JPH09152234A - Method and apparatus for charging fluorine refrigerant - Google Patents

Method and apparatus for charging fluorine refrigerant

Info

Publication number
JPH09152234A
JPH09152234A JP31276095A JP31276095A JPH09152234A JP H09152234 A JPH09152234 A JP H09152234A JP 31276095 A JP31276095 A JP 31276095A JP 31276095 A JP31276095 A JP 31276095A JP H09152234 A JPH09152234 A JP H09152234A
Authority
JP
Japan
Prior art keywords
refrigerant
fluorine
container
based refrigerant
vaporizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31276095A
Other languages
Japanese (ja)
Inventor
Teruo Shinoda
照夫 新小田
Masato Fukushima
正人 福島
Akihiko Yamashita
明彦 山下
Hiraki Tsuboi
開 坪井
Hideo Tamai
秀男 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
AGC Engineering Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Orion Machinery Co Ltd
Asahi Glass Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Orion Machinery Co Ltd, Asahi Glass Engineering Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP31276095A priority Critical patent/JPH09152234A/en
Publication of JPH09152234A publication Critical patent/JPH09152234A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to suppress the composition change and to charge accurate refrigerant charging amount when fluorine refrigerant is charged in various apparatus by metering the necessary charging amount by a metering vessel from a vessel liquid phase part charged with the refrigerant and then charging the entire amount in a gaseous state. SOLUTION: In the case of charging a fluorine refrigerant, a refrigerant vessel 70 is connected to connecting means 2, connecting means 10 is connected to the charge port 51 of a cooler 50, opening/closing valves V6 to V8 are opened, and a vacuum pump 9 is operated. The fact that a refrigerating circuit and vaporizer 4 become vacuum therein is confirmed by a pressure gage PG2, and the valves V6 to V8 are closed. Then, valves V1 to V4 are opened, and necessary amount of refrigerant is transferred to a metering vessel 3 while observing a level gage 3e and flowmeter FG. Thereafter, the valves V1 to V4 are closed, the valves V5, V8 are opened, liquid refrigerant in the vessel 3 is fed out to the vaporizer 4, and then the valve V5 is closed. The liquid refrigerant evaporated and vaporized by the vaporizer 4 is charged in a charger 50.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はフッ素系冷媒を計量
充填する際の冷媒組成変化を防ぐ充填方法およびその装
置に関するものであり、冷凍空調機メーカーでの装置へ
の冷媒充填または修理、漏洩時のサービス缶での冷媒充
填など、あらゆる分野で利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filling method and an apparatus for preventing a change in the refrigerant composition when a fluorine-based refrigerant is metered and filled. It can be used in all fields, such as filling refrigerant in service cans.

【0002】[0002]

【従来の技術】近年、クロロフルオロカーボン(以下C
FCと称する)の影響によるオゾン層破壊の環境問題が
注目されており1995年末の全廃が決定している。ま
た、オゾン層破壊に対する影響の少ないヒドロクロロフ
ルオロカーボン(以下HCFCと称する)についても、
いずれ全廃する方向にある。
2. Description of the Related Art In recent years, chlorofluorocarbon (hereinafter referred to as C)
The environmental problem of ozone layer depletion due to the influence of FC) is drawing attention, and it has been decided to abolish it at the end of 1995. Also, regarding hydrochlorofluorocarbons (hereinafter referred to as HCFCs), which have little effect on ozone layer depletion,
It will eventually be abolished.

【0003】そこで、これらCFCおよびHCFCの代
替として、オゾン層破壊に対する影響のないヒドロフル
オロカーボン(以下HFCと称する)系フッ素系冷媒の
採用が有力となっている。例えば、特公平6−5594
2には、ジフルオロメタン(HFC−32)、1,1,
1,2,2−ペンタフルオロエタン(HFC−125)
および1,1,1,2−テトラフルオロエタン(HFC
−134a)を組み合わせてなるフッ素系冷媒が開示さ
れている。
Therefore, as a substitute for these CFCs and HCFCs, it has been promising to adopt a hydrofluorocarbon (hereinafter referred to as HFC) type fluorine-based refrigerant which has no influence on ozone layer depletion. For example, Japanese Patent Publication No. 6-5594
2 includes difluoromethane (HFC-32), 1, 1,
1,2,2-Pentafluoroethane (HFC-125)
And 1,1,1,2-tetrafluoroethane (HFC
-134a) is disclosed in combination with a fluorine-based refrigerant.

【0004】今日までに使用されてきた、単一成分もし
くは共沸系冷媒については、組成の変動はないため、充
填の際、気相充填でも液相充填でも特に組成変化を抑制
する技術は必要なかった。
Since there is no change in the composition of the single component or azeotropic refrigerants that have been used up to now, there is a need for a technique for suppressing the composition change particularly in the gas phase filling or the liquid phase filling at the time of filling. There wasn't.

【0005】フッ素系冷媒は、ある特定の重量比率で混
合することにより、現在汎用されている冷凍機、空調機
などの冷却装置において、CFCおよびHCFCに代替
して、同等の冷媒作用を発現させるものである。したが
って、これらのフッ素系冷媒を冷却装置へ充填する場合
などにおいては、その組成が正確に維持され、充填操作
によって、成分組成が異なるものにならぬよう注意しな
ければならない。
Fluorine-based refrigerants are mixed in a certain specific weight ratio to substitute CFCs and HCFCs in cooling devices such as refrigerating machines and air conditioners that are currently widely used, and to exhibit equivalent refrigerant action. It is a thing. Therefore, when filling the cooling device with these fluorine-based refrigerants, care must be taken so that the composition is accurately maintained and the component composition does not differ depending on the filling operation.

【0006】フッ素系冷媒の充填の場合も単一成分と同
様の充填方法が考えられるが、その際沸点が低い成分が
選択的に気相側に蒸発するため、気液両相において組成
変化を生じることを避けられない。このため、冷却装置
への冷媒充填に伴い、一台一台の冷媒組成が変化し、全
ての冷却装置に同一の能力を発揮させることが困難とな
る。フッ素系冷媒の組成変化を抑制する方法として、液
相充填が例示される。しかし、気相状態での充填口のみ
を有する機器に対しては適応できない。
In the case of filling with a fluorine-based refrigerant, a filling method similar to that for a single component can be considered. However, at that time, a component having a low boiling point selectively evaporates to the gas phase side, so that the composition change in both the gas and liquid phases. It cannot be avoided. For this reason, as the cooling device is filled with the cooling medium, the cooling medium composition of each cooling device changes, and it becomes difficult for all the cooling devices to exhibit the same capacity. Liquid phase filling is exemplified as a method of suppressing the composition change of the fluorine-based refrigerant. However, it cannot be applied to a device having only a filling port in a gas phase state.

【0007】ところで、従来の冷却装置への冷媒充填装
置としては、例えば、特開昭56−105274には、
冷媒が充填された容器から、冷媒を冷却装置へ充填する
に際して、充填回路の真空引きを繰り返すとともに、前
記冷媒容器から冷却装置に至る冷媒流路の途中に、膨張
弁と冷媒を気化させる熱交換器を設けて、冷媒を一旦気
化させた後に充填する装置が開示されている。また、冷
媒の充填量は、膨張弁の入り口側の管路における冷媒の
物性値を測定し、これに基づいて最適充填時間を演算し
て設定し、所定の時間が経過したら冷媒管側のバルブを
閉じることにより、自動設定する装置が開示されてい
る。
By the way, as a conventional refrigerant charging device for a cooling device, for example, in Japanese Patent Laid-Open No. 56-105274,
When the refrigerant is filled into the cooling device from the container filled with the refrigerant, the filling circuit is repeatedly evacuated, and in the middle of the refrigerant flow path from the refrigerant container to the cooling device, an expansion valve and heat exchange for vaporizing the refrigerant. There is disclosed a device that is provided with a container and once the refrigerant is vaporized and then filled. In addition, the amount of refrigerant to be filled is determined by measuring the physical property value of the refrigerant in the pipeline on the inlet side of the expansion valve, calculating and setting the optimum filling time based on this, and after a predetermined time has elapsed, the valve on the refrigerant pipe side is set. There is disclosed a device for automatically setting by closing.

【0008】また、特開昭55−99566には、冷媒
を充填するためのシリンダーを使用し、シリンダーを先
ず真空ポンプによって真空にしてから、冷媒を収容した
冷媒容器からシリンダーに冷媒を移動させ、正確に計量
した冷媒を液体の状態で冷却装置へ充填する装置が開示
されている。
Further, in Japanese Patent Laid-Open No. 55-99566, a cylinder for filling a refrigerant is used, the cylinder is first evacuated by a vacuum pump, and then the refrigerant is moved from a refrigerant container containing the refrigerant to the cylinder. An apparatus for filling a cooling device with a precisely measured amount of a refrigerant in a liquid state is disclosed.

【0009】[0009]

【発明が解決しようとする課題】しかし、前者の冷媒充
填装置は、冷却装置への混合冷媒の充填量を正確に把握
できない欠点がある。また、後者の冷媒充填装置は、冷
却装置へ気相状態にて充填できない欠点がある。
However, the former refrigerant charging device has a drawback that the charging amount of the mixed refrigerant into the cooling device cannot be accurately grasped. Further, the latter refrigerant charging device has a drawback that the cooling device cannot be charged in the vapor phase.

【0010】本発明の第1の目的は、上記問題に鑑み、
フッ素系冷媒を、特に気相状態の冷媒を各種機器へ充填
する際の組成変化を抑制する方法およびその装置を提供
することにある。本発明の第2の目的は、冷却装置への
冷媒充填量が正確なフッ素系冷媒充填方法およびその装
置を提供することにある。
The first object of the present invention is to solve the above problems.
It is an object of the present invention to provide a method and an apparatus for suppressing a composition change when a fluorine-based refrigerant, particularly a refrigerant in a vapor phase state, is filled into various devices. A second object of the present invention is to provide a fluorine-based refrigerant charging method and a device thereof in which the amount of refrigerant charged into a cooling device is accurate.

【0011】クロロジフルオロメタンの代替候補として
考えられるHFC−32/HFC−125/HFC−1
34a=23/25/52(wt%)の非共沸系混合冷
媒では密閉容器気相から直接各種機器へ充填した場合、
充填初期には、沸点の最も低いHFC−32が選択的に
気化するため、HFC−32の気相濃度が33%前後に
上昇し、充填を実施するに従いこのHFC−32濃度が
低下し、密閉容器の空間率が80%以上になった時点で
HFC−32濃度は18%前後まで低下する。即ち、H
FC−32濃度は密閉容器内濃度23%に対して±10
%以上の変化を生じることとなり、空調機の冷凍性能を
管理することが不可能となる。
HFC-32 / HFC-125 / HFC-1 which is considered as an alternative candidate for chlorodifluoromethane
When non-azeotropic mixed refrigerant of 34a = 23/25/52 (wt%) is filled directly into various devices from a gas phase in a closed container,
At the initial stage of filling, HFC-32 having the lowest boiling point is selectively vaporized, so that the gas phase concentration of HFC-32 rises to around 33%, and as the filling is carried out, this HFC-32 concentration decreases and the sealing is performed. When the porosity of the container reaches 80% or more, the HFC-32 concentration decreases to around 18%. That is, H
FC-32 concentration is ± 10 against 23% concentration in a closed container.
% Or more, and it becomes impossible to control the refrigeration performance of the air conditioner.

【0012】[0012]

【課題を解決するための手段】本発明者らは、気体状態
で各種機器に充填する際のフッ素系冷媒の組成変化を抑
制する方法について検討の結果、一旦、フッ素系冷媒が
充填された容器液相部より計量容器にて必要充填量を計
量したうえで、気体状態で全量充填すること、または計
量容器液相部より気化器を通し充填することにより、か
かる目的を達成できることを見いだすに至った。すなわ
ち、本発明は、以下の(1)〜(4)の発明である。
Means for Solving the Problems As a result of studies on a method for suppressing the composition change of a fluorine-based refrigerant when filling various devices in a gas state, the present inventors have once filled a container filled with the fluorine-based refrigerant. It has been found that such an object can be achieved by measuring the required filling amount from the liquid phase part in a measuring container and then filling the entire amount in a gas state, or by filling the vaporizer from the liquid phase part of the measuring container. It was That is, the present invention is the following inventions (1) to (4).

【0013】(1)フッ素系冷媒が充填された密閉容器
の液相部への接続手段(A−1)と、管路開閉手段(B
−1)を介して接続手段(A−1)に連結する計量容器
と、管路開閉手段(B−2)を介して前記計量容器の気
相部の流出流路に連結する冷却装置充填口への接続手段
(A−2)とを備えることを特徴とするフッ素系冷媒充
填装置。
(1) Connection means (A-1) to the liquid phase portion of the closed container filled with a fluorine-based refrigerant, and pipe line opening / closing means (B)
-1), a measuring container connected to the connecting means (A-1), and a cooling device filling port connected to the outflow passage of the gas phase part of the measuring container via the conduit opening / closing means (B-2). And a connecting means (A-2) to the fluorine-based refrigerant charging device.

【0014】(2)フッ素系冷媒が充填された密閉容器
の液相部への接続手段(A−1)と、管路開閉手段(B
−1)を介して接続手段(A−1)に連結する計量容器
と、管路開閉手段(B−3)を介して前記計量容器の液
相部の流出流路に連結する気化器と、管路開閉手段(B
−2)を介して前記気化器の流出流路に連結する冷却装
置充填口への接続手段(A−2)とを備えることを特徴
とするフッ素系冷媒充填装置。
(2) Connection means (A-1) to the liquid phase portion of the closed container filled with the fluorine-based refrigerant, and pipeline opening / closing means (B)
-1), a measuring container connected to the connecting means (A-1), and a vaporizer connected to the outflow passage of the liquid phase portion of the measuring container via the pipe opening / closing means (B-3), Pipe opening / closing means (B
-2), and a connecting means (A-2) to a cooling device charging port connected to the outflow passage of the vaporizer.

【0015】(3)密閉容器に充填されたフッ素系冷媒
をこの密閉容器中のフッ素系冷媒の液相部から抜き出し
た後、計量容器へ導入し、次いでこの計量容器から所定
量のフッ素系冷媒を抜き出し、気体状態で冷却装置へ導
入することを特徴とするフッ素系冷媒充填方法。
(3) The fluorine-based refrigerant filled in the closed container is extracted from the liquid phase portion of the fluorine-based refrigerant in the closed container, introduced into a measuring container, and then a predetermined amount of the fluorine-based refrigerant is discharged from the measuring container. Is taken out and introduced into the cooling device in a gaseous state.

【0016】(4)密閉容器に充填されたフッ素系冷媒
をこの密閉容器中のフッ素系冷媒の液相部から抜き出し
た後、計量容器へ導入し、次いでこの計量容器中のフッ
素系冷媒の液相部から所定量のフッ素系冷媒を抜き出し
た後、気化器へ導入し、次いでこの気化器から気体状フ
ッ素系冷媒を抜き出し冷却装置へ導入することを特徴と
するフッ素系冷媒充填方法。
(4) The fluorine-based refrigerant filled in the closed container is extracted from the liquid phase portion of the fluorine-based refrigerant in the closed container, introduced into the measuring container, and then the liquid of the fluorine-based refrigerant in the measuring container. A method for charging a fluorine-based refrigerant, which comprises extracting a predetermined amount of a fluorine-based refrigerant from a phase portion, introducing it into a vaporizer, and then extracting a gaseous fluorine-based refrigerant from this vaporizer and introducing it into a cooling device.

【0017】[0017]

【発明の実施の形態】本発明のフッ素系冷媒充填装置
は、フッ素系冷媒が充填された密閉容器液相部への接続
手段(A−1)と、管路開閉手段(B−1)を介して接
続手段(A−1)に連結する計量容器と、管路開閉手段
(B−2)を介して前記計量容器の気相部の流出流路に
連結する冷却装置充填口への接続手段(A−2)とを備
える。
BEST MODE FOR CARRYING OUT THE INVENTION The fluorine-based refrigerant filling device of the present invention comprises a connecting means (A-1) to a liquid phase portion of a closed container filled with a fluorine-based refrigerant and a pipeline opening / closing means (B-1). A measuring container connected to the connecting means (A-1) via the connecting means, and a connecting means to the cooling device filling port connected to the outflow passage of the gas phase part of the measuring container via the pipe opening / closing means (B-2). And (A-2).

【0018】密閉容器に充填されたフッ素系冷媒はこの
密閉容器中のフッ素系冷媒の液相部から抜き出された
後、計量容器へ導入され、次いでこの計量容器から所定
量のフッ素系冷媒が抜き出され、気体状態で冷却装置へ
導入される。計量容器で計量されたフッ素系冷媒の全量
またはそれに近い量を気体状態で冷却装置へ充填するこ
とが好ましい。これにより、フッ素系冷媒が非共沸系混
合冷媒の場合は特に、混合冷媒の組成変化なしに充填で
きる。
The fluorine-based refrigerant filled in the closed container is extracted from the liquid phase portion of the fluorine-based refrigerant in the closed container and then introduced into the measuring container, and then a predetermined amount of the fluorine-based refrigerant is discharged from the measuring container. It is extracted and introduced into the cooling device in a gaseous state. It is preferable to fill the cooling device in a gas state with the entire amount or a similar amount of the fluorine-based refrigerant measured by the measuring container. Thereby, especially when the fluorine-based refrigerant is a non-azeotropic mixed refrigerant, the mixed refrigerant can be filled without changing the composition.

【0019】計量容器液相部の流出流路と冷却装置充填
口への接続手段(A−2)の間には気化器が設けられて
いてもよい。この気化器は管路開閉手段(B−3)を介
して計量容器気相部の流出流路と接続され、気化器の流
出流路は管路開閉手段(B−2)を介して冷却装置充填
口への接続手段(A−2)に接続される。
A vaporizer may be provided between the outflow passage of the liquid phase portion of the measuring container and the connecting means (A-2) to the cooling device filling port. This vaporizer is connected to the outflow passage of the vapor phase portion of the measuring container via the pipe opening / closing means (B-3), and the outflow passage of the vaporizer is cooled via the pipe opening / closing means (B-2). It is connected to the connecting means (A-2) to the filling port.

【0020】気化器を用いる場合には、計量容器中のフ
ッ素系冷媒はその液相部から所定量抜き出された後、気
化器へ導入され、次いでこの気化器から気体状フッ素系
冷媒を抜き出され、冷却装置へ導入される。計量容器中
の液相部から抜き出されるフッ素系冷媒の所定量は計量
容器で計量されたフッ素系冷媒の全量でもよく、一部で
もよい。計量容器から液体状態で気化器へ導入されるた
め、特にフッ素系冷媒が非共沸系混合冷媒の場合、全量
でなくとも混合冷媒の組成変化が無いかまたはほとんど
無い状態で充填できる。後述の均圧手段を設けることに
より、この組成変化をさらに小さくできる。
When the vaporizer is used, the fluorine-based refrigerant in the measuring container is withdrawn from the liquid phase portion in a predetermined amount and then introduced into the vaporizer, and then the gaseous fluorine-based refrigerant is withdrawn from the vaporizer. It is taken out and introduced into the cooling device. The predetermined amount of the fluorine-based refrigerant extracted from the liquid phase portion in the measuring container may be the whole amount or a part of the fluorine-based refrigerant measured in the measuring container. Since it is introduced into the vaporizer in a liquid state from the measuring container, particularly when the fluorine-based refrigerant is a non-azeotropic mixed refrigerant, even if not the total amount, the composition of the mixed refrigerant can be filled with little or no change. By providing a pressure equalizing means described later, this composition change can be further reduced.

【0021】フッ素系冷媒が充填された密閉容器液相部
への接続手段(A−1)と計量容器を連結する管路開閉
手段(B−1)には連通可能な真空源を備えることが望
ましい。
The connecting means (A-1) to the liquid phase portion of the closed container filled with the fluorinated refrigerant and the pipeline opening / closing means (B-1) for connecting the measuring container may be provided with a vacuum source capable of being communicated. desirable.

【0022】上記において、計量容器には、充填された
液冷媒の容器内の液位を表示する連通管と、計量容器内
圧力を表示する圧力計と、前記連通管に沿って設けら
れ、表示圧力下における連通管内液位の混合冷媒重量を
示すスケールとを備えることが好ましい。
In the above, the measuring container is provided with a communicating pipe for displaying the liquid level of the filled liquid refrigerant in the container, a pressure gauge for displaying the pressure in the measuring container, and a display provided along the communicating pipe. It is preferable to provide a scale showing the weight of the mixed refrigerant of the liquid level in the communicating pipe under pressure.

【0023】気化器の加熱手段としては、本発明装置の
使用環境により異なるが、単に送風機のみで足りる場合
もあり、あるいは送風機とこの送風機の送風域に設けら
れた空気加熱器(例えば、電熱ヒータ)との組み合わせ
の場合もある。また、シーズヒータなどを気化器を構成
する伝熱パイプに巻き付けてもよい。
As the heating means of the vaporizer, depending on the use environment of the device of the present invention, there may be a case where only a blower is sufficient, or a blower and an air heater (for example, an electric heater provided in the blower area of this blower). ) May be combined with. Further, a sheath heater or the like may be wound around the heat transfer pipe forming the vaporizer.

【0024】これらの加熱手段の目的は、充填装置を囲
む環境条件の如何にかかわらず、気化器において、その
成分化合物の全てを完全に蒸発気化させることにより、
冷媒成分の組成を変えないで、冷却装置に充填すること
にある。
The purpose of these heating means is to completely evaporate and vaporize all of their component compounds in the vaporizer, regardless of the environmental conditions surrounding the filling device,
It is to fill the cooling device without changing the composition of the refrigerant components.

【0025】気化器には、結露検出器または温度検出器
を取り付けるとともに、前記検出器による結露状態また
は温度のいずれかを検出する検出信号によって作動する
気化器加熱手段を設けることが好ましい。
A dew condensation detector or a temperature detector is attached to the vaporizer, and it is preferable to provide a vaporizer heating means which operates by a detection signal for detecting either the dew condensation state or the temperature by the detector.

【0026】結露検出器は、気化器表面の水分(または
着霜)を検出することにより、また温度検出器は、気化
器表面温度を測定して冷媒の一部が液状態のままで気化
器から送り出される状態を検出し、気化器加熱手段を作
動させる。気化器としては、伝熱フィン付熱良導性金属
パイプなどが好ましく例示される。
The dew condensation detector detects moisture (or frost) on the surface of the carburetor, and the temperature detector measures the surface temperature of the carburetor to vaporize the refrigerant while a part of the refrigerant remains in a liquid state. The state sent out from is detected and the vaporizer heating means is activated. A preferable example of the vaporizer is a heat conductive metal pipe with a heat transfer fin.

【0027】上述の計量容器には、計量容器内上部に連
通し、計量容器内上部の圧力に応じて計量容器内の気体
を収容すべき容積を拡大しまたは縮小する均圧手段を設
けることが好ましい。フッ素系冷媒が非共沸系混合冷媒
の場合は、この均圧手段により計量容器内の非共沸系混
合冷媒気相部の容積を一定にすることができる。
The above-mentioned measuring container is provided with a pressure equalizing means which communicates with the upper part of the measuring container and expands or reduces the volume of the gas in the measuring container which should accommodate the gas in accordance with the pressure of the upper part of the measuring container. preferable. When the fluorine-based refrigerant is a non-azeotropic mixed refrigerant, the pressure equalizing means can keep the volume of the non-azeotropic mixed refrigerant vapor phase portion in the measuring container constant.

【0028】これにより、非共沸系混合冷媒を計量容器
へ導入され、計量容器内の非共沸系混合冷媒を液相から
抜き出す一連の過程において、抜き出された非共沸系混
合冷媒の組成変化を抑制できる。均圧手段としては、計
量容器内上部に連通するベローズ形容器またはベローズ
内蔵圧力容器などが挙げられる。
As a result, the non-azeotropic mixed refrigerant is introduced into the measuring container, and the non-azeotropic mixed refrigerant extracted from the non-azeotropic mixed refrigerant in the measuring container is discharged from the liquid phase. The composition change can be suppressed. Examples of the pressure equalizing means include a bellows-type container or a pressure container with a built-in bellows, which communicates with the upper part of the measuring container.

【0029】計量容器から冷却装置接続口に至る管路に
サイトグラスを設けることが好ましく、これにより、液
冷媒が混在するか否か視認できる。計量容器での計量方
法としては、計量容器内に設けた目盛りによる方法でも
よく、天秤を用いた重量測定による方法でもよい。
It is preferable to provide a sight glass in the conduit extending from the measuring container to the cooling device connection port, so that it is possible to visually confirm whether or not the liquid refrigerant is mixed. The measuring method using the measuring container may be a method using a scale provided in the measuring container or a method using weight measurement using a balance.

【0030】本発明のフッ素系冷媒充填装置は、フッ素
系冷媒のみに限定されず、単一冷媒、共沸混合冷媒、共
沸様混合冷媒などに対しても採用できる。また、液相状
態での充填に際しても適用できる。
The fluorine-based refrigerant charging device of the present invention is not limited to fluorine-based refrigerants, but can be used for single refrigerants, azeotropic mixed refrigerants, azeotrope-like mixed refrigerants, and the like. It can also be applied when filling in the liquid phase.

【0031】フッ素系冷媒には、前述のHFC−32/
HFC−125/HFC−134a=23/25/52
(wt%)などの非共沸混合冷媒、またはHFC−32
/HFC−125=50/50(wt%)の混合冷媒、
HFC−32/HFC−125=45/55(wt%)
の混合冷媒、HFC−125/HFC−143a=50
/50(wt%)の混合冷媒、HFC−125/HFC
−134a/HFC−143a=44/4/52(wt
%)などの共沸または共沸様混合冷媒がある。
As the fluorine-based refrigerant, the above-mentioned HFC-32 /
HFC-125 / HFC-134a = 23/25/52
(Wt%) non-azeotropic mixed refrigerant, or HFC-32
/ HFC-125 = 50/50 (wt%) mixed refrigerant,
HFC-32 / HFC-125 = 45/55 (wt%)
Mixed refrigerant, HFC-125 / HFC-143a = 50
/ 50 (wt%) mixed refrigerant, HFC-125 / HFC
-134a / HFC-143a = 44/4/52 (wt
%) And other azeotropic or azeotrope-like mixed refrigerants.

【0032】[0032]

【実施例】図1は、本発明の一実施例を示す概念図であ
る。フッ素系冷媒充填装置1は、フッ素系冷媒を貯蔵す
るフッ素系冷媒容器70の冷媒取出口71に接続する接
続手段2を備えており、この接続手段2は、開閉弁V
1、V2、V3、V4をこの順序で順次一連に介した液
冷媒流路により、計量容器3の内部下端に連通してい
る。接続手段2は、冷媒容器70が小型の場合は、冷媒
取出口71を下に向けて接続するように構成され、ま
た、冷媒容器70が大型の場合は、冷媒容器70の液相
部に開口部を設けた冷媒取出管(図示せず)に設けた取
出口に接続する。
FIG. 1 is a conceptual diagram showing an embodiment of the present invention. The fluorine-based refrigerant filling device 1 includes a connecting means 2 that connects to a refrigerant outlet 71 of a fluorine-based refrigerant container 70 that stores a fluorine-based refrigerant. The connecting means 2 is an opening / closing valve V.
1, V2, V3, V4 are communicated with the lower end of the inside of the measuring container 3 by a liquid refrigerant flow path sequentially and sequentially in this order. When the refrigerant container 70 is small, the connecting means 2 is configured to connect with the refrigerant outlet 71 facing downward, and when the refrigerant container 70 is large, it is opened in the liquid phase portion of the refrigerant container 70. It is connected to an outlet provided in a refrigerant outlet pipe (not shown) provided with a section.

【0033】計量容器3は、直立円筒状密閉耐圧容器か
らなり、その底部には、接続手段2に連通可能な冷媒入
口3aと冷媒出口3bが設けられている。また、計量容
器3の天井部には、計量容器3内の圧力を表示する圧力
計PG3、計量容器3内を開閉弁V9とパージ流量を計
測表示する流量計FGを介して外部に開放するパージ管
3c、および計量容器3内の圧力が所定の値以上になる
と作動するリリース弁3dが設けられている。また、計
量容器3にはその上端部付近と下端部付近を連通する透
明連通管からなるレベルゲージ3eが設けられている。
The measuring container 3 is composed of an upright cylindrical hermetic pressure-resistant container, and a refrigerant inlet 3a and a refrigerant outlet 3b which are capable of communicating with the connecting means 2 are provided at the bottom thereof. Further, on the ceiling of the measuring container 3, a pressure gauge PG3 for displaying the pressure inside the measuring container 3, a purge for opening the inside of the measuring container 3 to the outside via an opening / closing valve V9 and a flow meter FG for measuring and displaying the purge flow rate. A release valve 3d is provided which is activated when the pressure in the pipe 3c and the measuring container 3 becomes a predetermined value or more. Further, the measuring container 3 is provided with a level gauge 3e made of a transparent communication pipe that communicates between the upper end portion and the lower end portion thereof.

【0034】冷媒出口3bには、開閉弁V5を介して気
化器4が接続している。気化器4は、金属パイプ4aの
表面に多数の伝熱フィン4bを付設したものを所定の幅
で、蛇行配設したものから構成されている。この気化器
4に臨んで、送風ファン5と電熱ヒータからなる空気加
熱器6とで構成される気化器加熱手段が設けられてい
る。金属パイプ4aの下流側には、水分センサからなる
結露検出器7が添設されている。結露検出器7からの水
分検出信号に基づいて、制御器15が作動信号を送信す
ることにより、気化器加熱手段が作動する。
The carburetor 4 is connected to the refrigerant outlet 3b through an on-off valve V5. The carburetor 4 is composed of a metal pipe 4a provided with a large number of heat transfer fins 4b on its surface and arranged in a meandering manner with a predetermined width. Facing the carburetor 4, carburetor heating means including a blower fan 5 and an air heater 6 composed of an electric heater is provided. A dew condensation detector 7 including a moisture sensor is additionally provided on the downstream side of the metal pipe 4a. Based on the moisture detection signal from the dew condensation detector 7, the controller 15 transmits an operation signal, so that the vaporizer heating means operates.

【0035】上記において、結露検出器7に代えて、温
度検出器を設け、混合冷媒の沸点などの物性値に応じて
定められる所定温度以下を検出した場合、気化器加熱手
段を作動させるようにしてもよい。これら結露検出器お
よび温度検出器は、両方の信号によりまたはいずれか一
方の信号により加熱手段を作動させる。気化器加熱手段
は、電気発熱線を金属パイプ4aに巻き付けたものでも
よい。
In the above, a temperature detector is provided in place of the dew condensation detector 7, and the vaporizer heating means is activated when a temperature equal to or lower than a predetermined temperature determined according to a physical property value such as a boiling point of the mixed refrigerant is detected. May be. These dew condensation detectors and temperature detectors activate the heating means by both signals or by either signal. The vaporizer heating means may be an electric heating wire wound around the metal pipe 4a.

【0036】気化器4から冷却装置50の充填口51へ
の接続手段10に至る冷媒流路にはサイトグラス8が設
けられており、気化器4から出た冷媒中に液冷媒が混在
するか否かを直接視認できる。
A sight glass 8 is provided in the refrigerant flow path from the vaporizer 4 to the connecting means 10 to the filling port 51 of the cooling device 50. Is a liquid refrigerant mixed in the refrigerant discharged from the vaporizer 4? You can directly see whether or not.

【0037】接続手段2から冷媒入り口3aに至る液冷
媒流路には開閉弁V6を介して真空ポンプ9が接続して
おり、さらに、この液冷媒流路と、気化器4から接続手
段10に至るガス冷媒流路とを、開閉弁V7を介して短
絡する短絡流路を経て接続手段10に連通できるように
されている。フッ素系冷媒充填装置1は、このような真
空ポンプ9、計量容器3、気化器4、気化器加熱手段
5、6、制御器15などを冷媒管路によって結合したも
のをユニット化して、ケース中に装着してなる。
A vacuum pump 9 is connected to the liquid refrigerant flow path from the connecting means 2 to the refrigerant inlet 3a via an on-off valve V6. Further, this liquid refrigerant flow path and the vaporizer 4 are connected to the connecting means 10. The gas refrigerant flow path that reaches the connecting means 10 can be communicated with the connecting means 10 via a short-circuit flow path that short-circuits via the on-off valve V7. The fluorine-based refrigerant charging device 1 is a unit in which the vacuum pump 9, the measuring container 3, the vaporizer 4, the vaporizer heating means 5 and 6, the controller 15 and the like are connected by a refrigerant pipe to form a unit. It will be attached to.

【0038】上記の構成からなるフッ素系冷媒充填装置
は、接続手段2に冷媒容器70を接続するとともに、冷
媒を充填すべき冷却装置50の充填口51に接続手段1
0を接続して、開閉弁V8、V6、V7を開き、他の弁
はすべて閉じたままの状態で、真空ポンプ9を作動させ
る。圧力計PG2により、冷却装置50の冷凍回路内お
よび気化器4内が真空になったのを確認して、弁V8、
V7、V6を閉じる。
In the fluorine-based refrigerant charging device having the above structure, the refrigerant container 70 is connected to the connecting means 2 and the connecting means 1 is connected to the charging port 51 of the cooling device 50 to be charged with the refrigerant.
By connecting 0, the opening / closing valves V8, V6, and V7 are opened, and the vacuum pump 9 is operated with all the other valves kept closed. It is confirmed by the pressure gauge PG2 that the inside of the refrigeration circuit of the cooling device 50 and the inside of the vaporizer 4 have become vacuum, and the valve V8,
Close V7 and V6.

【0039】次いで、開閉弁V1、V2、V3、V4を
開いて、液冷媒を計量容器3に充填する。必要に応じ
て、開閉弁V9を操作して、わずかの時間だけ、パージ
管3cを開いて液冷媒の進入圧力に対して計量容器内上
部の圧力にわずかな差圧を作り、レベルゲージ3eおよ
び流量計FGを見ながら必要量の冷媒を計量容器3に移
す。
Next, the on-off valves V1, V2, V3 and V4 are opened to fill the measuring container 3 with the liquid refrigerant. If necessary, the on-off valve V9 is operated to open the purge pipe 3c for a short period of time to make a slight differential pressure in the upper portion inside the measuring container with respect to the inflow pressure of the liquid refrigerant, thereby making the level gauge 3e and While looking at the flow meter FG, the required amount of refrigerant is transferred to the measuring container 3.

【0040】計量容器3には、冷媒容器70内に充填さ
れているフッ素系冷媒の圧力を横軸に取り、縦軸に当該
圧力におけるレベルゲージ3eの表示液位までの混合液
冷媒重量を表示したスライドスケール3f(図2参照)
が、計量容器3の周面に沿って、回転自在に設けられて
いる。圧力計PG3の表示圧力を見て、スライドスケー
ル3fの当該圧力線をレベルゲージ3eに合わせて計量
容器3内の液冷媒の重量を知る。
In the measuring container 3, the pressure of the fluorine-based refrigerant filled in the refrigerant container 70 is plotted on the horizontal axis, and the vertical axis shows the weight of the mixed liquid refrigerant up to the display liquid level of the level gauge 3e at the pressure. Slide scale 3f (see Figure 2)
Are rotatably provided along the peripheral surface of the weighing container 3. By looking at the display pressure of the pressure gauge PG3, the weight of the liquid refrigerant in the measuring container 3 is known by matching the pressure line of the slide scale 3f with the level gauge 3e.

【0041】次に、開閉弁V1、V2、V3、V4を閉
じ、開閉弁V5、V8を開いて、計量容器3内の液冷媒
をスライドスケール3fによって、所定量だけ正確に、
気化器4に流出させた後、弁V5を閉じる。気化器4に
流入した液冷媒は、蒸発気化して、運転している冷却装
置50へ充填口51から速やかに流入して充填される。
気化器加熱手段5、6は、気化器4中に液冷媒が残存す
ることのないように、混合冷媒成分中で最高沸点の冷媒
成分を蒸発させうる温度以上の温風を送風することによ
り、所定量を正確に冷却装置50に充填できる。
Next, the on-off valves V1, V2, V3 and V4 are closed, the on-off valves V5 and V8 are opened, and the liquid refrigerant in the measuring container 3 is accurately moved by the slide scale 3f by a predetermined amount.
After flowing out to the vaporizer 4, the valve V5 is closed. The liquid refrigerant that has flowed into the vaporizer 4 is evaporated and vaporized, and quickly flows into the operating cooling device 50 through the charging port 51 and is charged therein.
The vaporizer heating means 5, 6 blows warm air at a temperature equal to or higher than a temperature at which the highest boiling point refrigerant component in the mixed refrigerant components can be evaporated so that the liquid refrigerant does not remain in the vaporizer 4. The cooling device 50 can be accurately filled with a predetermined amount.

【0042】冷媒容器70から、液冷媒を計量容器3内
へ移動させるに際して、必要に応じて、手動によりパー
ジ管3cを開いて計量容器3内上部を若干低圧化して、
液冷媒を導入したが、これは、装置が大型化した場合、
圧力の変動を招き、ひいては、フッ素系冷媒の組成の変
化の原因となる。この点を改善する一つの手段として、
図2に示すように、パージ管3cに均圧手段20を設け
ることが好ましい。
When moving the liquid refrigerant from the refrigerant container 70 into the measuring container 3, if necessary, the purge pipe 3c is manually opened to slightly lower the pressure in the upper part of the measuring container 3,
Introduced a liquid refrigerant, which is
This causes fluctuations in pressure, which in turn causes changes in the composition of the fluorine-based refrigerant. As one means to improve this point,
As shown in FIG. 2, it is preferable to equip the purge pipe 3c with a pressure equalizing means 20.

【0043】均圧手段20は、図2において、密閉され
た円筒形耐圧容器21の内部に、金属ベローズ25を設
け、ベローズ25の開口する上端縁26を、容器21の
天井部22の周縁部に固着することにより、容器21内
空間を二分し、パージ管3cを、容器21の底部23に
貫通して、容器21の内部に開口させた構造を有する。
また、ベローズ25に囲まれた空間の圧力が許容圧力を
超えたら作動するリリース弁24が付設されている。
In FIG. 2, the pressure equalizing means 20 is provided with a metal bellows 25 inside a sealed cylindrical pressure-resistant container 21, and an upper end edge 26 of the bellows 25 that opens is located at a peripheral portion of a ceiling portion 22 of the container 21. It has a structure in which the inner space of the container 21 is divided into two by being fixed to, and the purge pipe 3c penetrates the bottom portion 23 of the container 21 and is opened inside the container 21.
Further, a release valve 24 is provided which operates when the pressure in the space surrounded by the bellows 25 exceeds the allowable pressure.

【0044】均圧手段20は、弁V4が開かれて、計量
容器3内に液冷媒が導入されると、その圧力に応じて、
ベローズ25は、冷媒の圧力に抗しつつ上方に少しずつ
移動し、計量容器3内の圧力を一定に保ちつつ液冷媒を
導入できる。また、液冷媒の気化器側への移動時におい
ては、反対に、ベローズの復元伸長力によって、液冷媒
は加圧されて、ほぼ一定の圧力下で気化器側に移され
る。したがって、冷媒容器70内に残存する冷媒組成に
変化を与えず、また、同様に、計量容器3内から送出さ
れる液冷媒の組成の変化を抑制する。
When the valve V4 is opened and the liquid refrigerant is introduced into the measuring container 3, the pressure equalizing means 20 responds to the pressure of the liquid refrigerant.
The bellows 25 moves upward little by little while resisting the pressure of the refrigerant, and can introduce the liquid refrigerant while keeping the pressure in the measuring container 3 constant. When the liquid refrigerant moves to the vaporizer side, conversely, the liquid refrigerant is pressurized by the restoring extension force of the bellows and transferred to the vaporizer side under a substantially constant pressure. Therefore, the composition of the refrigerant remaining in the refrigerant container 70 is not changed, and similarly, the change of the composition of the liquid refrigerant delivered from the measuring container 3 is suppressed.

【0045】均圧手段としては、ベローズからなる伸縮
容器を計量容器3内上部に連通させたものでもよく、ま
た、円筒形耐圧容器21内に摺動するピストンを片側か
らバネ圧で支持し、ピストンの他側の空気を計量容器3
内に連通させたものでもよい。上述の実施例において、
開閉弁V1〜V9は、電磁弁とし、冷媒充填操作の各操
作段階の終了を確認する検出手段を設けて、その開閉動
作をその信号に応じて自動制御することもできる。
As the pressure equalizing means, a telescopic container made of bellows may be connected to the upper part inside the measuring container 3, and a piston sliding in the cylindrical pressure resistant container 21 is supported by spring pressure from one side, Measure the air on the other side of the piston 3
It may be connected to the inside. In the above embodiment,
The on-off valves V1 to V9 may be electromagnetic valves, and a detection means for confirming the end of each operation stage of the refrigerant filling operation may be provided to automatically control the opening / closing operation according to the signal.

【0046】[0046]

【発明の効果】本発明によれば、フッ素系冷媒を気相充
填する際に、組成変化を管理範囲内に調整でき、冷媒メ
ーカーでのボンベ充填、空調機メーカーでの空調機への
冷媒充填、修理、漏洩時のサービス缶での充填などあら
ゆる分野で利用できる。さらに、必要量正確に充填で
き、しかも、完全に気化させた状態で充填するため、冷
却装置を運転しながら、速やかに充填できる。したがっ
て、冷却装置の調整も短時間で済むなどの利点がある。
EFFECTS OF THE INVENTION According to the present invention, when the fluorine-based refrigerant is charged in the gas phase, the composition change can be adjusted within the control range, and the refrigerant manufacturer can fill the cylinder and the air conditioner manufacturer can fill the air conditioner with the refrigerant. It can be used in all fields, such as repair, filling of service cans in case of leakage, etc. Furthermore, the required amount can be filled accurately, and since the filling is performed in a completely vaporized state, the filling can be performed quickly while the cooling device is operating. Therefore, there is an advantage that the adjustment of the cooling device can be completed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例の要部を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a main part of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:フッ素系冷媒充填装置 2:冷媒容器への接続手段 3:計量容器 3a:冷媒入口 3b:冷媒出口 3c:パージ管 3d:リリース弁 3e:レベルゲージ 3f:スライドスケール 4:気化器 4a:金属パイプ 4b:伝熱フィン 5:送風ファン 6:空気加熱器 7:結露検出器 8:サイトグラス 9:真空ポンプ 10:充填口への接続手段 15:制御器 20:均圧手段 21:円筒形耐圧容器 22:円筒形耐圧容器天井部 23:円筒形耐圧容器底部 24:リリース弁 25:金属ベローズ 26:上端縁 50:冷却装置 51:充填口 70:混合冷媒容器 V1〜V9:開閉弁 PG1〜PG3:圧力計 FG:流量計 1: Fluorine-based refrigerant filling device 2: Refrigerant container connection means 3: Measuring container 3a: Refrigerant inlet 3b: Refrigerant outlet 3c: Purge pipe 3d: Release valve 3e: Level gauge 3f: Slide scale 4: Vaporizer 4a: Metal Pipe 4b: Heat transfer fin 5: Blower fan 6: Air heater 7: Condensation detector 8: Sight glass 9: Vacuum pump 10: Connecting means to filling port 15: Controller 20: Pressure equalizing means 21: Cylindrical pressure resistance Container 22: Cylindrical pressure-resistant container ceiling 23: Cylindrical pressure-resistant container bottom 24: Release valve 25: Metal bellows 26: Upper edge 50: Cooling device 51: Filling port 70: Mixed refrigerant container V1 to V9: Open / close valve PG1 to PG3 : Pressure gauge FG: Flow meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福島 正人 千葉県市原市五井海岸10番地 旭硝子株式 会社千葉工場内 (72)発明者 山下 明彦 千葉県市原市八幡海岸通り38番地 旭硝子 エンジニアリング株式会社内 (72)発明者 坪井 開 長野県須坂市大字幸高246番地 オリオン 機械株式会社内 (72)発明者 玉井 秀男 長野県須坂市大字幸高246番地 オリオン 機械株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masato Fukushima, 10 Goi Kaigan, Ichihara City, Chiba, Asahi Glass Co., Ltd. Chiba Plant (72) Akihiko Yamashita 38, Hachiman Kaigan Dori, Ichihara, Chiba Asahi Glass Engineering Co., Ltd. ( 72) Inventor Kai Tsuboi No. 246, Kozaka, Suzaka, Nagano Prefecture Orion Machinery Co., Ltd. (72) Hideo Tamai, No. 246, Kozaka, Susaka City, Nagano Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】フッ素系冷媒が充填された密閉容器の液相
部への接続手段(A−1)と、管路開閉手段(B−1)
を介して接続手段(A−1)に連結する計量容器と、管
路開閉手段(B−2)を介して前記計量容器の気相部の
流出流路に連結する冷却装置充填口への接続手段(A−
2)とを備えることを特徴とするフッ素系冷媒充填装
置。
1. A connecting means (A-1) for connecting a liquid phase portion of a closed container filled with a fluorinated refrigerant, and a conduit opening / closing means (B-1).
Connecting to the connecting means (A-1) via the connecting means, and connecting to the cooling device filling port connecting to the outflow passage of the gas phase portion of the measuring container via the pipe opening / closing means (B-2). Means (A-
2) A fluorine-based refrigerant charging device comprising:
【請求項2】フッ素系冷媒が充填された密閉容器の液相
部への接続手段(A−1)と、管路開閉手段(B−1)
を介して接続手段(A−1)に連結する計量容器と、管
路開閉手段(B−3)を介して前記計量容器の液相部の
流出流路に連結する気化器と、管路開閉手段(B−2)
を介して前記気化器の流出流路に連結する冷却装置充填
口への接続手段(A−2)とを備えることを特徴とする
フッ素系冷媒充填装置。
2. A means (A-1) for connecting to a liquid phase portion of a closed container filled with a fluorinated refrigerant, and a conduit opening / closing means (B-1).
A measuring container connected to the connecting means (A-1) via a pipe, a vaporizer connected to the outflow passage of the liquid phase portion of the measuring container via a pipe opening / closing means (B-3), and a pipe opening / closing Means (B-2)
And a connecting means (A-2) to a cooling device charging port which is connected to the outflow passage of the vaporizer via the fluorinated refrigerant charging device.
【請求項3】気化器に結露検出器または温度検出器を取
り付け、前記検出器による結露状態または温度を検出す
る検出信号によって作動する気化器加熱手段を備える請
求項2のフッ素系冷媒充填装置。
3. The fluorine-based refrigerant charging device according to claim 2, further comprising a condensation detector or a temperature detector attached to the vaporizer, the vaporizer heating means being activated by a detection signal for detecting the condensation state or temperature by the detector.
【請求項4】気化器が、伝熱フィン付熱良導性金属パイ
プからなり、気化器加熱手段が、(1)送風機とこの送
風機の送風域に設けられた空気加熱器との組み合わせ、
(2)前記金属パイプに付設された電熱ヒータ、または
(3)送風機によって構成される請求項2または3のフ
ッ素系冷媒充填装置。
4. The carburetor comprises a heat-conductive metal pipe with heat transfer fins, and the carburetor heating means comprises (1) a combination of a blower and an air heater provided in a blower area of the blower,
(2) The fluorine-based refrigerant charging device according to claim 2 or 3, which is configured by an electric heater attached to the metal pipe or (3) a blower.
【請求項5】計量容器内上部に連通し、計量容器内圧力
に応じて計量容器内の気体を収容すべき容積を拡大しま
たは縮小する均圧手段を計量容器に備える請求項1、
2、3または4のフッ素系冷媒充填装置。
5. The measuring container is provided with a pressure equalizing means that communicates with an upper portion of the measuring container and that expands or contracts a volume of the measuring container for accommodating a gas in accordance with the internal pressure of the measuring container.
2, 3 or 4 fluorine-based refrigerant charging device.
【請求項6】均圧手段が、ベローズ形容器またはベロー
ズ内蔵圧力容器である請求項5のフッ素系冷媒充填装
置。
6. The fluorine-based refrigerant charging device according to claim 5, wherein the pressure equalizing means is a bellows type container or a pressure container with a built-in bellows.
【請求項7】密閉容器に充填されたフッ素系冷媒をこの
密閉容器中のフッ素系冷媒の液相部から抜き出した後、
計量容器へ導入し、次いでこの計量容器から所定量のフ
ッ素系冷媒を抜き出し、気体状態で冷却装置へ導入する
ことを特徴とするフッ素系冷媒充填方法。
7. After extracting the fluorine-based refrigerant filled in the closed container from the liquid phase part of the fluorine-based refrigerant in the closed container,
A method for charging a fluorine-based refrigerant, which comprises introducing the fluorine-based refrigerant into a measuring container, extracting a predetermined amount of the fluorine-based refrigerant from the measuring container, and introducing the fluorine-based refrigerant in a gaseous state into a cooling device.
【請求項8】密閉容器に充填されたフッ素系冷媒をこの
密閉容器中のフッ素系冷媒の液相部から抜き出した後、
計量容器へ導入し、次いでこの計量容器中のフッ素系冷
媒の液相部から所定量のフッ素系冷媒を抜き出した後、
気化器へ導入し、次いでこの気化器から気体状フッ素系
冷媒を抜き出し冷却装置へ導入することを特徴とするフ
ッ素系冷媒充填方法。
8. A fluorine-based refrigerant filled in a closed container is extracted from a liquid phase portion of the fluorine-based refrigerant in the closed container,
After introducing into the measuring container, and then withdrawing a predetermined amount of the fluorine-based refrigerant from the liquid phase portion of the fluorine-based refrigerant in the measuring container,
A method for charging a fluorine-based refrigerant, which comprises introducing the gas into the vaporizer, then extracting the gaseous fluorine-based refrigerant from the vaporizer and introducing the refrigerant into a cooling device.
JP31276095A 1995-11-30 1995-11-30 Method and apparatus for charging fluorine refrigerant Pending JPH09152234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31276095A JPH09152234A (en) 1995-11-30 1995-11-30 Method and apparatus for charging fluorine refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31276095A JPH09152234A (en) 1995-11-30 1995-11-30 Method and apparatus for charging fluorine refrigerant

Publications (1)

Publication Number Publication Date
JPH09152234A true JPH09152234A (en) 1997-06-10

Family

ID=18033101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31276095A Pending JPH09152234A (en) 1995-11-30 1995-11-30 Method and apparatus for charging fluorine refrigerant

Country Status (1)

Country Link
JP (1) JPH09152234A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597285B1 (en) * 2004-10-26 2006-07-05 한국생산기술연구원 injection device and method of refrigerant for diffusion absorption refrigeration system
JP2006207925A (en) * 2005-01-28 2006-08-10 Showa Tansan Co Ltd Carbon dioxide gas filling device
KR101302537B1 (en) * 2011-11-28 2013-09-02 코리아콜드시스템(주) A refrigerants injection device for cool air apparatus
CN103499168A (en) * 2013-09-24 2014-01-08 Tcl空调器(中山)有限公司 Connecting device and air conditioner refrigerant injection device and method
KR101457556B1 (en) * 2012-04-26 2014-11-03 코리아콜드시스템(주) A control method refrigerants injection device for cool air apparatus
JP2017026182A (en) * 2015-07-17 2017-02-02 株式会社岡常歯車製作所 Fluid recovery, reclamation and filling apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597285B1 (en) * 2004-10-26 2006-07-05 한국생산기술연구원 injection device and method of refrigerant for diffusion absorption refrigeration system
JP2006207925A (en) * 2005-01-28 2006-08-10 Showa Tansan Co Ltd Carbon dioxide gas filling device
KR101302537B1 (en) * 2011-11-28 2013-09-02 코리아콜드시스템(주) A refrigerants injection device for cool air apparatus
KR101457556B1 (en) * 2012-04-26 2014-11-03 코리아콜드시스템(주) A control method refrigerants injection device for cool air apparatus
CN103499168A (en) * 2013-09-24 2014-01-08 Tcl空调器(中山)有限公司 Connecting device and air conditioner refrigerant injection device and method
JP2017026182A (en) * 2015-07-17 2017-02-02 株式会社岡常歯車製作所 Fluid recovery, reclamation and filling apparatus

Similar Documents

Publication Publication Date Title
Greco et al. Flow-boiling of R22, R134a, R507, R404A and R410A inside a smooth horizontal tube
US4729667A (en) Process and device for the determination of the thermal resistance of contaminated heat exchange elements of thermodynamic apparatuses, in particular of power station condensers
Jungnickel et al. Investigations on the heat transfer of boiling binary refrigerant mixtures
Fiorelli et al. Experimental analysis of refrigerant mixtures flow through adiabatic capillary tubes
EP0631095B1 (en) Method of sealing in a non-azeotrope refrigerant and controlling the composition of the refrigerant in a refrigeration cycle
JPH09152234A (en) Method and apparatus for charging fluorine refrigerant
Zürcher et al. Flow boiling and pressure drop measurements for R-134a/oil mixtures Part 2: Evaporation in a plain tube
WO2017062620A1 (en) Recharging systems and methods
Ağra et al. Experimental investigation of condensation of hydrocarbon refrigerants (R600a) in a horizontal smooth tube
Mohrlok et al. The influence of a low viscosity oil on the pool boiling heat transfer of the refrigerant R507
Focke A revised equation for estimating the vapour pressure of low-volatility substances from isothermal TG data
Jin Distribution of refrigerant and lubricant in automotive air conditioning systems
Ambrose Vapor pressures
DK181305B1 (en) CALIBRATION OF COOLANT SATURATION TEMPERATURE IN A COOLING SYSTEM
Kim Performance evaluation of R-22 alternative mixtures in a breadboard heat pump with pure cross-flow condenser and counter-flow evaporator
Sindhuja et al. Critical heat flux of R-407C in upflow boiling in a vertical pipe
Poirier Comparative study of heat transfer characteristics of new alternatives to R-22
Jung et al. Condensation heat transfer coefficients of halogenated binary refrigerant mixtures on a smooth tube
JPH08145509A (en) Refrigerating equipment and method for measuring and supplementing refrigerant in refrigerating circuit
Greco A Study on boiling heat transfer characteristics of refrigerant mixtures in a horizontal tube
CN108344768A (en) A kind of device and method measuring gas-liquid component thermal coefficient
Aprea et al. Local heat transfer coefficients and pressure drop during evaporation in a smooth horizontal tube
Melnyk et al. The local heat transfer coefficient variation at the boiling of the isobutane/compressor oil solution flow in the pipe
Lee et al. Experimental study of the gravity effect on the distribution of refrigerant flow in a multi-pass condenser
Golabhanvi et al. Thermal and Performance Analysis of R600a in Vapour Compression Cycle