration tower regeneration part 13 of the regeneration tower 2 to release carbon dioxide gas ( Stripped). The vapor from the reboiler 3 serves as a heat source for raising the absorption liquid to a temperature required for desorption of carbon dioxide gas, and also serves as a carrier gas for stripping the carbon dioxide gas in the absorption liquid.

【0003】ここで吸収液の蒸気を発生させるリボイラ
3まわりの構成を説明する。再生塔再生部13を流下し
てきた吸収液は一旦再生塔再生部13下部のチムニ30
に貯溜されチムニ液抜き出しライン31によりリボイラ
3へ流下する。リボイラ3で吸収液は外部から供給され
る水蒸気により蒸発し蒸気となってリボイラ蒸気ライン
32がチムニ30下部に導く。蒸気の蒸発によりMEA
濃度が所定の値になった吸収液はリボイラ液抜き出しラ
イン33が再生塔2底部に導く。各機器のレベルをチム
ニ30、リボイラ3、再生塔2底部の順に配置すること
により吸収液は自然に流下する。再生塔2において再生
された炭酸ガスリーン吸収液は再生塔2の塔底からポン
プにより吸収液熱交換器8を経由して炭酸ガスリーン吸
収液ライン5で吸収塔1へ供給され炭酸ガス吸収装置内
を循環する。吸収塔1の塔頂部には吸収塔水洗部6が設
けられ、吸収塔吸収部12から上昇してくる排ガス中に
同伴する吸収液のミストを30〜50℃の循環する水で
洗浄し除去している。同様に再生塔2の塔頂部には再生
塔水洗部21が設けられ、再生塔再生部13から上昇し
てくる炭酸ガスがオーバーヘッドコンデンサ9により冷
却されると同時に炭酸ガスに飽和した水分が凝縮し、リ
フラックスドラム10で気液分離され30〜50℃のリ
フラックス20として再生塔水洗部21に還流され、炭
酸ガスに同伴する吸収液のミストを洗浄、除去する。
Here, the structure around the reboiler 3 for generating the vapor of the absorbing liquid will be described. The absorbing liquid that has flowed down the regeneration tower regeneration unit 13 is once stored in the chimney 30 below the regeneration tower regeneration unit 13.
Stored in the regenerator 3 through the chimney liquid withdrawing line 31. In the reboiler 3, the absorption liquid is evaporated by the steam supplied from the outside to become vapor, and the reboiler vapor line 32 is guided to the lower portion of the chimney 30. MEA by evaporation of steam
The reboiler liquid withdrawing line 33 guides the absorption liquid having a predetermined concentration to the bottom of the regeneration tower 2. By arranging the level of each device in the order of the chimney 30, the reboiler 3, and the bottom of the regeneration tower 2, the absorbing liquid flows down naturally. The carbon dioxide lean absorption liquid regenerated in the regeneration tower 2 is supplied from the bottom of the regeneration tower 2 to the absorption tower 1 in the carbon dioxide lean absorption liquid line 5 by the pump through the absorption liquid heat exchanger 8 and the inside of the carbon dioxide absorption device. Circulate. An absorption tower water washing section 6 is provided at the top of the absorption tower 1, and the mist of the absorption liquid entrained in the exhaust gas rising from the absorption tower absorption section 12 is washed and removed with circulating water at 30 to 50 ° C. ing. Similarly, a regeneration tower washing section 21 is provided at the top of the regeneration tower 2 so that the carbon dioxide gas rising from the regeneration tower regeneration section 13 is cooled by the overhead condenser 9 and at the same time saturated water vapor is condensed into the carbon dioxide gas. The gas is separated into gas and liquid by the reflux drum 10 and is returned to the regeneration tower water washing section 21 as the reflux 20 at 30 to 50 ° C. to wash and remove the mist of the absorbing liquid accompanying the carbon dioxide gas.

【0004】[0004]

【発明が解決しようとする課題】従来の再生塔では導入
された炭酸ガスリッチ吸収液が再生塔再生部13を流下
し始めてすぐに沸点に達し、局所的に炭酸ガスの脱離が
起こることにより再生塔2内のガス流速が大きくなり充
填塔型の再生塔2であればフラッデイング現象により吸
収液の流下が阻害され、再生塔2の運転ができなくな
る。そこでこのような現象を抑制するために再生塔2の
運転圧力を0.3〜0.6kgf/cm2に高め、吸収
液の沸点を上昇させて炭酸ガスの脱離を緩慢にしてい
る。再生塔2の運転圧力を高くすることにより、圧力容
器としての再生塔2の強度を大きくする必要が有り、安
全弁の設置も義務づけられる。
In the conventional regeneration tower, the carbon dioxide rich absorbent introduced into the regeneration tower 13 reaches the boiling point immediately after it begins to flow down in the regeneration tower regeneration section 13, and the carbon dioxide gas is locally desorbed to regenerate it. In the case of the packed tower type regeneration tower 2, the flow velocity of the gas in the tower 2 is increased, and the flowing down of the absorbing liquid is obstructed by the flooding phenomenon, and the regeneration tower 2 cannot be operated. Therefore, in order to suppress such a phenomenon, the operating pressure of the regeneration tower 2 is increased to 0.3 to 0.6 kgf / cm 2 to raise the boiling point of the absorbing liquid to slow the desorption of carbon dioxide gas. By increasing the operating pressure of the regeneration tower 2, it is necessary to increase the strength of the regeneration tower 2 as a pressure vessel, and it is also obligatory to install a safety valve.

【0005】図4は従来の炭酸ガス吸収装置の再生塔の
フローチャートである。本図は排ガス処理量1,000
Nm3/hのパイロットプラントの再生塔の構成を示
す。図5は図4の再生塔における炭酸ガスリッチ吸収液
導入温度と塔内温度分布の関係を示す図表である。図4
に示す再生塔2を圧力0.6kgf/cm2、再生塔2
に供給する炭酸ガスリッチ吸収液の温度を100℃で運
転を始め、再生塔再生部13の中間温度は図5の三角印
で示すように98℃であった。次に再生塔2に供給する
炭酸ガスリッチ吸収液の温度を100℃から102℃に
上昇させたところ、再生塔再生部13の中間温度は図5
の丸印で示すように91℃となり吸収液が流下しなくな
った。この現象は再生塔再生部13の上部で急激な炭酸
ガスの脱離が起こり、脱離反応による熱が吸収液から奪
われたため吸収液の温度が低下して再生塔再生部13の
中間に到達し、再生塔再生部13内のガス流速増大によ
るフラッデイング現象が発生したものと考えられる。こ
のような再生塔2が運転不可能と成る事態を防止するた
めには、再生塔2の運転圧力を高めると共に再生塔2に
供給する炭酸ガスリッチ吸収液の温度を沸点より10〜
15℃下げなければならない。再生塔2の運転圧力を高
めることは再生塔2の強度を大きくしたり、安全弁の設
置等の問題が有り、炭酸ガスリッチ吸収液の温度を低下
させることは再生塔2への入熱が減少することになるか
ら炭酸ガスの脱離に必要な熱を確保するためにはリボイ
ラ3への入熱即ち、水蒸気の供給量を増加させなければ
ならない。本発明の目的は、炭酸ガス吸収装置の再生塔
の構造が複雑になることを防止し、再生塔の熱消費量を
低減することにある。
FIG. 4 is a flow chart of a regeneration tower of a conventional carbon dioxide gas absorption device. This figure shows the exhaust gas treatment amount of 1,000
The structure of the regeneration tower of the Nm 3 / h pilot plant is shown. FIG. 5 is a chart showing the relationship between the carbon dioxide rich absorbent introduction temperature and the temperature distribution in the tower in the regeneration tower of FIG. FIG.
Pressure regeneration tower 2 shown in 0.6kgf / cm 2, the regenerator 2
The temperature of the carbon dioxide rich absorbent supplied to the reactor was started at 100 ° C., and the intermediate temperature of the regeneration tower regeneration section 13 was 98 ° C. as indicated by the triangle marks in FIG. Next, when the temperature of the carbon dioxide rich absorbent supplied to the regeneration tower 2 was raised from 100 ° C. to 102 ° C., the intermediate temperature of the regeneration tower regeneration section 13 was as shown in FIG.
As indicated by the circle, the temperature reached 91 ° C. and the absorbing liquid stopped flowing down. This phenomenon occurs because the carbon dioxide gas is rapidly desorbed at the upper part of the regeneration tower regenerator 13 and the heat of the desorption reaction is removed from the absorbent, so that the temperature of the absorbent decreases and reaches the middle of the regeneration tower regenerator 13. However, it is considered that the flooding phenomenon occurred due to the increase in the gas flow velocity in the regeneration tower regeneration section 13. In order to prevent such a situation that the regeneration tower 2 becomes inoperable, the operating pressure of the regeneration tower 2 is increased and the temperature of the carbon dioxide rich absorbent supplied to the regeneration tower 2 is set to 10 to 10 from the boiling point.
You have to lower it by 15 degrees. Increasing the operating pressure of the regeneration tower 2 causes problems such as increasing the strength of the regeneration tower 2 and installing a safety valve, and lowering the temperature of the carbon dioxide rich absorbent reduces the heat input to the regeneration tower 2. Therefore, in order to secure the heat necessary for desorption of carbon dioxide, the heat input to the reboiler 3, that is, the supply amount of steam must be increased. An object of the present invention is to prevent the structure of the regeneration tower of the carbon dioxide absorption device from becoming complicated and reduce the heat consumption of the regeneration tower.

【0006】[0006]

【課題を解決するための手段】上記目的は、循環する吸
収液を用いて排ガス中の炭酸ガスを吸収する吸収塔と、
該吸収塔からの炭酸ガスリッチ吸収液とリボイラからの
蒸気とを気液接触部で接触させて再生する再生塔とを有
する排ガス中の炭酸ガス吸収装置において、前記気液接
触部が複数から成りかつ高さ方向で直列に配置され、そ
れぞれの前記気液接触部の最上部に前記炭酸ガスリッチ
吸収液を供給する手段を設けたことにより達成される。
上記目的は、循環する吸収液を用いて排ガス中の炭酸ガ
スを吸収する吸収塔と、該吸収塔からの炭酸ガスリッチ
吸収液とリボイラからの蒸気とを気液接触部で接触させ
て再生する再生塔とを有する排ガス中の炭酸ガス吸収装
置において、前記気液接触部が複数から成りかつ高さ方
向で直列に配置されそれぞれの前記気液接触部の最上部
に前記炭酸ガスリッチ吸収液を供給する手段と、それぞ
れの前記気液接触部の最下部に配置した液溜めと、該そ
れぞれの液溜めから前記リボイラへ連通する液配管と、
前記リボイラから前記それぞれの気液接触部の最下部に
連通する蒸気配管とを設けたことにより達成される。
The above object is to provide an absorption tower for absorbing carbon dioxide gas in exhaust gas by using a circulating absorption liquid,
In a carbon dioxide gas absorption device in exhaust gas having a regeneration tower for regenerating the carbon dioxide rich absorbent from the absorption tower and the vapor from the reboiler at the gas-liquid contact section, the gas-liquid contact section comprises a plurality of and This is achieved by providing means for supplying the carbon dioxide rich absorption liquid, which are arranged in series in the height direction and are provided at the uppermost part of each of the gas-liquid contact portions.
The above-mentioned purpose is a regeneration in which a carbon dioxide rich absorption liquid from the absorption tower and the vapor from the reboiler are brought into contact with each other at a gas-liquid contact part to regenerate the absorption tower that absorbs carbon dioxide gas in the exhaust gas by using the circulating absorption liquid. In a device for absorbing carbon dioxide gas in exhaust gas having a tower, the gas-liquid contact portions are composed of a plurality and are arranged in series in the height direction, and the carbon dioxide-rich absorption liquid is supplied to the uppermost part of each of the gas-liquid contact portions. Means, a liquid reservoir arranged at the bottom of each gas-liquid contact portion, and a liquid pipe communicating from the respective liquid reservoir to the reboiler,
This is achieved by providing a steam pipe that communicates from the reboiler to the bottom of each of the gas-liquid contact portions.

【0007】上記再生塔の気液接触部を複数に分割し、
それぞれの気液接触部に炭酸ガスリッチ吸収液を分散し
て供給する構成により、炭酸ガスの脱離が集中せずに分
散され、炭酸ガスの脱離を緩慢にするために運転圧力を
高める操作と、炭酸ガスリッチ吸収液の供給温度を低下
させる必要がないから再生塔の構造が複雑になることを
防止し、再生塔のリボイラへの入熱増加を防止できる。
再生塔の上段気液接触部にリボイラからの蒸気が直接導
入されるので各気液接触部における炭酸ガスリッチ吸収
液とリボイラからの蒸気との接触が均等に行われ、再生
塔全体の熱効率が向上する。
The gas-liquid contact portion of the regeneration tower is divided into a plurality of parts,
With the configuration that the carbon dioxide rich absorbent is dispersed and supplied to each gas-liquid contact part, the desorption of carbon dioxide is dispersed without concentration, and the operation pressure is raised to slow the desorption of carbon dioxide. Since it is not necessary to lower the supply temperature of the carbon dioxide rich absorbent, it is possible to prevent the structure of the regeneration tower from becoming complicated, and to prevent an increase in heat input to the reboiler of the regeneration tower.
Since the steam from the reboiler is directly introduced into the upper gas-liquid contact section of the regeneration tower, the carbon dioxide rich absorbent and vapor from the reboiler are evenly contacted at each gas-liquid contact section, improving the thermal efficiency of the entire regeneration tower. To do.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図に
より説明する。図1は本発明の実施の形態の排ガス中の
炭酸ガス吸収装置の構成を示すフローチャートである。
本炭酸ガス吸収装置の基本的な構成は図2に示したとお
りで、本発明の特徴は再生塔再生部のラシヒリング等を
充填した充填層を高さ方向に少なくとも再生塔再生部上
段42と再生塔再生部下段43の2段に分割し、炭酸ガ
スリッチ吸収液ライン4を上段炭酸ガスリッチ吸収液ラ
イン40と下段炭酸ガスリッチ吸収液ライン41に分岐
し、炭酸ガスリッチ吸収液を上段炭酸ガスリッチ吸収液
ライン40から再生塔再生部上段42へ供給し、下段炭
酸ガスリッチ吸収液ライン41から再生塔再生部下段4
3へ供給することにある。このように炭酸ガスリッチ吸
収液を分割して再生塔再生部へ供給することにより、各
炭酸ガスリッチ吸収液供給ノズル近傍における炭酸ガス
の脱離が緩慢になり、従来のようなフラッデイング現象
が起こらなくなるので再生塔2の運転圧力を高くするこ
とや炭酸ガスリッチ吸収液温度を低下させる操作が不要
となるので、再生塔2の構造が簡便となりリボイラ3へ
供給するスチーム消費量を低減できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing the configuration of a carbon dioxide gas absorption device in exhaust gas according to an embodiment of the present invention.
The basic configuration of the present carbon dioxide absorption device is as shown in FIG. 2, and the feature of the present invention is that the packed bed filled with Raschig rings and the like of the regeneration tower regeneration section is regenerated at least in the height direction with the upper section 42 of the regeneration tower regeneration section. The tower regeneration section is divided into two lower stages 43, and the carbon dioxide rich absorption liquid line 4 is branched into an upper carbon dioxide rich absorption liquid line 40 and a lower carbon dioxide rich absorption liquid line 41, and the carbon dioxide rich absorption liquid 40 is divided into upper carbon dioxide rich absorption liquid line 40. From the lower carbon dioxide rich absorbent line 41 to the lower part 4 of the regeneration tower regeneration part.
3 to supply. By dividing the carbon dioxide-rich absorption liquid and supplying it to the regeneration tower regeneration section in this way, the desorption of carbon dioxide gas in the vicinity of each carbon dioxide-rich absorption liquid supply nozzle becomes slow, and the flooding phenomenon as in the past does not occur. Therefore, the operation of raising the operating pressure of the regeneration tower 2 and the operation of lowering the temperature of the carbon dioxide rich absorbent are not required, so that the structure of the regeneration tower 2 becomes simple and the steam consumption supplied to the reboiler 3 can be reduced.

【0009】次に本発明の他の実施の形態を説明する。
図2は本発明の他の実施の形態の排ガス中の炭酸ガス吸
収装置の構成を示すフローチャートである。本図に示す
ように再生塔再生部上段42下部にチムニ34と、チム
ニ34から吸収液を抜き出すチムニ液抜き出しライン3
5と、リボイラ3から再生塔再生部上段42下部に蒸気
を導くリボイラ蒸気ライン36とを新たに設けた。本図
に示す構成は図1に示す再生塔再生部上段42の下部か
ら吸収液を抜き出し、リボイラ3から再生塔再生部上段
42下部に直接蒸気を導入する手段を設けたものであ
る。このような構成とすることにより、各再生塔再生部
即ち、再生塔再生部上段42、再生塔再生部下段43に
おける炭酸ガスリッチ吸収液とリボイラ3からの蒸気と
の接触が均等に行われ、再生塔全体の熱効率が向上す
る。
Next, another embodiment of the present invention will be described.
FIG. 2 is a flowchart showing the configuration of a carbon dioxide gas absorption device for exhaust gas according to another embodiment of the present invention. As shown in this figure, the chimney 34 is provided at the lower part of the upper part 42 of the regeneration section of the regeneration tower, and the chimney liquid extraction line 3 for extracting the absorbing liquid from the chimney 34.
5 and a reboiler steam line 36 for introducing steam from the reboiler 3 to the lower part of the upper stage 42 of the regeneration tower regeneration section are newly provided. The structure shown in this figure is provided with a means for extracting the absorption liquid from the lower part of the upper part 42 of the regeneration tower regeneration part shown in FIG. 1 and directly introducing the vapor from the reboiler 3 to the lower part of the upper part 42 of the regeneration tower regeneration part. With such a configuration, the carbon dioxide rich absorbent in each regeneration tower regeneration section, that is, the regeneration tower regeneration section upper stage 42 and the regeneration tower regeneration section lower stage 43, is uniformly contacted with the vapor from the reboiler 3, and regeneration is performed. The thermal efficiency of the entire tower is improved.

【0010】[0010]

【発明の効果】本発明によれば、再生塔の気液接触部を
複数に分割し、それぞれの気液接触部に炭酸ガスリッチ
吸収液を分散して供給することにより炭酸ガスの脱離が
分散され、再生塔の運転圧力を高める操作と炭酸ガスリ
ッチ吸収液の供給温度を低下させる必要がないから、再
生塔の構造が複雑になることが無くリボイラへの入熱増
加を防止できる。再生塔の上段気液接触部にリボイラか
らの蒸気が直接導入されるので各気液接触部における炭
酸ガスリッチ吸収液とリボイラからの蒸気との接触が均
等に行われ、再生塔全体の熱効率が向上する。
According to the present invention, the gas-liquid contact portion of the regeneration tower is divided into a plurality of parts, and the carbon dioxide rich absorption liquid is dispersed and supplied to each gas-liquid contact portion, whereby desorption of carbon dioxide gas is dispersed. Therefore, it is not necessary to increase the operating pressure of the regeneration tower and to lower the supply temperature of the carbon dioxide rich absorbent, so that the structure of the regeneration tower is not complicated and an increase in heat input to the reboiler can be prevented. Since the steam from the reboiler is directly introduced into the upper gas-liquid contact section of the regeneration tower, the carbon dioxide rich absorbent and vapor from the reboiler are evenly contacted at each gas-liquid contact section, improving the thermal efficiency of the entire regeneration tower. To do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の排ガス中の炭酸ガス吸収
装置の構成を示すフローチャートである。
FIG. 1 is a flowchart showing a configuration of a carbon dioxide gas absorption device in exhaust gas according to an embodiment of the present invention.

【図2】本発明の他の実施の形態の排ガス中の炭酸ガス
吸収装置の構成を示すフローチャートである。
FIG. 2 is a flowchart showing a configuration of a carbon dioxide gas absorption device for exhaust gas according to another embodiment of the present invention.

【図3】従来の排ガス中の炭酸ガス吸収装置の構成を示
すフローチャートである。
FIG. 3 is a flowchart showing a configuration of a conventional carbon dioxide gas absorption device in exhaust gas.

【図4】従来の炭酸ガス吸収装置の再生塔のフローチャ
ートである。
FIG. 4 is a flowchart of a regeneration tower of a conventional carbon dioxide gas absorption device.

【図5】図4の再生塔における炭酸ガスリッチ吸収液導
入温度と塔内温度分布の関係を示す図表である。
5 is a chart showing a relationship between a carbon dioxide-rich absorption liquid introduction temperature and a temperature distribution in the tower in the regeneration tower of FIG.

【符号の説明】[Explanation of symbols]

1 吸収塔 2 再生塔 3 リボイラ 4 炭酸ガスリッチ吸収液ライン 5 炭酸ガスリーン吸収液ライン 6 吸収塔水洗部 7 炭酸ガスが除かれた排ガス 8 吸収液熱交換器 9 オーバーヘッドコンデンサ 10 リフラックスドラム 11 排ガス 12 吸収塔吸収部 13 再生塔再生部 14 循環水ライン 20 リフラックス 21 再生塔水洗部 30 チムニ 31 チムニ液抜き出しライン 32 リボイラ蒸気ライン 33 リボイラ液抜き出しライン 34 チムニ 35 チムニ液抜き出しライン 36 リボイラ蒸気ライン 40 上段炭酸ガスリッチ吸収液ライン 41 下段炭酸ガスリッチ吸収液ライン 42 再生塔再生部上段 43 再生塔再生部下段 1 Absorption Tower 2 Regeneration Tower 3 Reboiler 4 Carbon Dioxide Rich Absorption Liquid Line 5 Carbon Dioxide Lean Absorption Liquid Line 6 Absorption Tower Rinsing Part 7 Carbon Dioxide Removed Exhaust Gas 8 Absorption Liquid Heat Exchanger 9 Overhead Condenser 10 Reflux Drum 11 Exhaust Gas 12 Absorption Tower absorption section 13 Regeneration tower regeneration section 14 Circulating water line 20 Reflux 21 Regeneration tower water washing section 30 Chimney 31 Chimney liquid withdrawal line 32 Reboiler steam line 33 Reboiler liquid withdrawal line 34 Chimney 35 Chimni liquid withdrawal line 36 Reboiler steam line 40 Upper carbon dioxide Gas-rich absorption liquid line 41 Lower stage Carbon dioxide-rich absorption liquid line 42 Regeneration tower regeneration section upper stage 43 Regeneration tower regeneration section lower stage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 循環する吸収液を用いて排ガス中の炭酸
ガスを吸収する吸収塔と、該吸収塔からの炭酸ガスリッ
チ吸収液とリボイラからの蒸気とを気液接触部で接触さ
せて再生する再生塔とを有する排ガス中の炭酸ガス吸収
装置において、 前記気液接触部が複数から成りかつ高
さ方向で直列に配置され、それぞれの前記気液接触部の
最上部に前記炭酸ガスリッチ吸収液を供給する手段を設
けたことを特徴とする排ガス中の炭酸ガス吸収装置。
1. An absorption tower that absorbs carbon dioxide gas in exhaust gas using a circulating absorption liquid, and a carbon dioxide-rich absorption liquid from the absorption tower and steam from a reboiler are brought into contact with each other at a gas-liquid contact portion to regenerate them. In a device for absorbing carbon dioxide gas in exhaust gas having a regeneration tower, the gas-liquid contact parts are arranged in series in a height direction and are arranged in series, and the carbon dioxide-rich absorption liquid is placed at the top of each of the gas-liquid contact parts. An apparatus for absorbing carbon dioxide gas in exhaust gas, characterized in that it is provided with a supply means.
【請求項2】 循環する吸収液を用いて排ガス中の炭酸
ガスを吸収する吸収塔と、該吸収塔からの炭酸ガスリッ
チ吸収液とリボイラからの蒸気とを気液接触部で接触さ
せて再生する再生塔とを有する排ガス中の炭酸ガス吸収
装置において、 前記気液接触部が複数から成りかつ高
さ方向で直列に配置されそれぞれの前記気液接触部の最
上部に前記炭酸ガスリッチ吸収液を供給する手段と、 それぞれの前記気液接触部の最下部に配置した液溜め
と、 該それぞれの液溜めから前記リボイラへ連通する液配管
と、 前記リボイラから前記それぞれの気液接触部の最下部に
連通する蒸気配管と、を設けたことを特徴とする排ガス
中の炭酸ガス吸収装置。
2. An absorption tower that absorbs carbon dioxide gas in exhaust gas by using a circulating absorption liquid, and a carbon dioxide-rich absorption liquid from the absorption tower and steam from a reboiler are brought into contact with each other at a gas-liquid contact portion to regenerate them. In a device for absorbing carbon dioxide gas in exhaust gas having a regeneration tower, the gas-liquid contact portion is composed of a plurality and is arranged in series in the height direction, and the carbon dioxide rich absorbent is supplied to the top of each gas-liquid contact portion. Means, a liquid reservoir arranged at the bottom of each of the gas-liquid contact portions, a liquid pipe communicating from each of the liquid reservoirs to the reboiler, and at the bottom of each of the gas-liquid contact portions from the reboiler. An apparatus for absorbing carbon dioxide gas in exhaust gas, comprising: a steam pipe communicating with the steam pipe.
JP7325690A 1995-12-14 1995-12-14 Absorption device of carbon dioxide gas in exhaust gas Pending JPH09155141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7325690A JPH09155141A (en) 1995-12-14 1995-12-14 Absorption device of carbon dioxide gas in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7325690A JPH09155141A (en) 1995-12-14 1995-12-14 Absorption device of carbon dioxide gas in exhaust gas

Publications (1)

Publication Number Publication Date
JPH09155141A true JPH09155141A (en) 1997-06-17

Family

ID=18179633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7325690A Pending JPH09155141A (en) 1995-12-14 1995-12-14 Absorption device of carbon dioxide gas in exhaust gas

Country Status (1)

Country Link
JP (1) JPH09155141A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238114A (en) * 2007-03-28 2008-10-09 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and recovery method of co2 absorption solution
WO2010010720A1 (en) * 2008-07-23 2010-01-28 三菱重工業株式会社 Apparatus for recovering carbon dioxide from discharge gas
WO2011122525A1 (en) * 2010-03-31 2011-10-06 新日鉄エンジニアリング株式会社 Carbon dioxide gas recovery device
CN114225653A (en) * 2021-12-16 2022-03-25 中国华电科工集团有限公司 Grading regeneration tower and carbon dioxide capture system with same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238114A (en) * 2007-03-28 2008-10-09 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and recovery method of co2 absorption solution
WO2010010720A1 (en) * 2008-07-23 2010-01-28 三菱重工業株式会社 Apparatus for recovering carbon dioxide from discharge gas
US8535428B2 (en) 2008-07-23 2013-09-17 Mitsubishi Heavy Industries, Ltd. System for recovering carbon dioxide from flue gas
WO2011122525A1 (en) * 2010-03-31 2011-10-06 新日鉄エンジニアリング株式会社 Carbon dioxide gas recovery device
JP2011212510A (en) * 2010-03-31 2011-10-27 Nippon Steel Engineering Co Ltd Carbon dioxide gas recovery apparatus
CN102869426A (en) * 2010-03-31 2013-01-09 新日铁工程技术株式会社 Carbon dioxide gas recovery device
US9492783B2 (en) 2010-03-31 2016-11-15 Nippon Steel & Sumikin Engineering Co., Ltd. Carbon dioxide gas recovery device
CN114225653A (en) * 2021-12-16 2022-03-25 中国华电科工集团有限公司 Grading regeneration tower and carbon dioxide capture system with same

Similar Documents

Publication Publication Date Title
JP4690659B2 (en) CO2 recovery device
JP4875303B2 (en) Carbon dioxide recovery system, power generation system using the same, and methods thereof
JP5230088B2 (en) CO2 recovery apparatus and method
JP5595045B2 (en) CO2 recovery device and CO2 recovery method
EP2722097B1 (en) Combustion exhaust gas treatment system and combustion exhaust gas treatment method
JP2005254212A5 (en)
WO2010122830A1 (en) Co2 recovery device and co2 recovery method
KR20120098929A (en) Water wash method and system for a carbon dioxide capture process
JP2012192403A (en) Co2 recovery apparatus
JPH0751537A (en) Removal of co2 in co2-containing gas
KR101751723B1 (en) Acid gas scrubbing system and method for acid gas scrubbing using thereof
JP2013180281A (en) Carbon dioxide chemical absorption system in combustion exhaust gas
JP2014034014A (en) Co2 recovery system, and co2 recovery method
JP3771708B2 (en) Method for removing carbon dioxide in gas
JP5174194B2 (en) CO2 recovery apparatus and method
JP6723635B2 (en) CO2 recovery device and CO2 recovery method
KR20180023373A (en) System for collecting acid gas including acidic catalyst and method for collecting the same
JP5591083B2 (en) CO2 recovery system
WO2021199567A1 (en) Co2 recovery device and co2 recovery method
JP5237204B2 (en) CO2 recovery apparatus and method
JP6305837B2 (en) Carbon dioxide recovery device and recovery method
JP2011000528A (en) Co2 recovering device and co2 recovering method
JPH09155141A (en) Absorption device of carbon dioxide gas in exhaust gas
JP2012115779A (en) Co2 recovery system
JP2011005368A (en) Co2 recovering apparatus and method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090815

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100815

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13