JPH08145509A - Refrigerating equipment and method for measuring and supplementing refrigerant in refrigerating circuit - Google Patents

Refrigerating equipment and method for measuring and supplementing refrigerant in refrigerating circuit

Info

Publication number
JPH08145509A
JPH08145509A JP6304188A JP30418894A JPH08145509A JP H08145509 A JPH08145509 A JP H08145509A JP 6304188 A JP6304188 A JP 6304188A JP 30418894 A JP30418894 A JP 30418894A JP H08145509 A JPH08145509 A JP H08145509A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration circuit
supply port
hfc
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6304188A
Other languages
Japanese (ja)
Inventor
Takeo Komatsubara
健夫 小松原
Kazuhisa Ishikawa
和久 石川
Sachiko Hasebe
佐知子 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6304188A priority Critical patent/JPH08145509A/en
Publication of JPH08145509A publication Critical patent/JPH08145509A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To measure easily the quantity of refrigerant and the composition thereof even when a nonazeotropic mixture or the like is used, by providing a refrigerating circuit with a refrigerant takeout port and a refrigerant supply port. CONSTITUTION: A refrigerant takeout port 7 equipped with an on-off valve 5 and a pipeline 6 for connection with a refrigerant recovering vessel and an on-off valve 8 are provided in series to a pipeline connecting a condenser 2 with an expansion valve 3. Moreover, a refrigerant supply port 11 equipped with an on-off valve 9 and a pipeline 10 for connection with the refrigerant recovering vessel is provided for a pipeline connecting the expansion valve 3 with an evaporator 4. At the time of an ordinary operation of refrigerating equipment, the on-off valves 5 and 9 are closed, while the on-off valve 8 is opened. At the time when the quantity of refrigerant or the composition thereof is measured, first the refrigerant recovering vessel 17 which is equipped with a cooler-heater 18 and can be cooled and heated is connected between the refrigerant takeout port 7 and the refrigerant supply port 11 by connecting a pipeline 12 to the pipeline 6 and a pipeline 13 to the pipeline 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍装置および冷媒の測
定および補充方法に関するものであり、さらに詳しくは
オゾン層を破壊する危険がないHFC系非共沸冷媒混合
物などを使用した冷凍装置において、冷媒の量や冷媒組
成を測定するために冷凍回路中に冷媒取り出し口および
冷媒供給口を設け、それらを用いて簡便に冷媒の量や冷
媒組成を測定し、冷媒を補充する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus and a method for measuring and replenishing a refrigerant, and more particularly to a refrigerating apparatus using an HFC-based non-azeotropic refrigerant mixture or the like which has no danger of depleting the ozone layer. The present invention relates to a method for providing a refrigerant outlet and a refrigerant supply port in a refrigeration circuit in order to measure the amount or composition of the refrigerant, simply measuring the amount or composition of the refrigerant using them, and supplementing the refrigerant. .

【0002】[0002]

【従来の技術】従来、冷凍機の冷媒として用いられてい
るものはジクロロジフルオロメタン(R−12)や共沸
混合冷媒のR−12と1,1−ジフルオロエタン(R−
152a)とからなるR−502が多い。これらは通常
の冷凍装置に好適であり、信頼性、耐久性などの高い品
質レベルに至っている。
2. Description of the Related Art Dichlorodifluoromethane (R-12) and azeotrope mixed refrigerants R-12 and 1,1-difluoroethane (R-) have hitherto been used as refrigerants for refrigerators.
152a) and many R-502s. These are suitable for ordinary refrigeration equipment and have reached high quality levels such as reliability and durability.

【0003】しかしながら、上記の各冷媒はその高いオ
ゾン破壊の潜在性により、大気中に放出されて地球上空
のオゾン層に到達すると、このオゾン層を破壊する。こ
のオゾン層の破壊は冷媒中の塩素基(Cl)により引き
起こされる。そこで、この塩素基の含有量の少ない冷
媒、例えはクロロジフルオロメタン(HCFC−22、
R−22)、塩素基を含まない冷媒、例えはジフルオロ
メタン(HFC−32、R−32)、ペンタフルオロエ
タン(HFC−125、R−125)や1,1,1,2
−テトラフルオロエタン(HFC−134a、R−13
4a)、あるいはこれらの混合物がこれらの代替冷媒と
して考えられている。このR−22の沸点は、大気圧で
−40.82で、R−32の沸点は、−51.7℃で、
R−125の沸点は、−48.5℃、R−134aの沸
点は、−26.5℃である。
However, due to the high ozone depletion potential of each of the above-mentioned refrigerants, when they are released into the atmosphere and reach the ozone layer above the earth, they destroy the ozone layer. The destruction of the ozone layer is caused by chlorine groups (Cl) in the refrigerant. Therefore, a refrigerant with a low chlorine group content, such as chlorodifluoromethane (HCFC-22,
R-22), a refrigerant containing no chlorine group, such as difluoromethane (HFC-32, R-32), pentafluoroethane (HFC-125, R-125), 1,1,1,2
-Tetrafluoroethane (HFC-134a, R-13
4a), or mixtures thereof, are considered as alternative refrigerants for these. The boiling point of R-22 is -40.82 at atmospheric pressure, and the boiling point of R-32 is -51.7 ° C.
The boiling point of R-125 is -48.5 ° C, and the boiling point of R-134a is -26.5 ° C.

【0004】HFC系冷媒混合物とはHFC系冷媒の2
種あるいは3種以上の混合物であり、通常、混合物の沸
点と露点が相違している組み合わせが多い。本発明にお
いてはこれらの混合物をHFC系非共沸冷媒混合物と称
す。HFC系非共沸冷媒混合物は、具体的には例えば、
R125/R143a/134a(重量比44/52/
4)(R404A、沸点−46.78℃、露点−46.
08℃、商品名:HP62、デュポン社製)、R32/
R125/134a(重量比20/40/40)(R4
07A、沸点−45.4℃、露点−38.8℃、商品
名:KLEA60G2、ICI社製)などを挙げること
ができる。
The HFC-based refrigerant mixture is a mixture of HFC-based refrigerants.
It is a mixture of three or more kinds, and usually, there are many combinations in which the boiling point and the dew point of the mixture are different. In the present invention, these mixtures are referred to as HFC-based non-azeotropic refrigerant mixture. The HFC-based non-azeotropic refrigerant mixture is specifically, for example,
R125 / R143a / 134a (weight ratio 44/52 /
4) (R404A, boiling point -46.78 ° C, dew point -46.
08 ° C, trade name: HP62, manufactured by DuPont), R32 /
R125 / 134a (weight ratio 20/40/40) (R4
07A, boiling point -45.4 ° C, dew point -38.8 ° C, trade name: KLEA60G2, manufactured by ICI).

【0005】図4に従来の冷凍装置の冷凍回路の例を示
す。1は圧縮機、2は凝縮器、3は減圧器、4は蒸発
器、矢印は冷媒の流れ方向を示す。この冷凍回路におい
て冷媒が漏れることがあり、冷媒量が少なくなると冷凍
能力、EER(冷凍能力/消費電力)が低下するので、
冷媒を補充する必要が生じる。R−12などの単一の冷
媒や共沸混合冷媒のR−502を用いた場合は冷凍回路
中の冷媒圧力を測定するなどの方法により比較的簡単に
冷媒を補充することができる。しかし、HFC系非共沸
冷媒混合物を用いた場合は漏れと共に組成が変化するの
で、冷媒を補充するには漏れ量と同時に組成を知る必要
がある。HFC系非共沸冷媒混合物を用いた場合は冷凍
回路の各所において組成変化が起きているので、冷凍回
路のある箇所でサンプリングした冷媒の組成をガスクロ
マトグラフィなどの公知の方法により測定しても、冷媒
全体の組成変化を知ることはできない。冷凍回路の多数
の箇所から冷媒をサンプリングして組成を分析するのは
煩雑であり、実際的でない。
FIG. 4 shows an example of a refrigeration circuit of a conventional refrigeration system. Reference numeral 1 is a compressor, 2 is a condenser, 3 is a decompressor, 4 is an evaporator, and arrows indicate the flow direction of the refrigerant. Refrigerant may leak in this refrigeration circuit, and if the amount of refrigerant decreases, the refrigerating capacity and EER (refrigerating capacity / power consumption) decrease.
It becomes necessary to replenish the refrigerant. When a single refrigerant such as R-12 or an azeotropic mixed refrigerant R-502 is used, the refrigerant can be replenished relatively easily by a method such as measuring the refrigerant pressure in the refrigeration circuit. However, when an HFC-based non-azeotropic refrigerant mixture is used, the composition changes with leakage, and therefore, to supplement the refrigerant, it is necessary to know the composition at the same time as the leakage amount. When the HFC-based non-azeotropic refrigerant mixture is used, composition changes occur at various points in the refrigeration circuit, so even if the composition of the refrigerant sampled at a certain point in the refrigeration circuit is measured by a known method such as gas chromatography, It is not possible to know the composition change of the entire refrigerant. It is cumbersome and impractical to sample the refrigerant from multiple points in the refrigeration circuit to analyze the composition.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、オゾ
ン層を破壊する危険がないHFC系非共沸冷媒混合物な
どを使用した場合でも、冷媒の量や冷媒組成を容易に測
定できるようにした冷凍装置を提供すること、および冷
凍回路中の冷媒の量や冷媒組成を簡便に測定し、必要に
より冷媒を補充する方法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to make it possible to easily measure the amount of refrigerant or the refrigerant composition even when using an HFC-based non-azeotropic refrigerant mixture or the like that does not have a risk of depleting the ozone layer. The refrigeration apparatus described above is provided, and a method of simply measuring the amount and composition of the refrigerant in the refrigeration circuit and replenishing the refrigerant as needed is provided.

【0007】[0007]

【課題を解決するための手段】本発明者等は上記の課題
を解決すべく研究を重ねた結果、冷媒の量や冷媒組成の
測定ができるように冷凍回路中に冷媒取り出し口および
冷媒供給口を設けておき、測定する際は冷媒取り出し口
から冷媒を冷却した系外の容器に全量取り出して液化さ
せることにより、簡便に冷媒の量や冷媒組成を測定で
き、その測定結果により必要により所定量、所定組成の
冷媒を冷媒供給口から冷凍回路中に補充することにり課
題を解決できることを見いだし、本発明を完成するに至
った。
Means for Solving the Problems The inventors of the present invention have conducted extensive research to solve the above problems, and as a result, have made it possible to measure the amount of refrigerant and the composition of the refrigerant, and a refrigerant outlet and a refrigerant supply port in a refrigeration circuit. When the measurement is carried out, the amount and the refrigerant composition of the refrigerant can be easily measured by extracting and liquefying the entire amount of the refrigerant from the refrigerant outlet into a container outside the system where the refrigerant has been cooled, and a predetermined amount is necessary according to the measurement result. The inventors have found that the problem can be solved by replenishing the refrigeration circuit with a refrigerant having a predetermined composition from the refrigerant supply port, and completed the present invention.

【0008】本発明の請求項1の発明は、冷媒を凝縮液
化する凝縮器、この冷媒を膨張させるための減圧器、液
化冷媒を蒸発させる蒸発器、および蒸発気化した冷媒を
圧縮して凝縮器に吐出する圧縮機などを備えた冷凍装置
において、冷凍回路に冷媒取り出し口と冷媒供給口を設
けたことを特徴とする。
According to a first aspect of the present invention, a condenser for condensing and liquefying a refrigerant, a decompressor for expanding the refrigerant, an evaporator for evaporating the liquefied refrigerant, and a condenser for compressing the evaporated and evaporated refrigerant. In a refrigerating apparatus including a compressor for discharging to a refrigerant, a refrigerating circuit is provided with a refrigerant outlet and a refrigerant supply port.

【0009】本発明の請求項2の発明は、請求項1記載
の冷凍装置において、凝縮器と減圧器を結ぶ管路に冷媒
取り出し口を設け、かつ減圧器と蒸発器を結ぶ管路に冷
媒供給口を設けたことを特徴とする。
According to a second aspect of the present invention, in the refrigerating apparatus according to the first aspect, a refrigerant outlet is provided in a pipeline connecting the condenser and the pressure reducer, and a refrigerant is provided in the pipeline connecting the pressure reducer and the evaporator. A feature is that a supply port is provided.

【0010】本発明の請求項3の発明は、請求項2記載
の冷凍装置において、凝縮器と減圧器を結ぶ管路に開閉
弁を備えた冷媒取り出し口および開閉弁を直列に設け、
かつ減圧器と蒸発器を結ぶ管路に開閉弁を備えた冷媒供
給口を設けたことを特徴とする。
According to a third aspect of the present invention, in the refrigerating apparatus according to the second aspect, a refrigerant outlet having an on-off valve and an on-off valve are provided in series in a pipeline connecting the condenser and the pressure reducer.
In addition, a refrigerant supply port having an opening / closing valve is provided in a pipe line connecting the pressure reducer and the evaporator.

【0011】本発明の請求項4の発明は、請求項2記載
の冷凍装置において、凝縮器と減圧器を結ぶ管路に3方
弁を備えた冷媒取り出し口を設け、かつ減圧器と蒸発器
を結ぶ管路に開閉弁を備えた冷媒供給口を設けたことを
特徴とする。
According to a fourth aspect of the present invention, in the refrigerating apparatus according to the second aspect, a refrigerant outlet having a three-way valve is provided in a pipe line connecting the condenser and the decompressor, and the decompressor and the evaporator are provided. A refrigerant supply port provided with an on-off valve is provided in a pipe line connecting the two.

【0012】本発明の請求項5の発明は、請求項1ない
し請求項4記載の冷凍装置において、冷媒がHFC系冷
媒あるいはHFC系冷媒を主体とする冷媒であることを
特徴とする。
According to a fifth aspect of the present invention, in the refrigerating apparatus according to the first to fourth aspects, the refrigerant is an HFC type refrigerant or a refrigerant mainly composed of an HFC type refrigerant.

【0013】本発明の請求項6の発明は、請求項5記載
の冷凍装置において、冷媒がHFC系非共沸冷媒混合物
であることを特徴とする。
According to a sixth aspect of the present invention, in the refrigerating apparatus according to the fifth aspect, the refrigerant is an HFC-based non-azeotropic refrigerant mixture.

【0014】本発明の請求項7の発明は、下記の(1)
〜(6)の工程により請求項1記載の冷凍装置の冷凍回
路から冷媒を系外に取り出し、冷媒の量および組成を測
定した後、必要により冷媒を補充し、そして冷媒を冷凍
回路中に戻すことを特徴とする冷凍回路中の冷媒の測定
および補充方法である。 (1)冷媒取り出し口と冷媒供給口との間に、冷却およ
び加熱可能な冷媒回収容器を連結する。 (2)次いで該容器内を真空にすると共に冷媒の沸点以
下に冷却する。 (3)冷凍回路中の実質的に全ての冷媒を該容器内に導
入して液化させる。 (4)該容器内の冷媒の量および組成を測定する。 (5)必要により該容器内に冷媒を補充する。 (6)該容器を加熱して冷媒を気化して冷媒供給口から
冷凍回路中に冷媒を供給する。
The invention of claim 7 of the present invention is the following (1):
By the steps (6) to (6), the refrigerant is taken out of the refrigeration circuit of the refrigeration system according to claim 1, the amount and composition of the refrigerant are measured, and then the refrigerant is replenished if necessary, and the refrigerant is returned to the refrigeration circuit. A method for measuring and replenishing a refrigerant in a refrigeration circuit, which is characterized in that: (1) A coolant recovery container capable of cooling and heating is connected between the coolant outlet and the coolant supply port. (2) Next, the inside of the container is evacuated and cooled to the boiling point of the refrigerant or less. (3) Substantially all of the refrigerant in the refrigeration circuit is introduced into the container and liquefied. (4) Measure the amount and composition of the refrigerant in the container. (5) If necessary, the refrigerant is replenished in the container. (6) The container is heated to vaporize the refrigerant and supply the refrigerant from the refrigerant supply port into the refrigeration circuit.

【0015】本発明の請求項8の発明は、冷媒がHFC
系冷媒あるいはHFC系冷媒を主体とする冷媒である請
求項7記載の冷凍回路中の冷媒の測定および補充方法で
ある。
According to an eighth aspect of the present invention, the refrigerant is HFC.
The method for measuring and replenishing a refrigerant in a refrigeration circuit according to claim 7, wherein the refrigerant is a refrigerant mainly composed of a system refrigerant or an HFC system refrigerant.

【0016】本発明の請求項9の発明は、冷媒がHFC
系非共沸冷媒混合物である請求項8記載の冷凍回路中の
冷媒の測定および補充方法である。
According to a ninth aspect of the present invention, the refrigerant is HFC.
The method for measuring and replenishing a refrigerant in a refrigeration circuit according to claim 8, wherein the refrigerant is a non-azeotropic refrigerant mixture.

【0017】[0017]

【作用】本発明においては、冷媒の量や冷媒組成の測定
を容易に行えるように冷凍装置の冷凍回路中に予め冷媒
取り出し口および冷媒供給口を設けておくことを特徴と
する。冷媒の量や冷媒組成を測定する時は、冷媒取り出
し口と冷媒供給口との間に、冷却および加熱可能な冷媒
回収容器を連結して、該容器内を真空にすると共に冷媒
の沸点以下に冷却した後、冷凍回路中の実質的に全ての
冷媒を該容器内に導入して液化させる。例え冷媒がHF
C系非共沸冷媒混合物であっても冷凍回路中の実質的に
全ての冷媒を液化して該容器に入れるので、その冷媒の
量および組成を公知の方法により測定すれば、冷凍回路
中の冷媒の量および組成を精度よく知ることができる。
冷媒の量および組成の測定結果から、漏れた量や組成が
判るので、それに応じて該容器内に冷媒を補充した後、
該容器を加熱して冷媒を気化し、冷媒供給口から冷凍回
路中に冷媒を導入する。所定量、所定組成の冷媒を補充
するにより冷凍装置の冷凍能力、EERなどを回復させ
ることができる。
The present invention is characterized in that the refrigerating circuit of the refrigerating apparatus is provided with the refrigerant outlet and the refrigerant supply port in advance so that the amount of the refrigerant and the composition of the refrigerant can be easily measured. When measuring the amount or composition of the refrigerant, between the refrigerant outlet and the refrigerant supply port, a cooling and heating refrigerant recovery container is connected, the inside of the container is evacuated and the temperature is below the boiling point of the refrigerant. After cooling, substantially all the refrigerant in the refrigeration circuit is introduced into the container and liquefied. For example, the refrigerant is HF
Even if it is a C-based non-azeotropic refrigerant mixture, substantially all the refrigerant in the refrigeration circuit is liquefied and put in the container. Therefore, if the amount and composition of the refrigerant are measured by a known method, It is possible to accurately know the amount and composition of the refrigerant.
From the measurement results of the amount and composition of the refrigerant, it is possible to know the leaked amount and composition, so after replenishing the refrigerant in the container accordingly,
The container is heated to vaporize the refrigerant, and the refrigerant is introduced from the refrigerant supply port into the refrigeration circuit. The refrigerating capacity, EER, etc. of the refrigerating apparatus can be restored by replenishing a predetermined amount and a predetermined composition of the refrigerant.

【0018】[0018]

【実施例】以下、図1〜図3により本発明の内容をさら
に具体的に説明するが、本発明はこれらの内容に何ら限
定されるものではない。
EXAMPLES The contents of the present invention will be described more specifically below with reference to FIGS. 1 to 3, but the present invention is not limited to these contents.

【0019】図1に本発明の冷凍装置の冷凍回路の例を
示す。1は圧縮機、2は凝縮器、3は減圧器(膨張
弁)、4は蒸発器であり、凝縮器2と膨張弁3を結ぶ管
路に開閉弁5と冷媒回収容器(図示せず)に連結するた
めの管路6を備えた冷媒取り出し口7および開閉弁8が
直列に設けられており、かつ膨張弁3と蒸発器4を結ぶ
管路に開閉弁9と冷媒回収容器(図示せず)に連結する
ための管路10を備えた冷媒供給口11が設けられてい
る。矢印は冷媒の流れを示す。冷凍装置の通常の運転時
は開閉弁5、9は閉じ、開閉弁8は開けておく。
FIG. 1 shows an example of the refrigerating circuit of the refrigerating apparatus of the present invention. 1 is a compressor, 2 is a condenser, 3 is a decompressor (expansion valve), 4 is an evaporator, and an opening / closing valve 5 and a refrigerant recovery container (not shown) are provided in a pipe line connecting the condenser 2 and the expansion valve 3. A refrigerant outlet 7 having a pipe line 6 for connecting to and an opening / closing valve 8 are provided in series, and an opening / closing valve 9 and a refrigerant recovery container (not shown) are provided in a pipe line connecting the expansion valve 3 and the evaporator 4. The coolant supply port 11 is provided with a pipe line 10 for connecting to (1). The arrow indicates the flow of the refrigerant. During normal operation of the refrigeration system, the open / close valves 5 and 9 are closed and the open / close valve 8 is opened.

【0020】冷媒の量や冷媒組成を測定する時は、先
ず、図3に示すように冷媒取り出し口7と冷媒供給口1
1との間に、冷却器兼加熱器18を備えた冷却および加
熱可能な冷媒回収容器17を管路12を管路6に接続
し、管路13を管路10に接続することにより連結す
る。PH、PLは圧力計、VPは真空ポンプ、14、2
3はフレキシブルチューブ、15、19、24は開閉
弁、16は冷媒入口管路、22は冷媒出口管路、21は
液化冷媒、20は冷媒サンプリングと冷媒補充口を兼ね
た管路、25は秤りを示す。
When measuring the amount and composition of the refrigerant, first, as shown in FIG. 3, the refrigerant outlet port 7 and the refrigerant supply port 1 are shown.
1, a cooling / heatable refrigerant recovery container 17 having a cooler / heater 18 is connected by connecting the conduit 12 to the conduit 6 and the conduit 13 to the conduit 10. . PH and PL are pressure gauges, VP is a vacuum pump, 14, 2
3 is a flexible tube, 15, 19 and 24 are opening / closing valves, 16 is a refrigerant inlet pipe line, 22 is a refrigerant outlet pipe line, 21 is a liquefied refrigerant, 20 is a pipe line serving as a refrigerant sampling and refrigerant replenishing port, and 25 is a scale. Indicates

【0021】開閉弁5、9、19を閉じ、開閉弁8、1
5、24を開け、真空ポンプVPを作動して系内を真空
にして、空気や水分などを十分に排除する。冷凍装置を
運転しながら冷却器兼加熱器18により冷媒回収容器1
7を冷媒の沸点以下に冷却する。
The on-off valves 5, 9, 19 are closed, and the on-off valves 8, 1
5, 24 are opened, and the vacuum pump VP is operated to make the inside of the system a vacuum to sufficiently remove air, moisture and the like. Refrigerant recovery container 1 by cooler / heater 18 while operating the refrigeration system
Cool 7 to below the boiling point of the refrigerant.

【0022】その後開閉弁5を開け、開閉弁8、15、
24を閉じ、開閉弁9を開ける。冷凍回路中の冷媒は冷
媒取り出し口7、冷媒入口管路16を経て冷媒回収容器
17に入り、冷却されて液化冷媒21となって冷媒回収
容器17中に集められる。圧力計PLが負圧になると冷
凍回路中に空気や水分などが入る恐れがあるので、負圧
にならないように真空度を調節することが好ましい。圧
力計PHが約1気圧(絶対圧力)になったら開閉弁5、
9を閉じて冷凍機の運転を止めれば冷凍回路中の実質的
に全ての冷媒を冷媒回収容器17内に集めることができ
る。
After that, the on-off valve 5 is opened to open the on-off valves 8, 15,
24 is closed and the on-off valve 9 is opened. The refrigerant in the refrigeration circuit enters the refrigerant recovery container 17 via the refrigerant outlet 7 and the refrigerant inlet pipe 16, is cooled and becomes the liquefied refrigerant 21, and is collected in the refrigerant recovery container 17. If the pressure gauge PL has a negative pressure, air or water may enter the refrigeration circuit. Therefore, it is preferable to adjust the degree of vacuum so that the negative pressure does not occur. When the pressure gauge PH reaches about 1 atm (absolute pressure), the on-off valve 5,
By closing 9 to stop the operation of the refrigerator, substantially all the refrigerant in the refrigeration circuit can be collected in the refrigerant recovery container 17.

【0023】液化冷媒の入った冷媒回収容器17の重量
を秤り25を用いるなどの公知の方法により計量して冷
媒の量を測定する。開閉弁19を開け、管路20から冷
媒をサンプリングしてガスクロマトグラフィなどにより
冷媒の組成を分析する。
The weight of the refrigerant recovery container 17 containing the liquefied refrigerant is measured by a known method such as using a scale 25 to measure the amount of the refrigerant. The on-off valve 19 is opened, the refrigerant is sampled from the pipe 20, and the composition of the refrigerant is analyzed by gas chromatography or the like.

【0024】冷媒の量および組成の測定結果から、漏れ
た量や組成が判るので、それに応じて所定の組成、所定
量の冷媒を管路20から開閉弁19を開けて冷媒回収容
器17中に補充する。その後、冷媒回収容器17を冷却
器兼加熱器18により加熱して冷媒を気化させ、開閉弁
9、24を開け、冷媒を冷媒回収容器17中に集めた工
程の逆の操作を行って冷媒出口管路22、冷媒供給口1
1を経て冷媒を冷凍回路中にチャージする。
Since the leaked amount and composition can be known from the measurement result of the amount and composition of the refrigerant, a predetermined composition and a predetermined amount of the refrigerant can be opened from the pipeline 20 into the refrigerant recovery container 17 by opening the on-off valve 19. refill. Then, the refrigerant recovery container 17 is heated by the cooler / heater 18 to vaporize the refrigerant, open the on-off valves 9 and 24, and perform the reverse operation of the step of collecting the refrigerant in the refrigerant recovery container 17 to perform the refrigerant outlet. Pipe line 22, refrigerant supply port 1
The refrigerant is charged into the refrigeration circuit via 1.

【0025】図2に本発明の冷凍装置の冷凍回路の他の
例を示す。1は圧縮機、2は凝縮器、3は減圧器、4は
蒸発器であり、凝縮器2と膨張弁3を結ぶ管路に3方弁
5Aと冷媒回収容器(図示せず)に連結する管路6を備
えた冷媒取り出し口7’が設けられており、かつ膨張弁
3と蒸発器4を結ぶ管路に開閉弁9と冷媒回収容器(図
示せず)に連結する管路10を備えた冷媒供給口11が
設けられている。矢印は冷媒の流れを示す。冷凍装置の
通常の運転時は3方弁5Aは冷媒が凝縮器2から膨張弁
3の方向に流れるようにしておき、開閉弁9は閉じてお
く。冷媒の量や冷媒組成を測定する時は、冷媒取り出し
口7’と冷媒供給口11との間に、冷却器兼加熱器18
を備えた冷却および加熱可能な冷媒回収容器17を管路
12を管路6に接続し、管路13を管路10に接続する
ことにより連結し、冷媒回収容器17中に冷媒を集める
場合は3方弁5Aを操作して冷媒が冷媒取り出し口
7’、冷媒入口管路16を経て冷媒回収容器17中に流
れ、3方弁5Aから膨張弁3の方に流れないようにする
他は上記と同様に操作して冷媒を測定し、その結果に応
じて所定量、所定組成の冷媒を補充する。
FIG. 2 shows another example of the refrigerating circuit of the refrigerating apparatus of the present invention. Reference numeral 1 is a compressor, 2 is a condenser, 3 is a pressure reducer, and 4 is an evaporator, and is connected to a three-way valve 5A and a refrigerant recovery container (not shown) in a pipe line connecting the condenser 2 and the expansion valve 3. A refrigerant outlet 7 ′ having a pipe 6 is provided, and a pipe connecting the expansion valve 3 and the evaporator 4 is provided with an opening / closing valve 9 and a pipe 10 connecting to a refrigerant recovery container (not shown). A coolant supply port 11 is provided. The arrow indicates the flow of the refrigerant. During normal operation of the refrigeration system, the three-way valve 5A allows the refrigerant to flow from the condenser 2 toward the expansion valve 3, and the on-off valve 9 is closed. When measuring the amount and composition of the refrigerant, the cooler / heater 18 is provided between the refrigerant outlet 7 ′ and the refrigerant supply port 11.
In the case of collecting the refrigerant in the refrigerant recovery container 17 by connecting the cooling and heating capable refrigerant recovery container 17 by connecting the conduit 12 to the conduit 6 and the conduit 13 to the conduit 10. The three-way valve 5A is operated so that the refrigerant does not flow from the three-way valve 5A toward the expansion valve 3 through the refrigerant outlet port 7'and the refrigerant inlet conduit 16 into the refrigerant recovery container 17. The refrigerant is measured in the same manner as above, and a predetermined amount of the refrigerant having a predetermined composition is replenished according to the result.

【0026】[0026]

【発明の効果】本発明の冷凍装置は、冷媒の量や冷媒組
成を測定できるように冷凍回路中に冷媒取り出し口およ
び冷媒供給口を設けたので、オゾン層を破壊する危険が
ないHFC系非共沸冷媒混合物などを使用した場合で
も、冷媒取り出し口から冷媒を冷却した系外の容器に全
量取り出して液化させて集めることにより冷媒の量や冷
媒組成を容易に測定できる。その測定結果に基づいて必
要により所定の組成、所定量の冷媒を冷媒供給口から冷
凍回路中に補充することにより、冷凍能力、EERなど
を回復することができる。本発明の冷凍装置は簡単な構
成からなるので経済的である上、効果が大きいので産業
上の利用価値が高い。
Since the refrigerating apparatus of the present invention is provided with the refrigerant outlet and the refrigerant supply port in the refrigerating circuit so that the amount of the refrigerant and the refrigerant composition can be measured, there is no danger of destroying the ozone layer. Even when an azeotropic refrigerant mixture or the like is used, the amount of the refrigerant and the refrigerant composition can be easily measured by taking out the entire amount of the refrigerant from the refrigerant take-out port into a cooled container outside the system, liquefying it, and collecting it. The refrigerating capacity, EER, etc. can be restored by replenishing the refrigeration circuit with a predetermined composition and a predetermined amount of refrigerant from the refrigerant supply port as necessary based on the measurement result. The refrigerating apparatus of the present invention is economical because it has a simple structure, and is highly effective, so that it has high industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の冷凍装置の冷凍回路の例である。FIG. 1 is an example of a refrigeration circuit of a refrigeration apparatus of the present invention.

【図2】 本発明の冷凍装置の他の冷凍回路の例であ
る。
FIG. 2 is an example of another refrigeration circuit of the refrigeration apparatus of the present invention.

【図3】 冷媒の測定および補充方法を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a method of measuring and replenishing a refrigerant.

【図4】 従来の冷凍装置の冷凍回路の例である。FIG. 4 is an example of a refrigeration circuit of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 減圧器 4 蒸発器 5、8、9、15、19、24 開閉弁 6、10、12、13 管路 7 冷媒取り出し口 11 冷媒供給口 14、23 フレキシブルチューブ 16 冷媒入口管路 17 冷媒回収容器 18 冷却器兼加熱器 20 冷媒サンプリングと冷媒補充口を兼ねた管路 21 液化冷媒 22 冷媒出口管路 25 秤り 1 Compressor 2 Condenser 3 Decompressor 4 Evaporator 5, 8, 9, 15, 19, 24 On-off valve 6, 10, 12, 13 Pipe line 7 Refrigerant outlet 11 Refrigerant supply port 14, 23 Flexible tube 16 Refrigerant inlet Pipeline 17 Refrigerant recovery container 18 Cooler / heater 20 Pipeline that also serves as a refrigerant sampling and coolant replenishing port 21 Liquefied refrigerant 22 Refrigerant outlet pipe 25 Scale

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を凝縮液化する凝縮器、この冷媒を
膨張させるための減圧器、液化冷媒を蒸発させる蒸発
器、および蒸発気化した冷媒を圧縮して凝縮器に吐出す
る圧縮機などを備えた冷凍装置において、冷凍回路に冷
媒取り出し口と冷媒供給口を設けたことを特徴とする冷
凍装置。
1. A condenser for condensing and liquefying a refrigerant, a decompressor for expanding the refrigerant, an evaporator for evaporating the liquefied refrigerant, a compressor for compressing the evaporated and vaporized refrigerant and discharging it to the condenser. In the refrigeration system, a refrigeration circuit is provided with a refrigerant outlet and a refrigerant supply port.
【請求項2】 凝縮器と減圧器を結ぶ管路に冷媒取り出
し口を設け、かつ減圧器と蒸発器を結ぶ管路に冷媒供給
口を設けたことを特徴とする請求項1記載の冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein a refrigerant outlet is provided in a pipe connecting the condenser and the pressure reducer, and a refrigerant supply port is provided in a pipe connecting the pressure reducer and the evaporator. .
【請求項3】 凝縮器と減圧器を結ぶ管路に開閉弁を備
えた冷媒取り出し口および開閉弁を直列に設け、かつ減
圧器と蒸発器を結ぶ管路に開閉弁を備えた冷媒供給口を
設けた請求項2記載の冷凍装置。
3. A refrigerant supply port having a refrigerant outlet and an on-off valve provided in series in a pipeline connecting a condenser and a pressure reducer, and an on-off valve provided in a pipeline connecting a pressure reducer and an evaporator. The refrigerating apparatus according to claim 2, further comprising:
【請求項4】 凝縮器と減圧器を結ぶ管路に3方弁を備
えた冷媒取り出し口を設け、かつ減圧器と蒸発器を結ぶ
管路に開閉弁を備えた冷媒供給口を設けた請求項2記載
の冷凍装置。
4. A refrigerant outlet provided with a three-way valve is provided in a pipeline connecting the condenser and the pressure reducer, and a refrigerant supply port provided with an opening / closing valve is provided in the pipeline connecting the pressure reducer and the evaporator. Item 2. The refrigeration apparatus according to item 2.
【請求項5】 冷媒がHFC系冷媒あるいはHFC系冷
媒を主体とする冷媒である請求項1ないし請求項4記載
の冷凍装置。
5. The refrigerating apparatus according to claim 1, wherein the refrigerant is an HFC refrigerant or a refrigerant mainly composed of an HFC refrigerant.
【請求項6】 冷媒がHFC系非共沸冷媒混合物である
請求項5記載の冷凍装置。
6. The refrigerating apparatus according to claim 5, wherein the refrigerant is an HFC-based non-azeotropic refrigerant mixture.
【請求項7】 下記の(1)〜(6)の工程により請求
項1記載の冷凍装置の冷凍回路から冷媒を系外に取り出
し、冷媒の量および組成を測定した後、必要により冷媒
を補充し、そして冷媒を冷凍回路中に戻すことを特徴と
する冷凍回路中の冷媒の測定および補充方法。 (1)冷媒取り出し口と冷媒供給口との間に、冷却およ
び加熱可能な冷媒回収容器を連結する。 (2)次いで該容器内を真空にすると共に冷媒の沸点以
下に冷却する。 (3)冷凍回路中の実質的に全ての冷媒を該容器内に導
入して液化させる。 (4)該容器内の冷媒の量および組成を測定する。 (5)必要により該容器内に冷媒を補充する。 (6)該容器を加熱して冷媒を気化して冷媒供給口から
冷凍回路中に冷媒を供給する。
7. The refrigerant is taken out of the refrigeration circuit of the refrigerating apparatus according to claim 1 out of the system by the following steps (1) to (6), the amount and composition of the refrigerant are measured, and then the refrigerant is replenished if necessary. And then returning the refrigerant into the refrigeration circuit, a method for measuring and replenishing the refrigerant in the refrigeration circuit. (1) A coolant recovery container capable of cooling and heating is connected between the coolant outlet and the coolant supply port. (2) Next, the inside of the container is evacuated and cooled to the boiling point of the refrigerant or less. (3) Substantially all of the refrigerant in the refrigeration circuit is introduced into the container and liquefied. (4) Measure the amount and composition of the refrigerant in the container. (5) If necessary, the refrigerant is replenished in the container. (6) The container is heated to vaporize the refrigerant and supply the refrigerant from the refrigerant supply port into the refrigeration circuit.
【請求項8】 冷媒がHFC系冷媒あるいはHFC系冷
媒を主体とする冷媒である請求項7記載の冷凍回路中の
冷媒の測定および補充方法。
8. The method for measuring and replenishing a refrigerant in a refrigeration circuit according to claim 7, wherein the refrigerant is an HFC refrigerant or a refrigerant mainly composed of an HFC refrigerant.
【請求項9】 冷媒がHFC系非共沸冷媒混合物である
請求項8記載の冷凍回路中の冷媒の測定および補充方
法。
9. The method for measuring and replenishing a refrigerant in a refrigeration circuit according to claim 8, wherein the refrigerant is an HFC-based non-azeotropic refrigerant mixture.
JP6304188A 1994-11-15 1994-11-15 Refrigerating equipment and method for measuring and supplementing refrigerant in refrigerating circuit Pending JPH08145509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6304188A JPH08145509A (en) 1994-11-15 1994-11-15 Refrigerating equipment and method for measuring and supplementing refrigerant in refrigerating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6304188A JPH08145509A (en) 1994-11-15 1994-11-15 Refrigerating equipment and method for measuring and supplementing refrigerant in refrigerating circuit

Publications (1)

Publication Number Publication Date
JPH08145509A true JPH08145509A (en) 1996-06-07

Family

ID=17930095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6304188A Pending JPH08145509A (en) 1994-11-15 1994-11-15 Refrigerating equipment and method for measuring and supplementing refrigerant in refrigerating circuit

Country Status (1)

Country Link
JP (1) JPH08145509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002139A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002139A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle apparatus

Similar Documents

Publication Publication Date Title
JPH06914B2 (en) Azeotrope-like composition of pentafluoroethane and difluoromethane
JPH10502960A (en) Refrigerant composition
JPH08313120A (en) Three-constituent mixture refrigerant filling device and filling method
US4943388A (en) Azeotrope-like compositions of pentafluoroethane; 1,1,1-trifluoroethane; and chlorodifluoromethane
Li et al. High temperature hot water heat pump with non-azeotropic refrigerant mixture HCFC-22/HCFC-141b
JP2698319B2 (en) Non-azeotropic mixtures containing difluoromethane and 1,1,1,2-tetrafluoroethane and their application as refrigerant liquids in air conditioning
Sheng et al. Measurements of pρTx and specific heat capacity cv for (R290+ R1243zf) binary mixtures at temperatures from (292 to 350) K and pressures up to 11 MPa
US20170131010A1 (en) Recharging systems and methods
US20220154057A1 (en) Refrigerant blends in flooded systems
US6079217A (en) Method and system for the determination of a ternary refrigerant mixture composition
Baskaran et al. Thermodynamic Analysis of R152a and Dimethylether Refrigerant Mixtures in Refrigeration System.
JPH08145509A (en) Refrigerating equipment and method for measuring and supplementing refrigerant in refrigerating circuit
JPH09152234A (en) Method and apparatus for charging fluorine refrigerant
JPH08127767A (en) Working fluid
Sami et al. Energy efficiency analysis of a new ternary HFC alternative
JPH0953871A (en) Freezer
JPH1123078A (en) Refrigerating device
MacNeill et al. Charging And Recovery Techniques For Low GWP Refrigerant Blends
JPH08151569A (en) Working fluid
コロンバタンティリゲ,ウトゥパラ,アモダ,ペレラ PvT properties of next generation refrigerants at low temperatures: development of apparatus, measurement and data analysis.
JPH08145517A (en) Refrigerating equipment and measuring method of refrigerant
Lee et al. A Study on the Characteristics an Azeotropic Mixture Combined with CF₃I and a Refrigerant for Air-Conditioner HFC-152a and HFC-152a
KR100248176B1 (en) Azeotropic-like compositions of pentafluoroethane and 1,1,1-trifluoroethane
EP0505436A1 (en) Azeotrope-like compositions of 1,1,1,2-tetrafluoroethane and 1,1-difluoroethane
McMullan et al. Component separation in refrigerant equipment using HFC mixtures

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees