JPH09153361A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09153361A
JPH09153361A JP7312348A JP31234895A JPH09153361A JP H09153361 A JPH09153361 A JP H09153361A JP 7312348 A JP7312348 A JP 7312348A JP 31234895 A JP31234895 A JP 31234895A JP H09153361 A JPH09153361 A JP H09153361A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
lithium
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7312348A
Other languages
Japanese (ja)
Inventor
Mitsunori Hara
満紀 原
Satoru Fukuoka
悟 福岡
Keiichi Tsujioku
啓一 辻奥
Yuji Yamamoto
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7312348A priority Critical patent/JPH09153361A/en
Publication of JPH09153361A publication Critical patent/JPH09153361A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the reduction of the battery capacity after the charging/ discharging cycle elapses and improve the charging/discharging cycle characteristics by containing ruthenium in the lithium-manganese composite oxide of a positive electrode having a spinel structure. SOLUTION: A separator 3 is inserted between a (Ru-LiMn2 O4 ) positive electrode 1 containing ruthenium in a lithium-manganese composite oxide used as a main material and a negative electrode 2 using Li as the active material in this nonaqueous electrolyte secondary battery. Mn is substituted with Ru in the crystal of Ru-LiMn2 O4 . The atomic ratio between Ru and Mn in Ru-LiMn2 O4 is preferably set within the range of 0.02<=Ru/(Ru+Mn)<=0.4. The portion substituted with Ru causes no battery reaction, and the portion serves as a skeleton to stabilize the crystal structure. The crystal structure is not collapsed even when charge and discharges are repeated, and the charging/discharging cycle characteristics are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム金属、リ
チウム合金またはリチウムを吸蔵放出可能な材料(炭素
材料等)から構成されるリチウムを活物質とする負極
と、リチウムマンガン複合酸化物を主材料とする正極
と、非水電解質を備えた非水系電解質二次電池に関し、
より詳しくは正極材料の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode containing lithium metal, a lithium alloy, or a material capable of inserting and extracting lithium (a carbon material or the like) as an active material of lithium, and a lithium manganese composite oxide as a main material. And a non-aqueous electrolyte secondary battery having a positive electrode and a non-aqueous electrolyte,
More specifically, it relates to improvement of positive electrode materials.

【0002】[0002]

【従来の技術】近年、高エネルギ密度を有する小型二次
電池として、正極にリチウムコバルト複合酸化物(Li
CoO2 )、負極にリチウムを吸蔵放出可能な炭素材料
を用いたリチウムイオン電池が開発され、携帯用電子機
器あるいは通信機器に広く利用されている。
2. Description of the Related Art Recently, as a small secondary battery having a high energy density, a lithium cobalt composite oxide (Li
A lithium ion battery using CoO 2 ) and a carbon material capable of occluding and releasing lithium for a negative electrode has been developed and widely used for portable electronic devices or communication devices.

【0003】しかし、この正極活物質であるLiCoO
2 は、その原料となるCoが高価であることから、安価
な他の材料で同等の特性を持つ正極活物質が要望され、
活発な研究が行われている。
However, the positive electrode active material LiCoO 2
2 is that Co, which is a raw material thereof, is expensive, so a positive electrode active material having the same characteristics with other inexpensive materials is required,
Active research is underway.

【0004】その中で、スピネル型構造を有するリチウ
ムマンガン複合酸化物であるLiMn2 4 は、原料で
あるMnが安価であり、また特性もLiCoO2 と同様
に放電電位が4V(vs. Li/Li+ )と高いため、高
電圧設計が可能となるなどの理由により有望視されてい
る。
Among them, LiMn 2 O 4, which is a lithium manganese composite oxide having a spinel structure, has a low Mn as a raw material and has the same discharge potential of 4 V (vs. Li) as LiCoO 2 . / Li + ), it is considered to be promising because it enables high voltage design.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、LiM
2 4 を用いた電池の充放電を繰り返すと、LiMn
2 4 の結晶構造が歪み、電池容量が次第に低下すると
いう課題を有していた。本発明は、上述せる問題点に鑑
みてなされたものであって、LiMn2 4 の充放電サ
イクル特性を改善し、安価で高エネルギ密度を有し、充
放電サイクル特性にも優れた非水系電解質二次電池を提
供しようとするものである。
However, the LiM
nTwoOFourWhen the charge and discharge of the battery using is repeated, LiMn
TwoOFourWhen the crystal structure of is distorted and the battery capacity gradually decreases
Had a problem called. The present invention addresses the problems described above.
LiMn.TwoOFourCharge and discharge
It has improved cycle characteristics, is inexpensive, has high energy density, and
Proposed non-aqueous electrolyte secondary battery with excellent discharge cycle characteristics
It is intended to be offered.

【0006】[0006]

【課題を解決するための手段】本発明は、リチウムを活
物質とする負極と、スピネル型構造を有するリチウムマ
ンガン複合酸化物(LiMn2 4 )とを主材料とする
正極と、非水電解質を備えた非水系電解質二次電池であ
って、前記リチウムマンガン複合酸化物にはルテニウム
が含有されていることを特徴とする。
The present invention is directed to a negative electrode using lithium as an active material, a positive electrode containing lithium manganese composite oxide (LiMn 2 O 4 ) having a spinel structure as a main material, and a non-aqueous electrolyte. And a ruthenium contained in the lithium-manganese composite oxide.

【0007】尚、この明細書中では以下、表記の簡略化
のために、スピネル型構造を有するリチウムマンガン複
合酸化物(LiMn2 4 )を単に、LiMn2
4 と、また、ルテニウムを含有しスピネル型構造を有す
るリチウムマンガン複合酸化物をRu−LiMn2 4
と書くこととする。
In this specification, for simplicity of description, a lithium manganese composite oxide (LiMn 2 O 4 ) having a spinel type structure is simply referred to as LiMn 2 O.
4, and a lithium-manganese composite oxide containing ruthenium and having a spinel structure, Ru-LiMn 2 O 4
Will be written.

【0008】[0008]

【発明の実施の形態】本発明の非水系電解質二次電池
は、Liを活物質とする負極と、Ru−LiMn2 4
を主材料とする正極と、非水電解質とを備えるものであ
る。このような構成とすることにより、Ru−LiMn
2 4 の結晶中でMnとRuとが置換する。このRuで
置換した部分は電池反応が生じないため、Ruで置換し
た部分が骨格となって、Liが抜けた状態であっても結
晶構造が安定化し、この結果、充放電を繰り返しても結
晶構造が崩壊せず、充放電サイクル特性が向上するもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte secondary battery of the present invention comprises a negative electrode using Li as an active material and Ru-LiMn 2 O 4
And a non-aqueous electrolyte. With such a structure, Ru-LiMn
Mn and Ru substitute in the crystal of 2 O 4 . Since a battery reaction does not occur in the portion replaced with Ru, the portion replaced with Ru serves as a skeleton, and the crystal structure is stabilized even in the state where Li is released. The structure does not collapse and the charge / discharge cycle characteristics are improved.

【0009】特に、上記Ru−LiMn2 4 中のRu
とMnの原子比は0.02≦Ru/(Ru+Mn)≦
0.4の範囲が望ましい。これは、Ru比が小さ過ぎる
とRuの含有効果が充分に発揮されないため、LiMn
2 4 の充放電サイクル特性の改善が不十分となるから
である。一方、Ru比が大き過ぎると、MnがRuで置
換された部位は充放電しないことから、LiMn2 4
の放電容量が低下するからである。
In particular, Ru in Ru-LiMn 2 O 4 is used.
And Mn atomic ratio is 0.02 ≦ Ru / (Ru + Mn) ≦
A range of 0.4 is desirable. This is because if the Ru ratio is too small, the effect of Ru content is not sufficiently exerted.
This is because the improvement of charge / discharge cycle characteristics of 2 O 4 is insufficient. On the other hand, if the Ru ratio is too large, the site where Mn is replaced with Ru does not charge or discharge, and therefore LiMn 2 O 4
This is because the discharge capacity of is reduced.

【0010】また、Ru−LiMn2 4 は、Ru塩と
Li塩とMn塩(何れも酸化物を含む)とを混合し、5
00℃〜1300℃の温度範囲で熱処理(焼成)して得
ることが望ましい。このように熱処理温度を規制するの
は、熱処理温度が低すぎるとLiMn2 4 のスピネル
型の結晶構造が発達せず、一方熱処理温度が高すぎると
Liが熱処理工程中に揮発し、LiとMnの原子比を調
整することが難しくなるからである。更に、本発明電池
における電解液に使用可能な溶媒、溶質、及び負極の材
料としては以下のものが例示されるが、上記本発明の効
果をかんがみればこれらのものに限定されるものでない
ことは勿論である。具体的に本発明電池における電解液
に使用可能な溶媒としては、ブチレンカーボネート(B
C)、エチレンカーボネート(EC)、ジメトキシエタ
ン(DME)、プロピレンカーボネート(PC)、ビニ
レンカーボネート(VC)、γ−ブチロラクトン(γ−
BL)、ジメチルカーボネート(DMC)、ジエチルカ
ーボネート(DEC)、メチルエチルカーボネート(M
EC)、テトラヒドロフラン(THF)、ジオキソラン
(DOXL)、1,2−ジエトキシエタン(DEE)等
があり、これらの混合溶媒として使用することもでき
る。
Ru-LiMn 2 O 4 is prepared by mixing a Ru salt, a Li salt, and a Mn salt (all of which include oxides).
It is desirable to obtain it by heat treatment (baking) in the temperature range of 00 ° C to 1300 ° C. In this way, the heat treatment temperature is regulated when the heat treatment temperature is too low, the spinel-type crystal structure of LiMn 2 O 4 does not develop, and when the heat treatment temperature is too high, Li is volatilized during the heat treatment step and Li This is because it becomes difficult to adjust the atomic ratio of Mn. Further, examples of the solvent, solute, and negative electrode material that can be used in the electrolytic solution in the battery of the present invention include the following, but in view of the effects of the present invention, the materials are not limited to these. Of course. Specific examples of the solvent that can be used for the electrolytic solution in the battery of the present invention include butylene carbonate (B
C), ethylene carbonate (EC), dimethoxyethane (DME), propylene carbonate (PC), vinylene carbonate (VC), γ-butyrolactone (γ-).
BL), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (M
EC), tetrahydrofuran (THF), dioxolane (DOXL), 1,2-diethoxyethane (DEE), and the like, which can also be used as a mixed solvent thereof.

【0011】また、本発明電池における電解液に使用可
能な溶質としては、LiCF3 SO 3 、LiPF6 、L
iBF4 、LiAsF6 、LiClO4 等を挙げること
ができる。
It can also be used as an electrolyte in the battery of the present invention.
LiCF is an effective solute.ThreeSO Three, LiPF6, L
iBFFour, LiAsF6, LiClOFourEtc.
Can be.

【0012】更に、本発明電池の負極はリチウムを吸蔵
放出可能な材料、リチウム金属、リチウム合金または、
黒鉛などの炭素材料から構成される。尚、負極にリチウ
ムを吸蔵放出可能な炭素材料電池を用いた場合は、電池
内に金属状態のリチウムが存在しないことから、通常の
リチウム二次電池と区別して、リチウムイオン電池とい
う名称で呼ばれることが一般的である。
Further, the negative electrode of the battery of the present invention is a material capable of inserting and extracting lithium, lithium metal, lithium alloy, or
It is composed of a carbon material such as graphite. In addition, when a carbon material battery capable of inserting and extracting lithium is used for the negative electrode, it is called a lithium ion battery in distinction from an ordinary lithium secondary battery because there is no metallic lithium in the battery. Is common.

【0013】また、本発明は、固体電解質電池にも適用
可能である。
The present invention is also applicable to a solid electrolyte battery.

【0014】[0014]

【実施例】【Example】

(実施例I)扁平型の非水系二次電池(本発明電池)を
作製した。
(Example I) A flat non-aqueous secondary battery (the battery of the present invention) was produced.

【0015】〔正極の作製〕水酸化リチウム(LiO
H)と酸化ルテニウム(RuO2 )と二酸化マンガン
(MnO2 )とを、Li:Ru:Mn=0.50:0.
02:0.98となるようなモル比で混合した後、この
混合物を空気中850℃で20時間熱処理(焼成)し
た。ここで、上記焼成物をX線回折法により測定したと
ころ、JCPDSカード(ASTMカード)のLiMn
2 4 (スピネル型構造)と一致することを確認した。
[Preparation of Positive Electrode] Lithium hydroxide (LiO
H), ruthenium oxide (RuO 2 ) and manganese dioxide (MnO 2 ), Li: Ru: Mn = 0.50: 0.
After mixing in a molar ratio of 02: 0.98, this mixture was heat-treated (calcined) in air at 850 ° C. for 20 hours. Here, when the fired product was measured by an X-ray diffraction method, LiMn of a JCPDS card (ASTM card) was measured.
It was confirmed that this coincided with 2 O 4 (spinel type structure).

【0016】次に、主材料としての上記Ru−LiMn
2 4 粉末と、導電剤としてのカーボンブラックと、結
着剤としてのフッ素樹脂とを、重量比で85:10:5
となるように混合して正極合剤を作製した。次いで、こ
の正極合剤を鋳型成形して円盤状とした後、これを真空
中250℃で2時間熱処理することにより正極を作製し
た。
Next, the above Ru-LiMn as the main material is used.
The weight ratio of 2 O 4 powder, carbon black as a conductive agent, and fluororesin as a binder is 85: 10: 5.
To prepare a positive electrode mixture. Next, this positive electrode mixture was molded into a disk shape and then heat-treated in vacuum at 250 ° C. for 2 hours to produce a positive electrode.

【0017】〔負極の作製〕金属リチウムを円盤状に打
ち抜くことにより作製した。
[Preparation of Negative Electrode] It was prepared by punching metallic lithium into a disk shape.

【0018】〔電解液の調製〕1,2−ブチレンカーボ
ネート(BC)とエチレンカーボネート(EC)と1,
2−ジメトキシエタン(DME)とを、体積比25:2
5:50の割合で混合して混合溶媒を調製した後、溶質
としてのトリフルオロメタンスルホン酸リチウム(Li
CF3 SO3 )を1モル/リットルの割合で溶解させて
調製した。
[Preparation of Electrolyte Solution] 1,2-butylene carbonate (BC), ethylene carbonate (EC), 1,
2-dimethoxyethane (DME) in a volume ratio of 25: 2
After mixing at a ratio of 5:50 to prepare a mixed solvent, lithium trifluoromethanesulfonate as a solute (Li
CF 3 SO 3 ) was dissolved at a rate of 1 mol / liter to prepare.

【0019】〔電池の作製〕以上の正負両極及び非水電
解液を用いて扁平型の本発明電池A1を作製した(電池
寸法:直径24mm、厚さ3mm)。尚、正極缶、負極
缶、正極集電体及び負極集電体として、ステンレス鋼板
(SUS430)を用いた。
[Production of Battery] A flat battery A1 of the present invention was produced using the above-mentioned positive and negative electrodes and the non-aqueous electrolyte (battery size: diameter 24 mm, thickness 3 mm). A stainless steel plate (SUS430) was used as the positive electrode can, the negative electrode can, the positive electrode current collector, and the negative electrode current collector.

【0020】図1は、作製した本発明電池A1を模式的
に示す断面図であり、同図に示す本発明電池A1は、正
極1、負極2、これら両電極1,2を互いに離間するセ
パレータ3、正極缶4、負極缶5、正極集電体6、負極
集電体7及びポリプロピレン製の絶縁パッキング8など
からなる。
FIG. 1 is a cross-sectional view schematically showing the produced battery A1 of the present invention. The battery A1 of the present invention shown in FIG. 1 includes a positive electrode 1, a negative electrode 2, and a separator for separating these electrodes 1 and 2 from each other. 3, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like.

【0021】正極1及び負極2は、ポリプロピレン製多
孔性膜より成り非水電解液が含浸されたセパレータ3を
介して対向して正負両極缶4,5が形成する電池ケース
内に収納されており、正極1は正極集電体6を介して正
極缶4に、また負極2は負極集電体7を介して負極缶5
に接続され、電池内部に生じた化学エネルギーを正極缶
4及び負極缶5の両端子から電気エネルギーとして外部
へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other with a separator 3 made of a polypropylene porous film impregnated with a non-aqueous electrolyte. , The positive electrode 1 to the positive electrode can 4 via the positive electrode current collector 6, and the negative electrode 2 to the negative electrode can 5 via the negative electrode current collector 7.
The chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5 to the outside.

【0022】(実施例2)水酸化リチウムと酸化ルテニ
ウムと二酸化マンガンとを、Li:Ru:Mn=0.5
0:0.05:0.95となるようなモル比で混合した
こと以外は上記実施例1と同様にして、正極を作製し
た。次いで、この正極を用いたこと以外は実施例1と同
様にして、本発明電池A2を作製した。
(Example 2) Li: Ru: Mn = 0.5 with lithium hydroxide, ruthenium oxide and manganese dioxide.
A positive electrode was produced in the same manner as in Example 1 except that the molar ratio was 0: 0.05: 0.95. Next, a battery A2 of the invention was produced in the same manner as in Example 1 except that this positive electrode was used.

【0023】(実施例3)水酸化リチウムと酸化ルテニ
ウムと二酸化マンガンとを、Li:Ru:Mn=0.5
0:0.10:0.90となるようなモル比で混合した
こと以外は上記実施例1と同様にして、正極を作製し
た。次いで、この正極を用いたこと以外は実施例1と同
様にして、本発明電池A3を作製した。
(Example 3) Li: Ru: Mn = 0.5 with lithium hydroxide, ruthenium oxide and manganese dioxide.
A positive electrode was produced in the same manner as in Example 1 except that the mixing ratio was 0: 0.10: 0.90. Next, a battery A3 of the invention was produced in the same manner as in Example 1 except that this positive electrode was used.

【0024】(実施例4)水酸化リチウムと酸化ルテニ
ウムと二酸化マンガンとを、Li:Ru:Mn=0.5
0:0.20:0.80となるようなモル比で混合した
こと以外は上記実施例1と同様にして、正極を作製し
た。次いで、この正極を用いたこと以外は実施例1と同
様にして、本発明電池A4を作製した。
(Example 4) Li: Ru: Mn = 0.5 with lithium hydroxide, ruthenium oxide and manganese dioxide.
A positive electrode was produced in the same manner as in Example 1 above, except that the mixing ratio was 0: 0.20: 0.80. Next, a battery A4 of the invention was produced in the same manner as in Example 1 except that this positive electrode was used.

【0025】(実施例5)水酸化リチウムと酸化ルテニ
ウムと二酸化マンガンとを、Li:Ru:Mn=0.5
0:0.40:0.60となるようなモル比で混合した
こと以外は上記実施例1と同様にして、正極を作製し
た。次いで、この正極を用いたこと以外は実施例1と同
様にして、本発明電池A5を作製した。
(Example 5) Li: Ru: Mn = 0.5 with lithium hydroxide, ruthenium oxide and manganese dioxide.
A positive electrode was produced in the same manner as in Example 1 except that the molar ratio was 0: 0.40: 0.60. Next, a battery A5 of the invention was produced in the same manner as in Example 1 except that this positive electrode was used.

【0026】(実施例6)水酸化リチウムと酸化ルテニ
ウムと二酸化マンガンとを、Li:Ru:Mn=0.5
0:0.50:0.50となるようなモル比で混合した
こと以外は上記実施例1と同様にして、正極を作製し
た。次いで、この正極を用いたこと以外は実施例1と同
様にして、本発明電池A6を作製した。
(Example 6) Li: Ru: Mn = 0.5 with lithium hydroxide, ruthenium oxide and manganese dioxide.
A positive electrode was produced in the same manner as in Example 1 above, except that the mixing ratio was 0: 0.50: 0.50. Next, a battery A6 of the invention was produced in the same manner as in Example 1 except that this positive electrode was used.

【0027】(実施例7)水酸化リチウムと酸化ルテニ
ウムと二酸化マンガンとを、Li:Ru:Mn=0.5
0:0.01:0.99となるようなモル比で混合した
こと以外は上記実施例1と同様にして、正極を作製し
た。次いで、この正極を用いたこと以外は実施例1と同
様にして、本発明電池A7を作製した。
(Example 7) Li: Ru: Mn = 0.5 with lithium hydroxide, ruthenium oxide and manganese dioxide.
A positive electrode was prepared in the same manner as in Example 1 except that the mixture was carried out at a molar ratio of 0: 0.01: 0.99. Next, a battery A7 of the invention was produced in the same manner as in Example 1 except that this positive electrode was used.

【0028】(比較例)酸化ルテニウムを加えず、且つ
水酸化リチウムと二酸化マンガンとを、Li:Mn=
0.50:1.00となるようなモル比で混合したこと
以外は上記実施例1と同様にして、正極を作製した。次
いで、この正極を用いたこと以外は実施例1と同様にし
て、比較電池Xを作製した。ここで、理解の容易のた
め、各電池のLiとRuとMnとのモル比及びRuによ
るMnの置換比とを下記表1に示す。
(Comparative Example) Without adding ruthenium oxide, lithium hydroxide and manganese dioxide were added to Li: Mn =
A positive electrode was produced in the same manner as in Example 1 except that the mixing ratio was 0.50: 1.00. Then, a comparative battery X was produced in the same manner as in Example 1 except that this positive electrode was used. Here, for easy understanding, the molar ratio of Li, Ru, and Mn and the substitution ratio of Mn by Ru of each battery are shown in Table 1 below.

【0029】[0029]

【表1】 [Table 1]

【0030】〔充放電サイクル試験〕本発明電池A1〜
A7及び比較電池Xについて、充放電サイクル試験を行
ったので、その結果を図2に示す。尚、試験条件は、定
電流法で、3mAで充電終止電圧4.5Vまで充電した
後、3mAで放電終止電圧3.0Vまで放電するという
条件で行った。
[Charge / Discharge Cycle Test] Battery A1 of the Invention
A charge / discharge cycle test was performed on A7 and comparative battery X, and the results are shown in FIG. The test conditions were constant current method under the conditions of charging to 3V at the end voltage of charge of 4.5V and then discharging at 3mA to the end voltage of discharge of 3.0V.

【0031】図2に示すように、Ruが添加された本発
明電池A1〜A7は、Ruが添加されていない比較電池
Xに比べて、サイクル寿命が長くなっていることが認め
られる。これは、以下に示す理由によるものと考えられ
る。
As shown in FIG. 2, it is recognized that the batteries A1 to A7 of the present invention containing Ru have a longer cycle life than the comparative battery X containing no Ru. This is considered to be due to the following reason.

【0032】スピネル型構造のLiMn2 4 を非水電
解質二次電池の正極活物質として用い、ここからLiを
抽出する方向で可逆的に充放電させることが可能であ
る。これを下記化1に示す。
LiMn 2 O 4 having a spinel type structure can be used as a positive electrode active material of a non-aqueous electrolyte secondary battery, and Li can be reversibly charged and discharged in the direction of extracting Li. This is shown in Chemical Formula 1 below.

【0033】[0033]

【化1】 Embedded image

【0034】ここで、Ruが添加されていない比較電池
Xでは、スピネル型構造であるLiMn2 4 からLi
原子が抜けたMn2 4 は、LiMn2 4 と格子定数
が異なり、結晶が縮んで構造が不安定となるため、充放
電の繰り返しによって結晶構造が崩壊する。この結果、
充放電を繰り返すにしたがって放電容量が低下するた
め、サイクル特性に劣るものと考えられる。
Here, in the comparative battery X to which Ru was not added, from LiMn 2 O 4 having a spinel structure to Li
Mn 2 O 4 with missing atoms has a different lattice constant from LiMn 2 O 4, and the crystal contracts to make the structure unstable, so that the crystal structure collapses due to repeated charge and discharge. As a result,
Since the discharge capacity decreases as the charge and discharge are repeated, it is considered that the cycle characteristics are inferior.

【0035】一方、Ruを添加した本発明電池A1〜A
7では、Li原子が抜けた状態でも結晶構造が安定であ
り、そのため、充放電を繰り返しても結晶構造が崩壊せ
ず、充放電サイクル特性が向上するものと考えられる。
尚、Ruが添加されたLiMn2 4 では結晶構造が安
定化する理由を推測するに、Ruは、Mnと同じく二酸
化物(MnO2 、RuO2 )として安定であり、同じル
チル型結晶構造をとり、その格子定数が近い値であるた
めと考えられる。したがって、LiMn2 4結晶中で
MnとRuとが置換することができる。このようにMn
とRuとが置換すると、Ruで置換した部分は前記化1
の反応が生じないため、電池の充放電時にも結晶構造が
変化しない。この結果、Ruで置換した部分が骨格とな
って、Liが抜けた状態であっても結晶構造が安定化す
るものと考えられる。
On the other hand, the batteries A1 to A of the present invention to which Ru was added
In No. 7, the crystal structure is stable even when Li atoms are removed, and therefore, it is considered that the crystal structure does not collapse even if charge and discharge are repeated and the charge and discharge cycle characteristics are improved.
It should be noted that in order to estimate the reason why the crystal structure is stabilized in LiMn 2 O 4 to which Ru is added, Ru is stable as a dioxide (MnO 2 , RuO 2 ) like Mn, and has the same rutile type crystal structure. It is considered that the lattice constants are close to each other. Therefore, Mn and Ru can be substituted in the LiMn 2 O 4 crystal. Thus Mn
When Ru is replaced with Ru, the portion replaced with Ru is
Since the reaction does not occur, the crystal structure does not change even when the battery is charged or discharged. As a result, it is considered that the portion substituted with Ru serves as a skeleton and the crystal structure is stabilized even when Li is released.

【0036】但し、本発明電池A7(RuによるMnの
置換比:0.01)では、本発明電池A1〜A5(Ru
によるMnの置換比:0.02〜0.40)に比べると
サイクル特性に劣る。これは、Ru比が小さ過ぎるとR
uの添加効果が充分に発揮されないことに起因するもの
である。一方、本発明電池A6(RuによるMnの置換
比:0.50)では、初期容量がRuの無添加の場合に
比べて半分程度となる。これは、MnがRuで置換され
た部位は充放電しないことに起因するものである。これ
らのことから、RuによるMnの置換比は0.02〜
0.40であることが望ましく、特に本発明電池A2及
びA3電池の如く0.10〜0.20であることが望ま
しい。
However, in the present invention battery A7 (replacement ratio of Mn by Ru: 0.01), the present invention batteries A1 to A5 (Ru
In comparison with the Mn substitution ratio of 0.02 to 0.40), the cycle characteristics are inferior. This is because if the Ru ratio is too small, R
This is because the effect of adding u is not sufficiently exhibited. On the other hand, in the battery A6 of the present invention (replacement ratio of Mn with Ru: 0.50), the initial capacity is about half that in the case where Ru is not added. This is because the site where Mn is replaced by Ru does not charge or discharge. From these, the substitution ratio of Mn by Ru is 0.02 to
It is preferably 0.40, and particularly preferably 0.10 to 0.20 as in the batteries A2 and A3 of the present invention.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、充
放電サイクル経過後も電池の容量低下を抑制することが
できるので、電池のサイクル特性を格段に向上させるこ
とができるという優れた効果を奏する。
As described above, according to the present invention, it is possible to suppress the decrease in the capacity of the battery even after the charging / discharging cycle has passed, so that the excellent cycle characteristics of the battery can be remarkably improved. Play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池を模式的に示す断面図である。FIG. 1 is a sectional view schematically showing a battery of the present invention.

【図2】本発明電池A1〜A7及び比較電池Xのサイク
ル特性を示すグラフである。
FIG. 2 is a graph showing cycle characteristics of batteries A1 to A7 of the present invention and comparative battery X.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 祐司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yuji Yamamoto 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウムを活物質とする負極と、スピネル
型構造を有するリチウムマンガン複合酸化物を主材料と
する正極と、非水電解質とを備えた非水系電解質二次電
池であって、 前記リチウムマンガン複合酸化物にはルテニウムが含有
されていることを特徴とする非水系電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a negative electrode containing lithium as an active material, a positive electrode containing lithium manganese composite oxide having a spinel structure as a main material, and a non-aqueous electrolyte, wherein: A lithium-manganese composite oxide contains ruthenium, which is a non-aqueous electrolyte secondary battery.
【請求項2】前記ルテニウムが含有されているリチウム
マンガン複合酸化物中のルテニウムとマンガンとの原子
比が、 0.02≦Ru/(Ru+Mn)≦0.4 であることを特徴とする請求項1記載の非水系電解質二
次電池。
2. The atomic ratio of ruthenium to manganese in the lithium-manganese composite oxide containing ruthenium is 0.02 ≦ Ru / (Ru + Mn) ≦ 0.4. 1. The non-aqueous electrolyte secondary battery described in 1.
【請求項3】前記正極の主材料が、マンガン塩とリチウ
ム塩とルテニウム塩とを混合し、500〜1300℃の
温度範囲で熱処理して得たものであることを特徴とする
請求項1又は請求項2記載の非水系電解質二次電池。
3. The main material of the positive electrode is obtained by mixing a manganese salt, a lithium salt and a ruthenium salt, and heat-treating the mixture in a temperature range of 500 to 1300 ° C. The non-aqueous electrolyte secondary battery according to claim 2.
JP7312348A 1995-11-30 1995-11-30 Nonaqueous electrolyte secondary battery Pending JPH09153361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312348A JPH09153361A (en) 1995-11-30 1995-11-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312348A JPH09153361A (en) 1995-11-30 1995-11-30 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09153361A true JPH09153361A (en) 1997-06-10

Family

ID=18028168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312348A Pending JPH09153361A (en) 1995-11-30 1995-11-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09153361A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441403B1 (en) * 2002-03-14 2004-07-23 한국과학기술연구원 Li-Ru COMPOUND, PREPARATION METHOD THEREOF AND LITHIUM BATTERY USING THE SAME
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof
WO2022202356A1 (en) * 2021-03-23 2022-09-29 田中貴金属工業株式会社 Positive electrode active material for li ion secondary batteries, method for producing said positive electrode active material, positive electrode for li ion secondary batteries, and li ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof
KR100441403B1 (en) * 2002-03-14 2004-07-23 한국과학기술연구원 Li-Ru COMPOUND, PREPARATION METHOD THEREOF AND LITHIUM BATTERY USING THE SAME
WO2022202356A1 (en) * 2021-03-23 2022-09-29 田中貴金属工業株式会社 Positive electrode active material for li ion secondary batteries, method for producing said positive electrode active material, positive electrode for li ion secondary batteries, and li ion secondary battery

Similar Documents

Publication Publication Date Title
JP3238954B2 (en) Non-aqueous secondary battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2000195516A (en) Lithium secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JP2002260632A (en) Secondary battery
KR20040052463A (en) Positive plate material and cell comprising it
JP2009129721A (en) Non-aqueous secondary battery
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP3426689B2 (en) Non-aqueous electrolyte secondary battery
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3188026B2 (en) Non-aqueous battery
JP3670864B2 (en) Lithium secondary battery
JPH0864240A (en) Nonaqueous electrolyte battery
JP3639468B2 (en) Lithium secondary battery
JP4248258B2 (en) Lithium secondary battery
JP3802287B2 (en) Lithium secondary battery
JP3296203B2 (en) Lithium secondary battery
JPH1126018A (en) Lithium secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP3229769B2 (en) Lithium secondary battery
JP2000100469A (en) Nonaqueous electrolyte battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP3670895B2 (en) Lithium secondary battery
JPH09153361A (en) Nonaqueous electrolyte secondary battery