JPH0915273A - Measuring method for fundamental frequency and measuring device - Google Patents

Measuring method for fundamental frequency and measuring device

Info

Publication number
JPH0915273A
JPH0915273A JP18865995A JP18865995A JPH0915273A JP H0915273 A JPH0915273 A JP H0915273A JP 18865995 A JP18865995 A JP 18865995A JP 18865995 A JP18865995 A JP 18865995A JP H0915273 A JPH0915273 A JP H0915273A
Authority
JP
Japan
Prior art keywords
frequency
fundamental wave
component
measuring
wave component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18865995A
Other languages
Japanese (ja)
Inventor
Iwao Oki
巌 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Japan Ltd
Original Assignee
Sony Tektronix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Tektronix Corp filed Critical Sony Tektronix Corp
Priority to JP18865995A priority Critical patent/JPH0915273A/en
Publication of JPH0915273A publication Critical patent/JPH0915273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

PURPOSE: To provide a measuring method and a device for it of fundamental wave component frequency, in which the measuring accuracy of this fundamental wave component frequency of input signal has been improved. CONSTITUTION: This measuring device is provided with a waveform shaping means 13 imparting a high harmonic component without varying a fundamental wave component frequency in an input signal, an FFT processing means 20 processing an output signal of the waveform shaping means 13 into a fast Fourier transform(FFT), and an operational means 20 measuring the frequency of N-th (integers of more than 2) order higher harmonic constituent data among output data of this FFT processing means 20, dividing this measured value with (n) and seeking the frequency of a fundamental wave component in the input signal, respectively. Therefore, measuring errors is reducible to 1/n.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、FFT解析装置に好適
な基本波成分周波数の測定方法及び測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fundamental wave component frequency measuring method and measuring apparatus suitable for an FFT analyzer.

【0002】[0002]

【従来技術】FFT(高速フーリエ変換)解析装置は、
入力信号の周波数成分を解析するための代表的な装置で
ある。図3は、従来のFFT解析装置の構成を示すブロ
ック図である。アナログ入力信号が入力端子10及び入
力回路12を介してADC(アナログ・デジタル変換
器)14に供給され、時間領域の波形データに変換さ
れ、メモリ16に記憶される。この時間領域の波形デー
タがバス18を介してμP20に送られ、FFT演算が
実行される。システムメモリ22は、μP20のための
ソフトウェアを記憶したROM及び動作に必要なRAM
を含んでいる。FFT演算により得られた周波数領域デ
ータが表示回路24内の表示メモリに送られ、この表示
メモリのデータに基づいてCRT等の表示器26に入力
信号の周波数成分が表示される。ユーザーは操作パネル
28を操作してこの装置の動作を制御する。
2. Description of the Related Art An FFT (Fast Fourier Transform) analyzer is
It is a typical device for analyzing the frequency component of an input signal. FIG. 3 is a block diagram showing the configuration of a conventional FFT analysis device. An analog input signal is supplied to an ADC (analog / digital converter) 14 via an input terminal 10 and an input circuit 12, converted into time domain waveform data, and stored in a memory 16. The waveform data in the time domain is sent to the μP 20 via the bus 18 and the FFT operation is executed. The system memory 22 is a ROM storing software for the μP 20 and a RAM required for operation.
Contains. The frequency domain data obtained by the FFT calculation is sent to the display memory in the display circuit 24, and the frequency component of the input signal is displayed on the display 26 such as a CRT based on the data in the display memory. The user operates the operation panel 28 to control the operation of this device.

【0003】[0003]

【発明が解決しようとする課題】FFT演算処理処理で
得られた周波数領域のデータの周波数値には、サンプリ
ング周波数により決まる一定の誤差が含まれるので、入
力信号の基本波成分の周波数を正確に測定することが困
難であった。
Since the frequency value of the data in the frequency domain obtained by the FFT operation processing processing includes a certain error determined by the sampling frequency, the frequency of the fundamental wave component of the input signal can be accurately determined. It was difficult to measure.

【0004】本発明の目的は、入力信号の基本波成分の
周波数の測定精度を向上した基本波成分周波数の測定方
法及び測定装置を提供することである。
An object of the present invention is to provide a method and a device for measuring the frequency of the fundamental wave component, which improves the measurement accuracy of the frequency of the fundamental wave component of the input signal.

【0005】[0005]

【課題を解決する為の手段】本発明は、FFT解析技法
を用いた基本周波数測定方法であって、入力信号の基本
周波数成分を変化させずに、高調波成分を付与した信号
波形に成形し、この信号をFFT処理して得たデータの
うち、n(2以上の整数)次の高調波成分データの周波
数を測定し、この測定値を上記nで除算して上記入力信
号の基本波成分の周波数を測定することを特徴とする。
SUMMARY OF THE INVENTION The present invention is a fundamental frequency measuring method using an FFT analysis technique, in which a fundamental frequency component of an input signal is not changed and is shaped into a signal waveform to which a harmonic component is added. , Of the data obtained by FFT processing of this signal, the frequency of the harmonic component data of the n (integer of 2 or more) order is measured, and this measured value is divided by the above n to obtain the fundamental wave component of the above input signal. It is characterized by measuring the frequency of.

【0006】また、本発明の基本波成分周波数の測定装
置は、入力信号の基本周波数成分を変化させずに、高調
波成分を付与する波形成形手段と、該波形成形手段の出
力信号をFFT処理するFFT処理手段と、該FFT処
理手段の出力データのうち、n(2以上の整数)次の高
調波成分データの周波数を測定し、この測定値を上記n
で除算して上記入力信号の基本波成分の周波数を求める
演算手段とを備えることを特徴とする。
Further, the fundamental wave component frequency measuring apparatus of the present invention includes a waveform shaping means for imparting a harmonic component without changing the fundamental frequency component of the input signal, and an FFT processing of the output signal of the waveform shaping means. Of the output data of the FFT processing means, and the frequency of the harmonic component data of the n (integer of 2 or more) order among the output data of the FFT processing means.
And a calculating means for calculating the frequency of the fundamental wave component of the input signal.

【0007】[0007]

【実施例】図1は、本発明の基本波周波数の測定方法及
び測定装置を適用するのに好適なFFT解析装置の一実
施例の構成を示すブロック図である。図3の従来例に対
応する要素には同一の参照符号を付している。図3の従
来の装置と図1の装置とで異なる点は、入力回路12と
ADC14との間に波形成形回路13を挿入しているこ
とである。この波形成形回路13は、例えば、入力回路
12の出力信号を所定の基準レベルと比較してその比較
出力である矩形波パルス列をADC14に供給するよう
な回路で良い。アナログ入力信号が純粋な正弦波信号の
場合、周波数成分は基本波成分だけなので、その基本波
成分の周波数を測定すると、サンプリング周波数で決ま
る測定誤差Δfoの発生が避けられない。そこで、波形
成形回路13を挿入することにより、矩形波パルス列に
波形を成形すると、基本波成分の周波数foが変化する
ことなく、高次の高調波成分が付与されるので、FFT
演算により得られる周波数領域のデータは、基本波成分
データのみでなく、高次の高調波成分データが含まれる
ことになる。
1 is a block diagram showing the configuration of an embodiment of an FFT analysis apparatus suitable for applying the fundamental wave frequency measuring method and measuring apparatus of the present invention. Elements corresponding to the conventional example in FIG. 3 are denoted by the same reference numerals. The difference between the conventional device of FIG. 3 and the device of FIG. 1 is that the waveform shaping circuit 13 is inserted between the input circuit 12 and the ADC 14. The waveform shaping circuit 13 may be, for example, a circuit that compares the output signal of the input circuit 12 with a predetermined reference level and supplies a rectangular wave pulse train that is the comparison output to the ADC 14. When the analog input signal is a pure sine wave signal, the frequency component is only the fundamental wave component. Therefore, if the frequency of the fundamental wave component is measured, the measurement error Δfo determined by the sampling frequency is inevitable. Therefore, when the waveform shaping circuit 13 is inserted to shape the waveform into the rectangular wave pulse train, the higher-order harmonic components are added without changing the frequency fo of the fundamental wave component.
The data in the frequency domain obtained by the calculation includes not only the fundamental wave component data but also higher order harmonic component data.

【0008】図2は、矩形波パルス列のFFT演算によ
り得られた周波数領域データを表したグラフである。矩
形波パルスの周波数成分は、基本波周波数foの奇数倍
の周波数成分(3fo,5fo,7fo,・・・・)を高次の
成分として含んでいる。そして、これらの高次の周波数
成分の周波数の測定誤差も、基本波周波数成分の誤差と
同じΔfである。したがって、例えば、9次の周波数成
分の周波数を測定すると、その測定値は、9fo+Δf
と表すことができる。この測定値を次数n=9で除算す
ると、基本波成分周波数の値としてfo+Δf/9とい
う結果が得られることになる。したがって、この場合、
基本波周波数foの測定値は、従来に比べて誤差が9分
の1になっていることに留意されたい。このように、次
数nが高くなればなる程、基本波周波数foの測定誤差
の項が小さくなるので、精度が向上することが判る。一
般に、n次の周波数成分の測定周波数値は、nfo+Δ
fとなるので、この測定値をnで除算すれば、基本波成
分foの周波数の値として、fo+Δf/nの値が得ら
れ、これは、従来の誤差Δfのn分の1の誤差となり、
測定精度が大幅に向上したことになる。
FIG. 2 is a graph showing frequency domain data obtained by FFT calculation of a rectangular wave pulse train. The frequency component of the rectangular wave pulse includes a frequency component (3fo, 5fo, 7fo, ...) That is an odd multiple of the fundamental wave frequency fo as a higher-order component. The measurement error of the frequency of these higher-order frequency components is also Δf, which is the same as the error of the fundamental wave frequency component. Therefore, for example, if the frequency of the 9th-order frequency component is measured, the measured value is 9fo + Δf
It can be expressed as. When this measured value is divided by the order n = 9, the result of the fundamental wave component frequency is fo + Δf / 9. So, in this case,
It should be noted that the measured value of the fundamental wave frequency fo has a one-ninth error compared to the conventional one. Thus, it can be seen that the higher the order n is, the smaller the term of the measurement error of the fundamental wave frequency fo is, so that the accuracy is improved. In general, the measured frequency value of the nth-order frequency component is nfo + Δ
Therefore, if this measured value is divided by n, the value of the frequency of the fundamental wave component fo is fo + Δf / n, which is 1 / n of the conventional error Δf.
This means that the measurement accuracy has improved significantly.

【0009】以上、本発明の好適実施例を説明したが、
本発明は、上述の実施例のみに限定されるものではな
く、本発明の要旨から逸脱することなく、種々の変形及
び修正を加え得ることは当業者には明らかである。例え
ば、上記の実施例では、波形成形回路として、簡単な比
較器を用いた例を説明したが、基本波成分の周波数を変
更することなく高調波成分を付与する回路であれば、ど
のような波形に成形する回路でも構わない。
The preferred embodiment of the present invention has been described above.
It will be apparent to those skilled in the art that the present invention is not limited to only the above-described embodiments, and that various changes and modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, an example using a simple comparator was described as the waveform shaping circuit, but any circuit that gives a harmonic component without changing the frequency of the fundamental wave component A circuit that forms a waveform may be used.

【0010】[0010]

【発明の効果】入力波形の基本波成分に高調波成分を付
与する波形成形処理を行うことにより、FFT演算によ
り得られた周波数領域データからn(2以上の整数)次
の周波数を測定し、その測定値を次数nで除算すること
により、従来よりも、誤差をn分の1に低減することが
できる。
EFFECTS OF THE INVENTION By performing a waveform shaping process for imparting a harmonic component to a fundamental wave component of an input waveform, an nth (integer of 2 or more) order frequency is measured from frequency domain data obtained by FFT calculation, By dividing the measured value by the order n, the error can be reduced to 1 / n as compared with the conventional case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】本発明の動作を説明するための周波数成分の一
例を示す図である。
FIG. 2 is a diagram showing an example of frequency components for explaining the operation of the present invention.

【図3】従来のFFT解析装置の構成を示すブロック図
である。
FIG. 3 is a block diagram showing a configuration of a conventional FFT analysis device.

【符号の説明】[Explanation of symbols]

13 波形成形手段 20 FFT処理手段(μP) 20 演算手段(μP) 13 waveform shaping means 20 FFT processing means (μP) 20 computing means (μP)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 FFT解析技法を用いた基本周波数測定
方法であって、 入力信号の基本周波数成分を変化させずに、高調波成分
を付与した信号波形に成形し、 この信号をFFT処理して得たデータのうち、n(2以
上の整数)次の高調波成分データの周波数を測定し、 この測定値を上記nで除算して上記入力信号の基本波成
分の周波数を測定することを特徴とする基本波成分周波
数の測定方法。
1. A fundamental frequency measuring method using an FFT analysis technique, wherein a fundamental wave component of an input signal is not changed, a signal waveform having a harmonic component is formed, and the signal is FFT processed. Among the obtained data, the frequency of the harmonic component data of the nth (integer of 2 or more) order is measured, and the measured value is divided by the above n to measure the frequency of the fundamental wave component of the input signal. Measuring method of fundamental wave component frequency.
【請求項2】 入力信号の基本周波数成分を変化させず
に、高調波成分を付与する波形成形手段と、 該波形成形手段の出力信号をFFT処理するFFT処理
手段と、 該FFT処理手段の出力データのうち、n(2以上の整
数)次の高調波成分データの周波数を測定し、この測定
値を上記nで除算して上記入力信号の基本波成分の周波
数を求める演算手段とを備えることを特徴とする基本波
成分周波数の測定装置。
2. A waveform shaping means for applying a harmonic component without changing a fundamental frequency component of an input signal, an FFT processing means for FFT processing an output signal of the waveform shaping means, and an output of the FFT processing means. Among the data, an arithmetic means for measuring the frequency of the nth (integer of 2 or more) harmonic component data and dividing the measured value by the n to obtain the frequency of the fundamental wave component of the input signal. Measuring device of fundamental wave component frequency.
JP18865995A 1995-06-30 1995-06-30 Measuring method for fundamental frequency and measuring device Pending JPH0915273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18865995A JPH0915273A (en) 1995-06-30 1995-06-30 Measuring method for fundamental frequency and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18865995A JPH0915273A (en) 1995-06-30 1995-06-30 Measuring method for fundamental frequency and measuring device

Publications (1)

Publication Number Publication Date
JPH0915273A true JPH0915273A (en) 1997-01-17

Family

ID=16227605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18865995A Pending JPH0915273A (en) 1995-06-30 1995-06-30 Measuring method for fundamental frequency and measuring device

Country Status (1)

Country Link
JP (1) JPH0915273A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915874A (en) * 2010-07-20 2010-12-15 北海市深蓝科技发展有限责任公司 Harmonic wave detection method based on Fourier transformation
CN103941089A (en) * 2014-04-15 2014-07-23 南京邮电大学 Method for estimating sinusoidal signal frequency based on DFT
CN104090161A (en) * 2014-07-10 2014-10-08 国家电网公司 Substation harmonic wave state estimation method based on integrated monitoring device
CN104459318A (en) * 2014-11-13 2015-03-25 广东电网有限责任公司电力科学研究院 Power harmonic measuring method and system
CN104483563A (en) * 2014-11-27 2015-04-01 广东电网有限责任公司电力科学研究院 Method and system for synchronous sampling of power signals
CN104483545A (en) * 2014-11-27 2015-04-01 广东电网有限责任公司电力科学研究院 Method and system for measuring harmonics of power system
JP6217887B1 (en) * 2017-02-27 2017-10-25 三菱電機株式会社 Frequency calculation device and radar device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915874A (en) * 2010-07-20 2010-12-15 北海市深蓝科技发展有限责任公司 Harmonic wave detection method based on Fourier transformation
CN103941089A (en) * 2014-04-15 2014-07-23 南京邮电大学 Method for estimating sinusoidal signal frequency based on DFT
CN103941089B (en) * 2014-04-15 2016-08-31 南京邮电大学 Sinusoidal signal frequency method of estimation based on DFT
CN104090161A (en) * 2014-07-10 2014-10-08 国家电网公司 Substation harmonic wave state estimation method based on integrated monitoring device
CN104090161B (en) * 2014-07-10 2017-02-01 国家电网公司 Substation harmonic wave state estimation method based on integrated monitoring device
CN104459318A (en) * 2014-11-13 2015-03-25 广东电网有限责任公司电力科学研究院 Power harmonic measuring method and system
CN104459318B (en) * 2014-11-13 2017-06-16 广东电网有限责任公司电力科学研究院 The measuring method and system of electric harmonic
CN104483563A (en) * 2014-11-27 2015-04-01 广东电网有限责任公司电力科学研究院 Method and system for synchronous sampling of power signals
CN104483545A (en) * 2014-11-27 2015-04-01 广东电网有限责任公司电力科学研究院 Method and system for measuring harmonics of power system
CN104483545B (en) * 2014-11-27 2017-05-31 广东电网有限责任公司电力科学研究院 The harmonic measuring method and system of power system
JP6217887B1 (en) * 2017-02-27 2017-10-25 三菱電機株式会社 Frequency calculation device and radar device
WO2018154747A1 (en) * 2017-02-27 2018-08-30 三菱電機株式会社 Frequency calculation device and radar apparatus

Similar Documents

Publication Publication Date Title
EP0113275B1 (en) Spectrum display device for audio signals
KR100911685B1 (en) Low leakage technique for determining power spectra of non-coherently sampled data
JPH0915273A (en) Measuring method for fundamental frequency and measuring device
US6295547B1 (en) Fourier transform apparatus
JPH05223860A (en) Digital spectrum analyzer
JPH07134149A (en) Method for measuring frequency by fourier analysis
JPH0464059A (en) Processing device of analysis data
JPH07234696A (en) Complex cepstrum analyzer for speech
JP3139803B2 (en) Impulse response measurement device
JP2663904B2 (en) Transfer function evaluation device
JPH0712852A (en) Waveform measuring equipment having waveform generating function
Belega et al. Choice of the acquisition parameters for frequency estimation of a sine wave by interpolated DFT method
JPH08262071A (en) Measuring method of effective value
JPH0798336A (en) Sampling type measuring device
JPH0552886A (en) Setting method for sampling period for measurement of harmonic by use of memory recorder
JPS622168A (en) Signal processor
JPH1048272A (en) Harmonic measuring apparatus
JP2982419B2 (en) Design support equipment
JPS6071969A (en) Group delay measuring device
JPS63210671A (en) Signal power measuring apparatus
JPH0335173A (en) Device and method for measuring harmonic distortion
JPH05312601A (en) Instrumentation system
JPS63246682A (en) Transfer function measuring apparatus
JPH04286965A (en) Effective value measuring device
JPH0653831A (en) Waveform sampling circuit