JPH0915196A - Production of oxygen sensor - Google Patents

Production of oxygen sensor

Info

Publication number
JPH0915196A
JPH0915196A JP7162481A JP16248195A JPH0915196A JP H0915196 A JPH0915196 A JP H0915196A JP 7162481 A JP7162481 A JP 7162481A JP 16248195 A JP16248195 A JP 16248195A JP H0915196 A JPH0915196 A JP H0915196A
Authority
JP
Japan
Prior art keywords
sheet
diffusion
oxygen sensor
controlling layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7162481A
Other languages
Japanese (ja)
Inventor
Mikiya Matsuoka
幹也 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7162481A priority Critical patent/JPH0915196A/en
Publication of JPH0915196A publication Critical patent/JPH0915196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE: To provide an oxygen sensor having a diffusion rate layer equipped with fine open voids. CONSTITUTION: Electrodes 6, 7 are laminated on the upper and rear surfaces of a second sheet 2 being a sheet for a thin-walled solid electrolyte layer formed of a zirconia powder. A sheet 4 for forming a thin-walled diffusion rate layer formed from a mixture obtained by mixing a carbon powder with the zirconia powder is used to coat the electrode 6. When the whole is baked at about 1450 deg.C, the carbon powder of the sheet 4 is burnt off to form voids and the sheet 4 becomes the diffusion rate layer 4A. The atmosphere is introduced into atmosphere introducing pares 31 and exhaust gas is introduced into the diffusion rate layer 4A to detect the concn. of oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は酸素センサ−に関す
る。本発明に係る酸素センサ−は、例えば車両の内燃機
関の空燃比制御、排気ガス浄化、ボイラ−の燃焼制御等
のために利用されている。
TECHNICAL FIELD The present invention relates to an oxygen sensor. The oxygen sensor according to the present invention is used, for example, for air-fuel ratio control of an internal combustion engine of a vehicle, exhaust gas purification, combustion control of a boiler, and the like.

【0002】[0002]

【従来の技術】従来より酸素を検出する酸素センサ−が
提供されている。酸素センサ−としては、図6に示す様
に、酸素イオン透過性を備えた固体電解質層100と、
固体電解質層100の両面にそれぞれ被覆された一対の
電極101、102と、陰極となる電極102に被覆さ
れた拡散律速層103とを備えたものがある。
2. Description of the Related Art Conventionally, an oxygen sensor for detecting oxygen has been provided. As the oxygen sensor, as shown in FIG. 6, a solid electrolyte layer 100 having oxygen ion permeability,
Some solid electrolyte layers 100 are provided with a pair of electrodes 101 and 102 respectively coated on both sides, and a diffusion rate controlling layer 103 coated on the electrode 102 serving as a cathode.

【0003】この酸素センサ−の基本原理について、排
気ガスに含まれる酸素濃度を検出する場合を例にとって
説明する。即ち、拡散律速層103を排気ガス側に、陽
極である電極101側を大気側に配置する。そして、あ
る温度以上で電極101、102間に電圧を印加する
と、陰極である電極102側で酸素分子が電子を放出し
てイオン化される。更にイオン化した酸素は、固体電解
質層100の内部を陽極である電極101に向かって移
動し、陽極である電極101で再び酸素分子になる。そ
して前述した様に排気ガスの酸素分子の到達を制限する
拡散律速層103で陰極である電極102を被覆する
と、排気ガスの酸素濃度に比例した出力電流が得られ、
これにより排気ガスの酸素濃度を求めることが可能とな
る。
The basic principle of the oxygen sensor will be described by taking the case of detecting the oxygen concentration contained in the exhaust gas as an example. That is, the diffusion-controlling layer 103 is arranged on the exhaust gas side and the electrode 101, which is the anode, is arranged on the atmosphere side. Then, when a voltage is applied between the electrodes 101 and 102 at a certain temperature or higher, oxygen molecules emit electrons and are ionized on the side of the electrode 102 that is the cathode. Further, the ionized oxygen moves inside the solid electrolyte layer 100 toward the electrode 101 serving as the anode, and becomes oxygen molecules again at the electrode 101 serving as the anode. Then, as described above, by covering the electrode 102, which is the cathode, with the diffusion-controlling layer 103 that restricts the arrival of oxygen molecules in the exhaust gas, an output current proportional to the oxygen concentration of the exhaust gas is obtained,
This makes it possible to obtain the oxygen concentration of the exhaust gas.

【0004】この拡散律速層103には排気ガスの通過
のため微小の空孔が多数形成されている。良好なる拡散
律速性を得るには、この空孔のサイズは、小さ過ぎても
大き過ぎても好ましくなく、一般的には400〜800
オングストロ−ム程度、特に500〜700オングスト
ロ−ム程度が好ましいとされている。ところで上記した
拡散律速層103をもつ酸素センサ−を製造する製造方
法として、特開昭60−107560号公報には、固体
電解質用シ−トにセラミックスのスラリを被覆し、その
スラリを液体窒素で凍結し、その後に減圧することによ
り凍結状態の水を昇華させ、昇華に伴い、連続する空孔
を備えた拡散律速層を形成する技術が開示されている。
更にこの公報にはセラミックスのスラリに樹脂を混ぜ、
スラリの被覆後に樹脂を焼失させて空孔を形成する技術
が開示されている。
A large number of minute holes are formed in the diffusion-controlling layer 103 for passage of exhaust gas. In order to obtain a good diffusion rate controlling property, it is not preferable that the size of the holes is too small or too large, and generally 400 to 800.
It is said that about angstroms, particularly about 500 to 700 angstroms are preferable. By the way, as a manufacturing method for manufacturing the oxygen sensor having the diffusion-controlling layer 103 described above, JP-A-60-107560 discloses that a sheet for solid electrolyte is coated with a ceramic slurry and the slurry is coated with liquid nitrogen. A technique is disclosed in which water in a frozen state is sublimated by freezing and then decompressing, and a diffusion-controlling layer having continuous pores is formed in association with the sublimation.
Furthermore, in this publication, resin is mixed with ceramic slurry,
A technique is disclosed in which the resin is burned off after coating the slurry to form pores.

【0005】更に特開平2−141653号公報には、
空孔を備えた上記した拡散律速層をセラミックス粉末溶
射法で形成する技術が開示されている。
Further, in Japanese Patent Laid-Open No. 2-141653,
A technique for forming the above diffusion controlling layer having pores by a ceramic powder spraying method is disclosed.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した方式
とは異なる方式で、連続する微小な空孔を備えた拡散被
覆層をもつ酸素センサ−を製造する酸素センサ−の製造
方法を提供することを課題とする。本発明者は上記課題
達成のために、拡散律速層をもつ酸素センサ−について
鋭意開発を進めた。そして粒径が小さなポリビニルアル
コ−ル(PVA)の粒子を、溶媒である水と共にセラミ
ックスのスラリに含ませ、焼成工程における焼失で水と
共に除去し、これにより空孔を備えた拡散律速層を形成
する技術を開発した。しかしながらこの技術では比較的
微小な空孔を形成できるものの、製造工程において粒子
は膨潤、凝集等のため粒径が増加する傾向があり、しか
も膨潤、凝集等のためサイズがばらつき易い。そのため
上記した技術によれば、微小でかつサイズが均一な空孔
を備えた拡散律速性能が良い拡散律速層を形成するの
に、限界がある。
SUMMARY OF THE INVENTION The present invention provides a method of manufacturing an oxygen sensor having a diffusion coating layer having continuous minute pores, which is different from the method described above. This is an issue. In order to achieve the above object, the present inventor has eagerly developed an oxygen sensor having a diffusion-controlling layer. Then, particles of polyvinyl alcohol (PVA) having a small particle diameter are included in a ceramic slurry together with water as a solvent, and are removed together with water by burning in a firing process, thereby forming a diffusion rate controlling layer having pores. Developed the technology to do. However, although this technique can form relatively small pores, the particles tend to increase in size during the manufacturing process due to swelling, agglomeration, and the like, and the size tends to vary due to swelling and agglomeration. Therefore, according to the above-mentioned technique, there is a limit in forming a diffusion-controlling layer having fine and uniform pores and having a good diffusion-controlling performance.

【0007】[0007]

【課題を解決するための手段】そこで本発明者は、水や
有機溶媒等の通常使用される全ての溶媒に不溶な炭素系
粉末粒子を採用すれば、微小でかつサイズが均一な空孔
を備え拡散律速性が良好なる拡散律速層を形成するのに
有利であることを知見し、試験で確認して本発明方法を
完成したものである。
Therefore, the present inventor adopts carbon-based powder particles that are insoluble in all commonly used solvents such as water and organic solvents, to form fine and uniform pores. The present inventors have completed the method of the present invention by finding out that it is advantageous to form a diffusion-controlling layer having a good diffusion-controlling property and confirming it by a test.

【0008】即ち本発明に係る酸素センサ−の製造方法
は、酸素イオン透過性を備えた固体電解質層となる固体
電解質層用シ−トと、固定電解質層シ−トの両面にそれ
ぞれ被覆された一対の電極と、一方の電極に被覆された
拡散律速層形成用シ−トとを備えた素子積層体を得る積
層工程と、素子積層体を焼成する焼成工程とを順に実施
して酸素センサ−を製造する酸素センサ−の製造方法に
おいて、素子積層体の拡散律速層形成用シ−トは炭素系
粉末粒子を含有しており、焼成工程において炭素系粉末
粒子を焼失させ、連続する空孔を形成し、拡散律速層形
成用シ−トを拡散律速層とすることを特徴とするもので
ある。
That is, in the method for manufacturing an oxygen sensor according to the present invention, both surfaces of a sheet for a solid electrolyte layer, which is a solid electrolyte layer having oxygen ion permeability, and a fixed electrolyte layer sheet, are coated. An oxygen sensor by sequentially performing a laminating step for obtaining an element laminated body including a pair of electrodes and a diffusion controlling layer forming sheet covered with one electrode, and a firing step for firing the element laminated body. In the method for producing an oxygen sensor, the sheet for forming a diffusion-controlling layer of an element laminate contains carbon-based powder particles, burns out the carbon-based powder particles in the firing step, and creates continuous pores. The diffusion-controlling layer forming sheet is formed into a diffusion-controlling layer.

【0009】[0009]

【作用】本発明方法によれば、素子積層体の拡散律速層
形成用シ−トは炭素系粉末粒子を含有している。炭素系
粉末粒子としては、炭素質のもの、黒鉛質のものを採用
できる。炭素質の粉末は一般的には、明確な結晶状態を
示さない無定形炭素、あるいは結晶の発達の程度が低い
微晶質炭素等と称せられる。
According to the method of the present invention, the sheet for forming the diffusion-controlling layer of the element laminate contains carbon-based powder particles. As the carbon-based powder particles, carbonaceous particles and graphite particles can be adopted. The carbonaceous powder is generally referred to as amorphous carbon that does not show a clear crystalline state, or microcrystalline carbon that has a low degree of crystal growth.

【0010】炭素系粉末粒子は例えばカ−ボンブラック
粉末、天然黒鉛粉末等を採用できる。空孔を形成する炭
素系粉末粒子の平均粒径は酸素センサ−の種類、空孔の
所望径等に応じて適宜変更するが、平均粒径は上限値が
1.5μm、1.0μm、0.8μmにでき、下限値が
0.2μm、0.4μm、0.6μmにできる。例えば
炭素系粉末粒子の平均粒径は0.7μm〜0.9μm例
えば0.8μmにできる。
Carbon powder particles such as carbon black powder and natural graphite powder can be used. The average particle diameter of the carbon-based powder particles forming the pores is appropriately changed according to the type of oxygen sensor, the desired diameter of the pores, etc., but the upper limit of the average particle diameter is 1.5 μm, 1.0 μm, 0. It can be set to 0.8 μm, and the lower limit values can be set to 0.2 μm, 0.4 μm, and 0.6 μm. For example, the average particle size of the carbon-based powder particles can be 0.7 μm to 0.9 μm, for example 0.8 μm.

【0011】固体電解質層用シートは一般的にはジルコ
ニア粉末で形成できる。拡散律速層形成用シ−トは通
常、ジルコニア粉末で形成できる。ジルコニア粉末の粒
径は空孔の大きさにも影響を与えると考えられるので、
ジルコニア粉末の平均粒径は酸素センサ−の種類等に応
じて適宜変更する。従ってジルコニア粉末の平均粒径は
上限値が0.5μm、0.3μm、0.2μmにでき、
下限値が0.05μm、0.08μmにできる。例えば
ジルコニア粉末の平均粒径は0.07μm〜0.2μm
例えば0.1μmにできる。
The solid electrolyte layer sheet can be generally formed of zirconia powder. The diffusion-controlling layer-forming sheet can be usually formed of zirconia powder. Since the particle size of zirconia powder is considered to affect the size of pores,
The average particle size of the zirconia powder is appropriately changed according to the type of oxygen sensor. Therefore, the upper limit of the average particle size of zirconia powder can be 0.5 μm, 0.3 μm, 0.2 μm,
The lower limit can be set to 0.05 μm and 0.08 μm. For example, the average particle size of zirconia powder is 0.07 μm to 0.2 μm.
For example, it can be 0.1 μm.

【0012】本発明方法によれば、焼成工程において、
拡散律速層形成用シ−トに含有されている炭素系粉末粒
子は焼成工程において焼失する。これにより連続する空
孔が形成され、拡散律速層形成用シ−トが拡散律速層と
なる。なお上記した焼成温度は固体電解質層用シ−トや
拡散律速層形成用シ−トの種類に応じて適宜選択する
が、ジルコニアの場合には一般的に1400〜1500
°C程度にできる。
According to the method of the present invention, in the firing step,
The carbon-based powder particles contained in the diffusion-controlling layer-forming sheet are burnt out in the firing step. Thereby, continuous voids are formed, and the diffusion-controlling-layer-forming sheet becomes the diffusion-controlling layer. The above-mentioned firing temperature is appropriately selected depending on the type of the sheet for forming the solid electrolyte layer or the sheet for forming the diffusion-controlling layer, but in the case of zirconia, it is generally 1400 to 1500.
It can be about ° C.

【0013】[0013]

【発明の実施の形態】本発明方法は次の形態で実施でき
る。固体電解質層用シ−トはジルコニアを主要成分とす
る。拡散律速層形成用シ−トはジルコニアを主要成分と
し、平均粒径が0.8μm前後の炭素系粉末粒子が含有
されている。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention can be carried out in the following modes. The sheet for the solid electrolyte layer contains zirconia as a main component. The diffusion-controlling-layer-forming sheet contains zirconia as a main component, and contains carbon-based powder particles having an average particle size of about 0.8 μm.

【0014】[0014]

【実施例】以下、本発明方法の実施例を説明する。先
ず、図1は製造工程における素子積層体8の斜視図を示
す。図2は素子積層体8の断面を示す。まず素子積層体
8の製造について説明する。原料粉末としてジルコニア
粉末(平均粒径:0.1μm)を100重量部、溶媒と
してイオン交換水を15重量部、有機バインダとしてメ
チルセルロ−スを4重量部、界面活性剤としてグリセリ
ンを7重量部を用意する。そしてこれらを攪拌機で均一
に攪拌、混合し、第1混合物を形成する。その後、この
第1混合物を押出成形機に装入し、押出成形機の作動に
よりこれの吐出口からシート状の連続素材を吐出する。
Embodiments of the present invention will be described below. First, FIG. 1 is a perspective view of the element laminated body 8 in the manufacturing process. FIG. 2 shows a cross section of the element laminate 8. First, the manufacture of the element stack 8 will be described. 100 parts by weight of zirconia powder (average particle size: 0.1 μm) as a raw material powder, 15 parts by weight of ion-exchanged water as a solvent, 4 parts by weight of methyl cellulose as an organic binder, and 7 parts by weight of glycerin as a surfactant. prepare. Then, these are uniformly stirred and mixed with a stirrer to form a first mixture. Then, the first mixture is charged into an extrusion molding machine, and the sheet-shaped continuous material is discharged from the discharge port thereof by the operation of the extrusion molding machine.

【0015】上記した連続素材を乾燥機で乾燥処理し、
打抜き機で所定形状に打ち抜き、これにより図3に示す
第1シ−ト1、固体電解質層用シ−トとして機能する第
2シ−ト2、構造材シ−ト3を得る。例えば第1シ−ト
1の厚みは0.6〜1.3mmにできる。第2シ−ト2
の厚みは0.1〜0.3mmにできる。構造材シ−ト3
の厚みは0.6〜1.3mmにできる。構造材シ−ト3
は、大気に連通する大気導入孔3iを形成する内壁面3
a〜3cを備えている。
The above continuous material is dried by a dryer,
Punching into a predetermined shape with a punching machine, thereby obtaining the first sheet 1, the second sheet 2 functioning as a solid electrolyte layer sheet, and the structural material sheet 3 shown in FIG. For example, the thickness of the first sheet 1 can be 0.6 to 1.3 mm. Second sheet 2
Can have a thickness of 0.1 to 0.3 mm. Structural material sheet 3
Can have a thickness of 0.6 to 1.3 mm. Structural material sheet 3
Is an inner wall surface 3 forming an air introduction hole 3i communicating with the atmosphere.
a to 3c.

【0016】次に上記した第1混練物と同様の組成の材
料に、平均粒径0.8μmの炭素粉末(具体的には無定
形炭素粉末)を添加する。ジルコニア粉末100重量部
に対して、炭素粉末の添加量は10重量部である。なお
好ましい添加量は3〜30重量部、特に6〜20重量部
である。そしてこれらを均一に混合、攪拌し、第2混合
物を形成する。この第2混合物を押出成形機で所定の厚
みに成形し、シート状の拡散律速層用素材とする。
Next, carbon powder having an average particle diameter of 0.8 μm (specifically, amorphous carbon powder) is added to the material having the same composition as the above-mentioned first kneaded material. The amount of carbon powder added was 10 parts by weight with respect to 100 parts by weight of zirconia powder. The preferable addition amount is 3 to 30 parts by weight, particularly 6 to 20 parts by weight. Then, these are uniformly mixed and stirred to form a second mixture. This second mixture is molded into a predetermined thickness with an extruder to obtain a sheet-shaped material for the diffusion controlling layer.

【0017】上記した拡散律速層用素材を乾燥機で乾燥
処理し、打抜き機で所定形状に打ち抜き、これにより図
3に示す拡散律速層用シ−ト4を得る。従って拡散律速
層用シ−ト4には炭素粉末が含有されている。次に、第
2シ−ト2の表裏に白金ペ−ストをスクリ−ン印刷法で
塗布し、電極6、7を積層する。
The above diffusion controlling layer material is dried by a dryer and punched into a predetermined shape by a punching machine to obtain a diffusion controlling layer sheet 4 shown in FIG. Therefore, the diffusion-controlling layer sheet 4 contains carbon powder. Next, platinum paste is applied to the front and back of the second sheet 2 by a screen printing method to stack the electrodes 6 and 7.

【0018】次に下材シ−ト1及び構造材シ−ト3に水
を塗布して重ね、約2kgf/cm 2 の加圧力で加圧す
る。更に、水を塗布した拡散律速層用シ−ト4を積層
し、これにより素子積層体8を得る。次に酸素成分含有
雰囲気としての大気中において、素子積層体8を下記
〜の焼成パタ−ン(脱脂工程も含む)で加熱し、脱
脂、焼成する。これにより第2シ−ト2が酸素イオン透
過性をもつ固体電解質層となる。また焼成工程において
炭素粉末の粒子が酸素成分と反応して焼失することによ
り、連続する空孔が形成され、拡散律速層形成用シ−ト
4が拡散律速層となる。これにより酸素センサ−が製造
される。
Next, the lower sheet 1 and the structural sheet 3 are watered.
About 2kgf / cm TwoPressurize with
You. Furthermore, a sheet 4 for diffusion controlling layer coated with water is laminated.
Then, the element laminated body 8 is obtained. Next, oxygen content
In the air as an atmosphere, the element laminated body 8 was
Heating in the firing pattern (including the degreasing process)
Oil and bake. As a result, the second sheet 2 is permeable to oxygen ions.
It becomes a solid electrolyte layer having a transient property. Also in the firing process
The carbon powder particles react with oxygen components and burn out.
The continuous voids are formed, and the diffusion-controlling layer forming sheet is formed.
4 is the diffusion rate controlling layer. This produces an oxygen sensor
Is done.

【0019】焼成パタ−ンは〜の様である。 室温〜450°C 20°C/時間 450〜1450°C 50°C/時間 1450°C 1時間保持 1450°C〜室温 200°C/時間 排気ガスの酸素濃度を検出する場合には、上記の様にし
て製造した酸素センサ−9を図4に示す試験装置にセッ
トする。酸素センサ−9は抵抗91、電圧計92を介し
て直流電源90に接続されている。酸素センサ−9は、
排気ガス導入路96と大気連通孔97との間の試験室9
8に配置されている。この状態で酸素センサ−9の印加
電圧を次第に増加していくと、図5に示す様な飽和特性
線A1、A2、A3が得られる。飽和特性線A1では印
加電圧がVoのとき出力電流はI 1 である。飽和特性線
A2では印加電圧がVoのとき出力電流はI2 である。
飽和特性線A3では印加電圧がVoのとき出力電流はI
3 である。この様な飽和特性が得られることから、拡散
律速性を備えた空孔をもつ拡散律速層4Aが得られたこ
とが確認される。
The firing pattern is as follows. Room temperature to 450 ° C 20 ° C / hour 450 to 1450 ° C 50 ° C / hour 1450 ° C 1 hour hold 1450 ° C to room temperature 200 ° C / hour When detecting the oxygen concentration of exhaust gas, the above Like
The manufactured oxygen sensor-9 was set in the test device shown in FIG.
To The oxygen sensor-9 is connected through a resistor 91 and a voltmeter 92.
Connected to the DC power source 90. The oxygen sensor-9
Test chamber 9 between the exhaust gas introduction path 96 and the atmosphere communication hole 97
It is located at 8. Application of oxygen sensor-9 in this state
When the voltage is gradually increased, the saturation characteristics as shown in Fig. 5 are obtained.
The lines A1, A2, A3 are obtained. Marked on the saturation characteristic line A1
When the applied voltage is Vo, the output current is I 1It is. Saturation characteristic line
In A2, the output current is I when the applied voltage is Vo.TwoIt is.
In the saturation characteristic line A3, the output current is I when the applied voltage is Vo.
ThreeIt is. Since such saturation characteristics are obtained, diffusion
The diffusion-controlling layer 4A having pores with rate-controlling property was obtained.
Is confirmed.

【0020】以上説明した様に本実施例によれば、素子
積層体8の拡散律速層形成用シ−ト4は炭素粉末を含有
しており、焼成工程において炭素粉末の粒子が焼失する
ことにより、連続する空孔が形成され、拡散律速層形成
用シ−ト4が拡散律速層となる。ここで炭素粉末の粒子
は粒径が微小であり、かつ粒子形状の真球度は高いもの
である。更に炭素粉末の粒子は基本的には溶媒としての
イオン交換水等に溶けない。
As described above, according to this embodiment, the diffusion-controlling-layer-forming sheet 4 of the element laminate 8 contains carbon powder, and the carbon powder particles are burned out in the firing step. , Continuous voids are formed, and the diffusion-controlling-layer-forming sheet 4 becomes a diffusion-controlling layer. Here, the particles of the carbon powder have a small particle diameter, and the sphericity of the particle shape is high. Furthermore, the particles of carbon powder are basically insoluble in ion-exchanged water as a solvent.

【0021】そのため前記したポリビニルアルコ−ル
(PVA)等とは異なり、粉末粒子の膨潤、凝集等によ
る粒径増大現象を回避できる。そのため、微小な粒子を
拡散律速層形成用シ−ト4に含有させるのに有利であ
る。従って焼成工程において炭素粉末が焼失して形成さ
れた空孔は微小となる。よって良好なる拡散律速性をも
つ拡散律速層4Aが得られる。
Therefore, unlike the above-described polyvinyl alcohol (PVA) and the like, it is possible to avoid the phenomenon of increasing the particle size due to swelling, aggregation and the like of the powder particles. Therefore, it is advantageous to incorporate fine particles into the diffusion-controlling layer forming sheet 4. Therefore, the pores formed by the burning of the carbon powder in the firing step are minute. Therefore, the diffusion-controlling layer 4A having a good diffusion-controlling property can be obtained.

【0022】なお本実施例によれば拡散律速層4Aの空
孔サイズは、含浸ポロシティ法による測定によれば、2
00〜1500オングストロームであり、平均660オ
ングストローム程度であった。この測定法は、高真空下
で脱気した空孔に、加圧により水銀を含浸させて測定す
る方法である。本実施例によれば、焼成工程において炭
素粉末は全て焼失した形態、或いは、大部分焼失してい
るものの一部残存している形態を含む。
According to this embodiment, the pore size of the diffusion-controlling layer 4A is 2 when measured by the impregnation porosity method.
It was 00 to 1500 angstroms, and the average was about 660 angstroms. This measuring method is a method in which mercury is impregnated into the holes deaerated under high vacuum by pressurization. According to the present embodiment, the carbon powder includes a form that is completely burned in the firing process, or a form in which the carbon powder is largely burned but a part thereof remains.

【0023】[0023]

【発明の効果】本発明方法によれば、炭素系粉末粒子を
用いるので、微小でかつサイズが揃った空孔を備えた拡
散律速層をもつ酸素センサ−を製造するのに有利であ
る。本発明方法によれば、酸素センサ−の製造の際に必
要とされる焼成工程において炭素系粉末粒子が焼失する
ので、空孔形成工程を別途設けずとも良く、生産性の面
で良好である。
According to the method of the present invention, since carbon-based powder particles are used, it is advantageous to manufacture an oxygen sensor having a diffusion-controlling layer having micropores of uniform size. According to the method of the present invention, since the carbon-based powder particles are burned off in the firing step required in the production of the oxygen sensor, it is not necessary to separately provide the pore forming step, and the productivity is good. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】素子積層体の斜視図である。FIG. 1 is a perspective view of an element stack.

【図2】素子積層体の要部の断面図である。FIG. 2 is a cross-sectional view of a main part of an element laminated body.

【図3】第1シ−ト、第2シ−ト、構造材シ−ト等の平
面図である。
FIG. 3 is a plan view of a first sheet, a second sheet, a structural material sheet and the like.

【図4】試験装置の構成図である。FIG. 4 is a configuration diagram of a test apparatus.

【図5】印加電圧と出力電流との関係を示すグラフであ
る。
FIG. 5 is a graph showing the relationship between applied voltage and output current.

【図6】酸素センサの原理を説明するための従来技術に
係る構成図である。
FIG. 6 is a configuration diagram according to a conventional technique for explaining the principle of an oxygen sensor.

【符号の説明】[Explanation of symbols]

図中、2は第2シ−ト(固体電解質層用シ−ト)、4は
拡散律速層用シ−ト、6、7は電極、8は素子積層体を
示す。
In the figure, 2 is a second sheet (sheet for solid electrolyte layer), 4 is a sheet for diffusion controlling layer, 6 and 7 are electrodes, and 8 is an element laminate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン透過性を備えた固体電解質層と
なる固体電解質層用シ−トと、該固定電解質層シ−トの
両面にそれぞれ被覆された一対の電極と、一方の該電極
に被覆された拡散律速層形成用シ−トとを備えた素子積
層体を得る積層工程と、 該素子積層体を焼成する焼成工程とを順に実施して酸素
センサ−を製造する酸素センサ−の製造方法において、 該素子積層体の拡散律速層形成用シ−トは炭素系粉末粒
子を含有しており、 該焼成工程において該炭素系粉末粒子を焼失させ、連続
する空孔を形成し、該拡散律速層形成用シ−トを拡散律
速層とすることを特徴とする酸素センサ−の製造方法。
1. A sheet for a solid electrolyte layer which becomes a solid electrolyte layer having oxygen ion permeability, a pair of electrodes respectively coated on both surfaces of the fixed electrolyte layer sheet, and one of the electrodes. Manufacture of an oxygen sensor, in which an oxygen sensor is manufactured by sequentially performing a laminating step for obtaining an element laminated body including a coated diffusion controlling layer forming sheet and a firing step for firing the element laminated body. In the method, the sheet for forming the diffusion-controlling layer of the element laminate contains carbon-based powder particles, and the carbon-based powder particles are burnt out in the firing step to form continuous pores and the diffusion. A method for manufacturing an oxygen sensor, characterized in that the rate controlling layer forming sheet is a diffusion rate controlling layer.
JP7162481A 1995-06-28 1995-06-28 Production of oxygen sensor Pending JPH0915196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7162481A JPH0915196A (en) 1995-06-28 1995-06-28 Production of oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7162481A JPH0915196A (en) 1995-06-28 1995-06-28 Production of oxygen sensor

Publications (1)

Publication Number Publication Date
JPH0915196A true JPH0915196A (en) 1997-01-17

Family

ID=15755443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7162481A Pending JPH0915196A (en) 1995-06-28 1995-06-28 Production of oxygen sensor

Country Status (1)

Country Link
JP (1) JPH0915196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990047686A (en) * 1997-12-05 1999-07-05 이구택 Manufacturing method of limit current type oxygen sensor
JP2002286680A (en) * 2001-03-27 2002-10-03 Ngk Spark Plug Co Ltd Lamination type gas sensor element and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990047686A (en) * 1997-12-05 1999-07-05 이구택 Manufacturing method of limit current type oxygen sensor
JP2002286680A (en) * 2001-03-27 2002-10-03 Ngk Spark Plug Co Ltd Lamination type gas sensor element and its manufacturing method
JP4730722B2 (en) * 2001-03-27 2011-07-20 日本特殊陶業株式会社 Method for manufacturing laminated gas sensor element and laminated gas sensor element

Similar Documents

Publication Publication Date Title
WO1992010862A1 (en) Method for manufacturing solid-state electrolytic fuel cell
JP4707834B2 (en) Improved gas diffusion electrode, method for producing the same, and method for hydrophobizing the gas diffusion electrode
JPH03261677A (en) Ceramic green sheet material, electrochemical element and production thereof
JP2879965B2 (en) Method for manufacturing oxygen sensor element
CN110832315A (en) Gas sensor element and gas sensor
JPS6126022B2 (en)
CN106770583A (en) The method that rotary coating prepares limit-current type oxygen sensor dense diffusion barrier
JPH0915196A (en) Production of oxygen sensor
US5887240A (en) Method of manufacturing a platinum electrode
JPH0395859A (en) Solid electrolyte fuel cell
GB2046800A (en) Aging treatment for sputtered platinum exhaust gas oxygen sensor
JPH0652863A (en) Electrode body for solid electrolytic fuel cell and manufacture thereof
JPH01203964A (en) Formation of electrode for oxygen concentration sensor
JP2009245896A (en) Spacer for manufacturing solid oxide fuel cell, manufacturing method of member for solid oxide fuel cell using this, and manufacturing method of solid oxide fuel cell
JPH03261676A (en) Ceramic green sheet and production of electrochemical element using the same
JPH07326362A (en) Gas diffusion electrode and manufacture thereof
JP7333248B2 (en) Sensor element and gas sensor
JP2737997B2 (en) Manufacturing method of oxygen concentration sensor
JPS5827054A (en) Oxygen gas concentration cell
JPH04121966A (en) Manufacture of cylindrical solid electrolytic fuel cell
JP3412424B2 (en) Manufacturing method of oxygen sensor
JPH09170999A (en) Manufacture of oxygen sensor
JP3015859B2 (en) Method for producing perovskite-type oxide thin film sheet by extrusion method
JPH07262819A (en) Porous conductive material powder and its manufacture, and porous electrode using this material powder
JP2001266909A (en) Manufacturing method of single cell and solid electrolytic fuel cell using it