JPH09151385A - Kneader for producing fuel for pressurized fluidized bed boiler, operation of the kneader, pressurized fluized bed boiler and operation of the boiler - Google Patents

Kneader for producing fuel for pressurized fluidized bed boiler, operation of the kneader, pressurized fluized bed boiler and operation of the boiler

Info

Publication number
JPH09151385A
JPH09151385A JP31281295A JP31281295A JPH09151385A JP H09151385 A JPH09151385 A JP H09151385A JP 31281295 A JP31281295 A JP 31281295A JP 31281295 A JP31281295 A JP 31281295A JP H09151385 A JPH09151385 A JP H09151385A
Authority
JP
Japan
Prior art keywords
kneading
fuel
kneader
water
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31281295A
Other languages
Japanese (ja)
Other versions
JP4079285B2 (en
Inventor
Hiroshi Takezaki
博 武▲崎▼
Hiroshi Yuasa
博司 湯浅
Yoshinori Otani
義則 大谷
Yasutsune Katsuta
康常 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP31281295A priority Critical patent/JP4079285B2/en
Publication of JPH09151385A publication Critical patent/JPH09151385A/en
Application granted granted Critical
Publication of JP4079285B2 publication Critical patent/JP4079285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the production of CWP(coal water pastes) keeping enough fluidity with a smaller amount of water and attain high plant efficiency by controlling the kneading of a mixture of crushed coal and water or a mixture of crushed coal, water and a devulcanizing agent in a manufacturing process of CWP and to keep high plant efficiency. SOLUTION: When crushed coal and water (and a devulcanizing agent) are kneaded to produce CWP, a kneader is operated under the condition that the increase in a ratio of an accumulated weight of particles having particle diameters of <=0.02mm through the kneading is in the range of 1-5wt.% based on the particles constituting CWP. Thus, the production of CWP keeping fluidity with a small amount of water is enabled. Kneading energy consumption per CWP weight is determined from the consumed energy in a kneader 6 and the production of CWP by a computer 40. The number of revolution of a rotor and/or a divergence of a gate valve 15 of the outlet of the kneader is controlled so that the value determined by the computer 40 becomes 1-5kWh/ton-fuel, and this condition imparts CWP with an adequate degree of fluidity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加圧流動層ボイラ
複合発電プラントにおける石炭・水混合燃料の製造設備
に係り、低水分の石炭・水混合燃料を製造する方法と、
高いプラント効率を維持するのに好適な粉砕炭と水ある
いは粉砕炭と水と脱硫剤の混練機とその運転方法、加圧
流動層ボイラとその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coal / water mixed fuel production facility in a pressurized fluidized bed boiler combined cycle power plant, and a method for producing a low moisture coal / water mixed fuel,
The present invention relates to a kneading machine for crushed coal and water or a crushed coal and water and desulfurizing agent suitable for maintaining high plant efficiency, its operating method, a pressurized fluidized bed boiler and its operating method.

【0002】[0002]

【従来の技術】加圧流動層ボイラ複合発電プラントで
は、火炉への石炭の供給方法として湿式供給方式が主に
採用されている。例えば、特開昭62−155433号
公報に示されているように、破砕された石炭に水と脱硫
剤を加え、混練機により混合してぺースト状の流体(以
下、Coal−Water Pastes;CWPと略
す)とした後、ポンプを用いて加圧状態にある流動層ボ
イラに供給する方法である。したがって、CWPの性状
に関しては、まず第一にポンプ輸送可能な程度に流動性
を有すること、第二に、高いプラント効率を維持させる
ためにCWP中の水分量が少ないことが重要となる。
2. Description of the Related Art In a pressurized fluidized bed boiler combined cycle power plant, a wet supply system is mainly adopted as a method for supplying coal to a furnace. For example, as disclosed in Japanese Patent Laid-Open No. 62-155433, water and a desulfurizing agent are added to crushed coal and mixed by a kneader to form a paste-like fluid (hereinafter, referred to as Coal-Water Pastes; CWP). Abbreviated), and then using a pump to supply the fluidized-bed boiler in a pressurized state. Therefore, regarding the properties of CWP, it is important that the fluidity is such that pumping is possible first, and that the water content in CWP is small in order to maintain high plant efficiency.

【0003】上記CWPの性状に影響を与える主要な因
子として、添加水分量、粒度分布、混練度及び
石炭性状がある。特開昭62−155433号公報、特
開平4−57890号公報には、添加水分量の調節機能
を有したCWP製造法が開示されている。また、特開平
6−108069号公報には、本発明者らが提案した粒
度分布の調整によるCWP製造法が示されている。より
少ない水分で流動化するCWPは構成粒子の重量平均径
が1〜2mmである。公知の文献(S.J.Wrigh
tet al.:Proceedings of 10
th Internationl Conferenc
e on FBC,p381−388,San Fra
ncisco,1989)に記載されたCWPの重量平
均径が0.1〜0.5mmであることと比較して、かな
り粗めの粒度構成である。より低水分のCWPを製造す
るため、重量平均径が1〜2mmの範囲を満足するよう
に粒度分布を調整する必要がある。
The main factors that affect the properties of CWP are the amount of added water, particle size distribution, kneading degree and coal properties. Japanese Patent Application Laid-Open Nos. 62-155433 and 4-57890 disclose CWP production methods having a function of adjusting the amount of added water. Further, JP-A-6-108069 discloses a CWP manufacturing method proposed by the present inventors by adjusting the particle size distribution. CWP fluidized with less water has a weight average particle diameter of 1 to 2 mm. Known literature (S. J. Wright
tet al. : Proceedings of 10
th International Conferenc
e on FBC, p381-388, San Fra
Ncisco, 1989), which has a much coarser grain size composition compared to the CWP having a weight average diameter of 0.1 to 0.5 mm. In order to produce a CWP having a lower water content, it is necessary to adjust the particle size distribution so that the weight average diameter satisfies the range of 1 to 2 mm.

【0004】さらには、特開平6−108070号公報
には、石炭性状の違いに対応したCWP製造法が開示さ
れている。
Further, Japanese Patent Application Laid-Open No. 6-108070 discloses a CWP manufacturing method corresponding to different coal properties.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、より
少ない水分量で流動性を有するCWPを得るために、C
WP製造時の混練度を制御する点について配慮がなされ
ていなかった。添加水分量や粒度分布の調整が目標通り
になされていても、混練の度合いが適正でなければ、低
水分で流動性のあるCWPは製造できない。すなわち、
混練が不足した場合には、製造されるCWP中で石炭粒
子と水が不均質な状態となり、著しく流動性に乏しい部
分と、水分が多く分離しやすい部分ができる。また、必
要以上に混練した場合には、比較的粗い粒子を含有する
ことを特徴とするCWP中の粒子が粉砕され、構成粒子
の重量平均径が細かくなって流動性がなくなる。その結
果、ポンプで輸送できるようにするには、水分を多くす
る必要があった。
SUMMARY OF THE INVENTION In the above-mentioned conventional technique, in order to obtain a fluid CWP with a smaller amount of water, C
No consideration was given to controlling the kneading degree during WP production. Even if the amount of added water and the particle size distribution are adjusted as desired, a CWP having low water content and fluidity cannot be produced unless the degree of kneading is appropriate. That is,
When the kneading is insufficient, the coal particles and the water are in a non-homogeneous state in the manufactured CWP, and a portion having extremely poor fluidity and a portion having a large amount of water and easily separated are formed. Further, when kneading is performed more than necessary, the particles in the CWP, which are characterized by containing relatively coarse particles, are crushed, and the weight average diameter of the constituent particles becomes fine, resulting in no fluidity. As a result, it was necessary to increase the water content in order to be able to transport it with a pump.

【0006】また、ボイラの負荷変化運転では、各負荷
での燃料消費量に応じたCWPが製造される。すなわ
ち、混練機へ供給される粉砕炭、水等の原料の供給量が
負荷に応じて変化することになる。この場合、原料の配
合比率が設定通りであっても、混練機内での平均滞留時
間が変化するため、前述の混練の度合いを一定に維持で
きなかった。例えば、負荷を下げた場合には、混練機内
で必要以上に混練されて製造CWPの粘度が上昇すると
いう問題があった。
Further, in the load changing operation of the boiler, the CWP is manufactured according to the fuel consumption amount at each load. That is, the amount of raw materials such as crushed coal and water supplied to the kneader changes depending on the load. In this case, even if the blending ratio of the raw materials was set, the average kneading time in the kneader varied, so that the degree of kneading described above could not be maintained constant. For example, when the load is reduced, there is a problem that the viscosity of the manufactured CWP is increased by kneading more than necessary in the kneader.

【0007】本発明の課題は、CWP製造時の粉砕炭と
水あるいは粉砕炭と水と脱硫剤の混練度を制御して、よ
り少ない水分量で流動性を有するようにCWPを製造
し、高いプラント効率を維持することにある。
An object of the present invention is to control the kneading degree of crushed coal and water or crushed carbon and water and a desulfurizing agent at the time of CWP production, to produce CWP so as to have fluidity with a smaller amount of water, and To maintain plant efficiency.

【0008】[0008]

【課題を解決するための手段】本発明者らはCWP製造
時の混練方法について鋭意研究を重ねた結果、上記本発
明の課題が、粉砕炭と水あるいは粉砕炭と水と脱硫剤を
混練してCWPとする際に、CWPを構成する粒子のう
ち0.02mm以下の粒径を有する粒子の累積重量割合
の増加分が、混練前後で1〜5重量%の範囲となるよう
に混練機を運転することによって達成されることを知見
した。
As a result of intensive studies on the kneading method at the time of CWP production, the present inventors have found that the above-mentioned object of the present invention is to knead crushed coal and water or crushed carbon and water and a desulfurizing agent. When making the CWP, the kneading machine is used so that the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less among the particles forming the CWP is in the range of 1 to 5% by weight before and after the kneading. We have found that this can be achieved by driving.

【0009】また、上記本発明の課題は、CWPを製造
する装置において、混練機での消費動力を測定する手段
と、その測定値とCWPの製造量から求まるCWP量当
たりの混練エネルギー(kWh/トン−燃料)を演算
し、この演算値に基づいて混練機の回転数、混練機出口
ゲート弁の開度の少なくともいずれか一方を調節する制
御手段を有する混練装置によって達成される。この場
合、演算して得られる上記混練エネルギーが1〜5(k
Wh/トン−燃料)の範囲となるようにすることが望ま
しい。
Further, the above-mentioned object of the present invention is, in an apparatus for producing CWP, a means for measuring the power consumption in a kneading machine, and a kneading energy (kWh / kWh) per CWP amount obtained from the measured value and the production amount of CWP. Ton-fuel), and based on the calculated value, a kneading device having a control means for adjusting at least one of the rotation speed of the kneading machine and the opening degree of the kneading machine outlet gate valve is achieved. In this case, the kneading energy obtained by calculation is 1 to 5 (k
Wh / ton-fuel) is desirable.

【0010】混練機での消費動力を測定して上記混練機
の制御を行う手段の代わりに、製造するCWPの流動性
を測定し、その測定値と設定値との偏差を演算して制御
する手段、あるいは、ボイラ負荷変化指令を受信し、負
荷変化信号に基づいて混練エネルギーを演算して上記混
練機の制御を行う手段を備えた混練装置によっても、本
発明の上記課題を達成することができる。
Instead of the means for controlling the kneader by measuring the power consumption in the kneader, the fluidity of the CWP to be manufactured is measured, and the deviation between the measured value and the set value is calculated and controlled. Means, or, even by a kneading device provided with a means for receiving a boiler load change command and calculating the kneading energy based on the load change signal to control the kneader, the above-mentioned object of the present invention can be achieved. it can.

【0011】また、ボイラ負荷変化指令に基づいて、混
練して得られた石炭・水混合燃料を加圧流動層ボイラに
供給する燃料供給量を制御し、該燃料供給量に基づき燃
料を構成する粒子中の0.02mm以下の粒径を有する
粒子の累積重量割合の増加分が、混練前後で1〜5重量
%の範囲となるように加圧流動層ボイラを運転すること
もできる。
Further, based on the boiler load change command, the fuel supply amount for supplying the coal-water mixed fuel obtained by kneading to the pressurized fluidized bed boiler is controlled, and the fuel is constituted based on the fuel supply amount. The pressurized fluidized bed boiler may be operated so that the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less in the particles is in the range of 1 to 5% by weight before and after kneading.

【0012】本発明には上記したような加圧流動層ボイ
ラ用燃料製造方法と混練機とその運転方法および加圧流
動層ボイラとその運転方法が含まれる。
The present invention includes a method for producing a fuel for a pressurized fluidized bed boiler, a kneader, an operating method thereof, and a pressurized fluidized bed boiler and an operating method thereof as described above.

【0013】本発明は、CWPを製造するための粉砕炭
と水あるいは粉砕炭と水と脱硫剤の混練時に、原料の大
部分を占める石炭粒子を砕かないことに着目している。
本発明者らは、製造されるCWP中で石炭粒子と水が均
質な状態となり、なおかつ、製造されたCWPの粒度分
布を著しく変化させない適正な混練条件を実験的に明ら
かにした。CWPの混練の度合いを、CWPの単位重量
当たりに与える混練エネルギーE(kWh/トン−CW
P)で定義すると、E=1〜5kWh/トン−CWPの
範囲が上述の適正な混練条件である。
The present invention focuses on not crushing coal particles, which make up a large part of the raw material, when kneading crushed coal and water or crushed carbon and water and a desulfurizing agent for producing CWP.
The present inventors have experimentally clarified appropriate kneading conditions in which the coal particles and the water are in a homogeneous state in the manufactured CWP and the particle size distribution of the manufactured CWP is not significantly changed. Kneading energy E (kWh / ton-CW) that gives the degree of CWP kneading per unit weight of CWP
As defined in P), the range of E = 1 to 5 kWh / ton-CWP is the above-mentioned appropriate kneading condition.

【0014】上記の適正範囲でCWP原料を混練する場
合、混練前後の0.02mm以下の粒径を有する粒子の
累積重量割合の増加分は1〜5重量%の範囲である。
When the CWP raw material is kneaded in the above-mentioned appropriate range, the increment of the cumulative weight ratio of the particles having a particle diameter of 0.02 mm or less before and after the kneading is in the range of 1 to 5% by weight.

【0015】一方、混練エネルギーEが1kWh/トン
−CWP以下では、製造したCWPに流動性に乏しい部
分と、水分が多く分離しやすい部分ができた。また、混
練エネルギーEが5kWh/トン−CWP以上で混練し
た場合では、混練前後の0.02mm以下の粒径を有す
る粒子の累積重量割合の増加分は5重量%を超え、CW
Pを構成する粒子の重量平均径が細かくなって流動性が
なくなった。
On the other hand, when the kneading energy E was 1 kWh / ton-CWP or less, the produced CWP had a portion having poor fluidity and a portion having a large amount of water and easily separated. When the kneading energy E is 5 kWh / ton-CWP or more, the cumulative weight percentage increase of particles having a particle size of 0.02 mm or less before and after kneading exceeds 5% by weight,
The weight average diameter of the particles constituting P became fine and the fluidity was lost.

【0016】上記したCWPの単位重量当たりに与える
混練エネルギーEは、混練時の消費動力P(kW)をC
WP製造量、すなわち混練機に供給される原料量の総和
Q(トン/h)で除した値として、(1)式で表わせ
る。 E(kWh/トン−CWP)=P(kW)/Q(トン/h) (1) つまり、混練エネルギーEが適正範囲を満足するように
混練機を制御する具体的な方法として、プラントの運転
条件として設定された原料量の総和Qに応じて混練エネ
ルギーEが適正範囲を満足するように消費動力Pを操作
すればよい。消費動力Pを変化させるには、混練機回転
数もしくは混練機内に滞留するCWP量を調節すればよ
い。例えば、消費動力Pを増加させるには、混練機回転
数を上昇させるか、または混練機内に滞留するCWP量
を増加させることによって上記本発明の課題を達成でき
る。
The kneading energy E given per unit weight of the CWP is the power consumption P (kW) at the time of kneading to C
The WP production amount, that is, a value obtained by dividing the total amount Q (ton / h) of the raw material amount supplied to the kneader can be expressed by the equation (1). E (kWh / ton-CWP) = P (kW) / Q (ton / h) (1) That is, as a concrete method of controlling the kneading machine so that the kneading energy E satisfies an appropriate range, the plant operation is performed. The consumed power P may be manipulated so that the kneading energy E satisfies an appropriate range according to the total amount Q of raw materials set as a condition. In order to change the power consumption P, the kneader rotation speed or the amount of CWP retained in the kneader may be adjusted. For example, in order to increase the power consumption P, the above-described object of the present invention can be achieved by increasing the rotation speed of the kneading machine or increasing the amount of CWP retained in the kneading machine.

【0017】[0017]

【発明の実施の形態】次に本発明を実施の形態を詳細に
説明する。図1は本発明を実施するのに好適なCWP製
造装置、供給装置及び燃焼装置の系統図である。原炭バ
ンカ1内の原炭Aはフィーダ21より粗粉砕機2へ供給
され、ここで粉砕された後、粉砕炭ホッパー3に送られ
る。この粉砕炭Bの一部は、フィーダ22により導管3
1を通って微粉砕機5に供給され、残りはモータ42で
駆動するフィーダ23により導管34を通って混練機6
に供給される。粉砕炭Bは、微粉砕機5で導管32より
供給される所定量の水Dとともに湿式粉砕され微粉炭ス
ラリとなる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. FIG. 1 is a system diagram of a CWP manufacturing apparatus, a supply apparatus, and a combustion apparatus suitable for implementing the present invention. The raw coal A in the raw coal bunker 1 is supplied from a feeder 21 to a coarse crusher 2, where it is crushed and then sent to a crushed coal hopper 3. A part of the crushed charcoal B is supplied to the conduit 3 by the feeder 22.
1 is supplied to the fine pulverizer 5 and the rest is fed by a feeder 23 driven by a motor 42 through a conduit 34 to a kneader 6
Supplied to The pulverized coal B is wet pulverized together with a predetermined amount of water D supplied from the conduit 32 in the pulverizer 5 to form a pulverized coal slurry.

【0018】この微粉炭スラリは、ポンプ9により導管
33を通って混練機6へ供給される。石灰石バンカー4
内の石灰石Cはモータ41で駆動するフィーダ24によ
り導管35を通って、また、水Dはコントロ−ル弁10
で注水量が調節された後、導管36を通って混練機6へ
供給される。
The pulverized coal slurry is supplied to the kneader 6 through the conduit 33 by the pump 9. Limestone bunker 4
The limestone C in the inside passes through the conduit 35 by the feeder 24 driven by the motor 41, and the water D flows in the control valve 10.
After the amount of water injected is adjusted by, the water is supplied to the kneading machine 6 through the conduit 36.

【0019】上記の粉砕炭B、微粉炭スラリ、石灰石C
及び水Dの各原料は、混練機6において混練機モータ1
1で駆動する回転翼14によって撹拌、混合された後、
所定の水分及び粒度分布を有するCWPが製造される。
混練機6の出口部16には、ゲート弁開閉用モータ19
で駆動する混練機出口ゲート弁15が設けられ、混練条
件によってその開度が調節される。以上のようにして製
造されたCWPは、CWPタンク7に投入される。
Crushed coal B, pulverized coal slurry, limestone C described above
The raw materials of water and water D are mixed in the kneader 6 in the kneader motor 1
After being stirred and mixed by the rotary blade 14 driven by 1,
A CWP with a given moisture and particle size distribution is produced.
A gate valve opening / closing motor 19 is provided at the outlet 16 of the kneading machine 6.
A kneading machine outlet gate valve 15 driven by is provided and its opening is adjusted according to kneading conditions. The CWP manufactured as described above is put into the CWP tank 7.

【0020】一方、加圧流動層燃焼炉(以下、火炉と略
す)101は圧力容器104内に収納されている。火炉
101の底部に空気分散板105が設けられ、その上に
流動媒体粒子102が充填されている。加圧空気106
は圧力容器104内に供給された後、燃焼用空気107
として空気分散板105を通って火炉101内に供給さ
れ、流動媒体粒子102を流動化して流動層109を形
成する。
On the other hand, a pressurized fluidized bed combustion furnace (hereinafter abbreviated as a furnace) 101 is housed in a pressure vessel 104. An air dispersion plate 105 is provided at the bottom of the furnace 101, and fluid medium particles 102 are filled on the air dispersion plate 105. Pressurized air 106
After being supplied into the pressure vessel 104, the combustion air 107
Is supplied into the furnace 101 through the air dispersion plate 105 to fluidize the fluidized medium particles 102 to form a fluidized bed 109.

【0021】火炉101にはCWPが供給導管37を通
してCWPポンプ8によって圧送され、噴霧ノズル17
から流動層109内に供給されて燃焼される。燃焼ガス
は流動層109上部の空間部(フリーボード)110を
経て排出され、サイクロン103でダストを除去後、導
管108を通って図示されていないガスタービンに導入
される。
CWP is pumped to the furnace 101 through the supply conduit 37 by the CWP pump 8, and the spray nozzle 17
Is supplied to the inside of the fluidized bed 109 and burned. The combustion gas is discharged through a space (freeboard) 110 above the fluidized bed 109, dust is removed by the cyclone 103, and then introduced into a gas turbine (not shown) through the conduit 108.

【0022】粗粉砕機2は最大径が約50mmの原炭を
重量平均径約2mmの粒度まで粉砕できるように条件設
定される。原炭Aの粉砕には、所定の粒度まで粉砕でき
る粉砕機であればどのような種類のものを用いても良
い。粗粉砕機2の後流には分級機(図示せず)を設置し
て粉砕炭の最大粒子径を調節することもできる。
The coarse crusher 2 is set so that raw coal having a maximum diameter of about 50 mm can be crushed to a particle size of a weight average diameter of about 2 mm. For crushing the raw coal A, any kind of crusher may be used as long as it can crush to a predetermined particle size. A classifier (not shown) may be installed downstream of the coarse crusher 2 to adjust the maximum particle size of the crushed coal.

【0023】粉砕炭ホッパー3内の粉砕炭Bはフィーダ
22、23の回転数の調節によって、微粉砕機5と混練
機6へ所定の割合で分配される。分配の比率は石炭性状
に応じて設定される。通常、粉砕炭Bの内20〜30重
量%程度が微粉砕機5へ供給、湿式粉砕され、微粉炭ス
ラリとして混練機6内で粉砕炭Bと混合され、CWPと
して最適な粒度分布に調整される。
The crushed carbon B in the crushed carbon hopper 3 is distributed to the fine crusher 5 and the kneader 6 at a predetermined ratio by adjusting the number of rotations of the feeders 22 and 23. The distribution ratio is set according to the coal properties. Usually, about 20 to 30% by weight of the pulverized coal B is supplied to the fine pulverizer 5 and wet pulverized, mixed with the pulverized coal B in the kneader 6 as a pulverized coal slurry, and adjusted to an optimum particle size distribution as CWP. It

【0024】一方、CWP中の水分量は、微粉砕機5及
び混練機6に供給される水Dの供給量で調整される。こ
のように、炭種に応じて設定される各原料の配合割合を
維持しながらCWPが製造される。
On the other hand, the amount of water in CWP is adjusted by the amount of water D supplied to the fine pulverizer 5 and the kneader 6. In this way, CWP is manufactured while maintaining the blending ratio of each raw material set according to the coal type.

【0025】ここで、CWPが製造される混練機6周辺
の相互関係を詳細に説明する。混練機6内の回転翼14
を駆動する混練機モータ11に動力測定装置12が設け
られる。動力測定装置12での動力測定は電力計を用い
ても、あるいは回転軸が受けるトルクと軸回転数から算
出する方法でもよい。測定されたCWP混練時の消費動
力は制御装置13に出力される。さらに、フィーダ23
を駆動するモータ42、フィーダ24を駆動するモータ
41、CWPポンプ9及び注水コントロール弁10よ
り、各原料の供給量に相当する信号が原料総和演算器4
0に出力される。原料総和演算器40で演算された各原
料の供給量の総和Q(CWP製造量と等量)は制御装置
13に出力される。
Here, the mutual relationship around the kneading machine 6 for manufacturing the CWP will be described in detail. Rotor blades 14 in the kneading machine 6
A kneading machine motor 11 for driving the machine is provided with a power measuring device 12. The power measurement by the power measurement device 12 may be performed by using a power meter or a method of calculating from the torque received by the rotating shaft and the shaft rotation speed. The measured power consumption during CWP kneading is output to the controller 13. Furthermore, the feeder 23
A signal corresponding to the supply amount of each raw material from the motor 42 for driving the motor, the motor 41 for driving the feeder 24, the CWP pump 9 and the water injection control valve 10 is supplied to the raw material summation calculator 4
Output to 0. The total sum Q (equivalent to the CWP production amount) of the supply amount of each raw material calculated by the total raw material calculator 40 is output to the control device 13.

【0026】制御装置13では、(1)式で定義される
単位CWP量当たりの混練エネルギーEが計算される。
この計算値Eが適正範囲を満足するように、混練機モー
タ11へ制御信号が出力されて混練機6の回転数を変化
させる。
The controller 13 calculates the kneading energy E per unit CWP amount defined by the equation (1).
A control signal is output to the kneading machine motor 11 to change the rotation speed of the kneading machine 6 so that the calculated value E satisfies the appropriate range.

【0027】上記の装置において、脱硫剤としては最大
径3mm程度のドロマイトあるいは石灰石Cの粒子が用
いられる。図1の混練機6及び回転翼14は模式的に示
したもので本発明は図示のものに限定されない。
In the above apparatus, particles of dolomite or limestone C having a maximum diameter of about 3 mm are used as the desulfurizing agent. The kneading machine 6 and the rotary blades 14 in FIG. 1 are schematically shown, and the present invention is not limited to the illustrated ones.

【0028】[0028]

【実施例】以下、実施例により本発明を詳細に説明す
る。 実施例1 図1に示した設備を用いて豪州炭(恒湿水分=3%、燃
料比=1.5)のCWPを製造した。図2はこのときの
混練機の運転トレンドチャートである。トレンドbに示
すように、混練機6に供給する原料の総量Q(トン/時
間)はー定で、ほぼ設定値通りに制御した。ところが、
この場合はCWPの単位重量当たりの混練エネルギーE
(kWh/トン−CWP)は、トレンドaに示すように
目標値に対して高めに推移した。そこで、時刻tl、t2
の時点で混練機6の回転数(rpm)を段階的に制御し
(トレンドd)、それにともない混練動力(kW)を低
下させた(トレンドc)。
The present invention will be described in detail below with reference to examples. Example 1 A CWP of Australian coal (constant humidity water = 3%, fuel ratio = 1.5) was manufactured using the equipment shown in FIG. FIG. 2 is an operation trend chart of the kneading machine at this time. As shown in the trend b, the total amount Q (tons / hour) of the raw materials supplied to the kneading machine 6 is a constant value, and is controlled almost as set value. However,
In this case, kneading energy E per unit weight of CWP
(KWh / ton-CWP) remained higher than the target value as shown by trend a. Therefore, at times t l and t 2
At that time, the rotation speed (rpm) of the kneading machine 6 was controlled stepwise (trend d), and the kneading power (kW) was reduced accordingly (trend c).

【0029】その結果、トレンドaで示す混練エネルギ
ーEが目標値を満足した。本実施例での運転では、トレ
ンドeに示すように混練機出口ゲート弁15の開度
(%)を一定とした。
As a result, the kneading energy E shown in trend a satisfied the target value. In the operation of this example, the opening degree (%) of the kneading machine outlet gate valve 15 was kept constant, as indicated by the trend e.

【0030】ここで、目標値として設定した混練度の指
標、CWPの単位重量当たりに与える混練エネルギーE
は実験的に明らかにしたものである。実験データに基づ
いて混練エネルギーEの適正範囲を知見するに至った内
容を説明する。
Here, an index of kneading degree set as a target value, kneading energy E given per unit weight of CWP
Is experimentally clarified. The content that led to the finding of the proper range of the kneading energy E based on the experimental data will be described.

【0031】図3に混練時の回転翼14の翼回転数を変
化させて製造した各種CWPの粒度分布を示す。混練エ
ネルギーEが大きくなるほど微粒子分が増加して累積重
量割合が50重量%に相当する粒子径(重量平均径)が
小さくなることが分かる。
FIG. 3 shows the particle size distribution of various CWPs produced by changing the blade rotation speed of the rotor blade 14 during kneading. It can be seen that as the kneading energy E increases, the fine particle content increases and the particle diameter (weight average diameter) corresponding to a cumulative weight ratio of 50% decreases.

【0032】表1に、このときの混練エネルギーEの変
化にともなうCWPの粒度分布の変化をまとめた。
Table 1 summarizes the changes in the particle size distribution of CWP with changes in the kneading energy E at this time.

【表1】 [Table 1]

【0033】CWPの微粒子分を0.02mm以下の粒
径を有する粒子の累積重量割合で表し、混練前後の0.
02mm以下の粒径を有する粒子の累積重量割合の増加
分(wt%)及び重量平均径(mm)を併記した。ま
た、製造したCWPの粘度(Pa・s)も示した。
The fine particle content of CWP is expressed by the cumulative weight ratio of particles having a particle size of 0.02 mm or less, and is 0.
The increment (wt%) of the cumulative weight ratio of particles having a particle diameter of 02 mm or less and the weight average diameter (mm) are also shown. The viscosity (Pa · s) of the manufactured CWP is also shown.

【0034】混練前の初期状態(E=0)に対して、混
練エネルギーE=0.5kWh/トンでは0.02mm
以下の粒径を有する粒子の累積重量割合及び重量平均径
はほとんど変化しないが、CWP粘度が異常に高い。こ
れは、混練が不足しているためである。一方、混練エネ
ルギーEを5kWh/トンを超えて10kWh/トンま
で増大させると、0.02mm以下の粒径を有する粒子
の累積重量割合の初期値に対する増加分は12重量%に
達し、重量平均径は0.6mmまで小さくなる。その結
果、CWP粘度は著しく増加する。
With respect to the initial state before kneading (E = 0), 0.02 mm at kneading energy E = 0.5 kWh / ton.
The cumulative weight percentage and the weight average diameter of particles having the following particle diameters hardly change, but the CWP viscosity is abnormally high. This is because the kneading is insufficient. On the other hand, when the kneading energy E is increased from more than 5 kWh / ton to 10 kWh / ton, the increment of the cumulative weight ratio of particles having a particle diameter of 0.02 mm or less with respect to the initial value reaches 12% by weight, and the weight average diameter Becomes as small as 0.6 mm. As a result, the CWP viscosity increases significantly.

【0035】図4は、CWP水分とCWP粘度の関係を
示した説明図である。CWP水分が減少すれば、CWP
粘度は増加する。ポンプ輸送ができない粘度領域(20
Pa・s以上)に入らないように、通常の運転では7〜
l0Pa・sの範囲を目標粘度に設定する。また、CW
Pを構成する粒子の重量平均径が小さくなると、CWP
水分が一定の条件でCWP粘度が増加する。この場合、
上述した目標粘度範囲を満足させるためには、CWP水
分を増加させる必要が生じる。
FIG. 4 is an explanatory diagram showing the relationship between CWP water content and CWP viscosity. CWP If the water content decreases, CWP
The viscosity increases. Viscosity range where pumping is not possible (20
7) in normal operation so that
The target viscosity is set in the range of 10 Pa · s. Also, CW
When the weight average diameter of the particles constituting P becomes small, CWP
The CWP viscosity increases under a constant water content. in this case,
In order to satisfy the above-mentioned target viscosity range, it is necessary to increase the CWP water content.

【0036】図5は、図4、表1で示した実験データを
混練エネルギーE(kWh/トン−CWP)とCWP水
分の関係として整理したものである。ここで、CWP粘
度は一定の条件で比較した。CWP水分が増加しない混
練エネルギーE=1〜5kWh/トン−CWPの範囲
が、加圧流動層ボイラ用燃料を製造するのに適正な混練
条件であることがわかる。表1から、この範囲では混練
前後での0.02mm以下の粒径を有する粒子の累積重
量割合の増加分が1〜5重量%の範囲にあることがわか
る。
FIG. 5 shows the experimental data shown in FIG. 4 and Table 1 as a relationship between the kneading energy E (kWh / ton-CWP) and the CWP water content. Here, the CWP viscosities were compared under constant conditions. It is understood that the range of kneading energy E = 1 to 5 kWh / ton-CWP in which the CWP water content does not increase is the proper kneading condition for producing the fuel for the pressurized fluidized bed boiler. From Table 1, it can be seen that in this range, the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less before and after kneading is in the range of 1 to 5% by weight.

【0037】以上の検討から、CWPを構成する粒子の
0.02mm以下の粒径を有する粒子の累積重量割合の
増加分が、混練前後で1〜5重量%の範囲となるように
混練機6を運転することによって、より少ない水分量で
流動性を有するCWPを得ることが可能となる。
From the above examination, the kneading machine 6 is used so that the increment of the cumulative weight ratio of the particles constituting the CWP having a particle diameter of 0.02 mm or less is within the range of 1 to 5% by weight before and after the kneading. It becomes possible to obtain a CWP having fluidity with a smaller amount of water by operating.

【0038】実施例2 図6に本実施例の系統図を示す。なお、図6において図
1と同一機能を奏する部材には同一番号を付して、その
説明は省略する。図6はCWP混練度の制御を混練機6
の回転数でなく、混練機出口ゲート弁15の開度とした
場合の構成である。また、本実施例ではボイラの負荷指
令を直接制御装置13に出力してCWP製造量を演算
し、測定している混練機6の動力値から混練エネルギー
Eを計算させた。
Embodiment 2 FIG. 6 shows a system diagram of this embodiment. In FIG. 6, members having the same functions as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. FIG. 6 shows the control of the CWP kneading degree by the kneading machine 6
It is a configuration when the opening degree of the kneading machine outlet gate valve 15 is used instead of the rotation speed of. Further, in the present embodiment, the load command of the boiler is directly output to the control device 13 to calculate the CWP production amount, and the kneading energy E is calculated from the measured power value of the kneading machine 6.

【0039】制御装置13から混練機出口ゲート弁15
を駆動するゲート弁開閉用モータ19へ制御信号が出力
され、計算された混練エネルギーEが一定範囲となるよ
うに混練機出口ゲート弁15の開度を変化させる。その
結果、より少ない水分量で流動性を確保する混練機6の
運転が可能となる。
From the controller 13 to the kneading machine outlet gate valve 15
A control signal is output to the gate valve opening / closing motor 19 that drives the kneading machine outlet gate valve 15 so that the calculated kneading energy E falls within a certain range. As a result, it becomes possible to operate the kneading machine 6 which secures fluidity with a smaller amount of water.

【0040】実施例3 図7に本実施例の系統図を示す。なお、図7において図
1と同一機能を奏する部材には同一番号を付して、その
説明は省略する。図7は混練機6で製造されるCWPの
粘度を、混練機出口部16に設置した粘度計測装置18
で測定し、その値に基づいて混練機モータ11の回転
数、もしくは混練機出口ゲート弁15を操作する場合の
構成である。図7に示した設備を用いて豪州炭(恒湿水
分=3%、燃料比=1.5)のCWPを製造した。
Embodiment 3 FIG. 7 shows a system diagram of this embodiment. In FIG. 7, members having the same functions as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. FIG. 7 shows the viscosity of a CWP produced by the kneading machine 6, a viscosity measuring device 18 installed at the kneading machine outlet 16.
In the configuration, the rotation speed of the kneading machine motor 11 or the kneading machine outlet gate valve 15 is operated based on the measured value. CWP of Australian coal (constant humidity water = 3%, fuel ratio = 1.5) was manufactured using the equipment shown in FIG.

【0041】図8は、このときの混練機6の運転トレン
ドチャートである。ここでは示していないが、混練機6
に供給する原料の総量Qはほぼ設定値通りに制御されて
いる。ところが、トレンドfに示すように、製造CWP
の粘度が目標値よりも高い値で推移した。そこで、時刻
3、t4及びt5の時点で混練機6の回転数を段階的に
制御し(トレンドg)、それにともない混練動力を低下
させた。その結果、トレンドfで示すCWP粘度の計測
値が目標値を満足した。
FIG. 8 is an operation trend chart of the kneading machine 6 at this time. Although not shown here, the kneading machine 6
The total amount Q of the raw material supplied to is controlled almost as set value. However, as shown in trend f, manufacturing CWP
The viscosity of the sample remained higher than the target value. Therefore, the rotational speed of the kneading machine 6 was controlled stepwise (trend g) at times t 3 , t 4 and t 5 , and the kneading power was reduced accordingly. As a result, the measured CWP viscosity indicated by trend f satisfied the target value.

【0042】実施例4 図7に示した設備を用いて豪州炭(恒湿水分=3%、燃
料比=1.5)のCWPを製造した。図9は、このとき
の混練機6の運転トレンドチャートであり、混練機出口
ゲート弁15の開度を調節してCWP粘度を制御する場
合である。混練機6に供給する原料の総量Qは一定で、
ほぼ設定値通りに制御されている。ところが、トレンド
hに示すように、製造CWPの粘度が目標値よりも高い
値で推移した。そこで,時刻t6及びt7の時点で混練機
出口ゲート弁15の開度を段階的に調節し(トレンド
j)、それにともない混練機6内でのCWP滞留時間を
低下させた(トレンドi)。その結果、トレンドhで示
すように時刻t7以降ではCWP粘度の計測値が目標値
を満足した。
Example 4 A CWP of Australian coal (constant humidity water = 3%, fuel ratio = 1.5) was manufactured using the equipment shown in FIG. FIG. 9 is an operation trend chart of the kneading machine 6 at this time, and shows a case where the opening degree of the kneading machine outlet gate valve 15 is adjusted to control the CWP viscosity. The total amount Q of raw materials supplied to the kneading machine 6 is constant,
It is controlled almost according to the set value. However, as indicated by trend h, the viscosity of the manufactured CWP remained higher than the target value. Therefore, at times t 6 and t 7 , the opening degree of the kneading machine outlet gate valve 15 is adjusted stepwise (trend j), and the CWP residence time in the kneading machine 6 is reduced accordingly (trend i). . As a result, the measurement value of the CWP viscosity at time t 7 after as shown by the trend h has satisfied the target value.

【0043】実施例5 図10は、ボイラ負荷の変化に対応して混練機6の運転
条件を変化させた場合の運転トレンドチャートである。
時刻t8でボイラ負荷100%から70%に、時刻t9
70%から50%に負荷低下指令が出力される(卜レン
ドk)。これに対応して、CWP製造設備では火炉10
1ヘのCWP供給量(トレンドl)、CWP製造量(ト
レンドm)、混練機6へ供給する原料の総量(トレンド
o)を順次低下させる。
Example 5 FIG. 10 is an operation trend chart when the operating conditions of the kneading machine 6 are changed in response to changes in the boiler load.
To 70% boiler load of 100% at time t 8, the load reduction instruction from 70% at time t 9 to 50% are output (Bok trend k). In response to this, in the CWP manufacturing facility, the furnace 10
The CWP supply amount (trend 1), the CWP production amount (trend m), and the total amount of raw materials supplied to the kneading machine 6 (trend o) are sequentially decreased.

【0044】混練機6の回転数を低下させずに混練機6
の運転を継続していた(トレンドq)従来の方法に対し
て、本発明法ではトレンドpに示されるようにボイラ負
荷に応じて混練機6の回転数を変化させたので、必要か
つ十分な混練がおこなわれた。
The kneading machine 6 without decreasing the rotation speed of the kneading machine 6
In contrast to the conventional method in which the operation of No. 1 was continued (trend q), in the method of the present invention, the rotation speed of the kneading machine 6 was changed according to the boiler load as shown by trend p, so that it was necessary and sufficient. Kneading was done.

【0045】実施例6 図11に本実施例の系統図を示す。なお、図11におい
て図1と同一機能を奏する部材には同一番号を付して、
その説明は省略する。図11は、ボイラの負荷指令に対
応して、制御装置13に直接負荷指令を出力するか、あ
るいはCWPポンプ制御器20に一旦負荷指令を出力
し、CWPポンプ8から導管37を通して輸送されるC
WPの供給量を制御した後に、CWPポンプ8の制御値
をCWPポンプ制御器20から制御装置13へ出力する
か少なくともいずれか一方の方法で混練機6を運転した
例である。混練装置13では、混練エネルギーEが演算
され、その値が1〜5kWh/トンーCWPに入るよう
に混練機6の回転数を制御する。
Embodiment 6 FIG. 11 shows a system diagram of this embodiment. In addition, in FIG. 11, members having the same functions as those in FIG.
The description is omitted. In FIG. 11, in response to the load command of the boiler, the load command is directly output to the control device 13, or the load command is once output to the CWP pump controller 20, and then the CWP pump 8 transports the load command through the conduit 37.
This is an example in which the kneader 6 is operated by at least one of outputting the control value of the CWP pump 8 from the CWP pump controller 20 to the controller 13 after controlling the supply amount of WP. In the kneading device 13, the kneading energy E is calculated, and the rotation speed of the kneading machine 6 is controlled so that the value falls within the range of 1 to 5 kWh / ton-CWP.

【0046】以上説明したごとく本発明によればCWP
をより少ない水分量で安定して供給でき、高いプラント
効率を維持できる。特に、プラントの負荷変化時におい
て極めて性状の安定したCWPを製造できる。
As described above, according to the present invention, the CWP
Can be stably supplied with a smaller amount of water, and high plant efficiency can be maintained. In particular, it is possible to manufacture a CWP having extremely stable properties when the load on the plant changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】 本発明の一実施例における混練機運転のトレ
ンドチャートである。
FIG. 2 is a trend chart of kneading machine operation in one embodiment of the present invention.

【図3】 本発明の各種混練機の回転数(混練エネルギ
ー)におけるCWPの粒径と累積重量割合の関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between the particle size of CWP and the cumulative weight ratio with respect to the rotation speed (kneading energy) of various kneading machines of the present invention.

【図4】 本発明のCWP水分とCWP粘度の関係を示
す図である。
FIG. 4 is a diagram showing a relationship between CWP water content and CWP viscosity of the present invention.

【図5】 本発明の混練エネルギーとCWP水分の関係
を示す図である。
FIG. 5 is a diagram showing the relationship between kneading energy and CWP water content of the present invention.

【図6】 本発明の一実施例の系統図である。FIG. 6 is a system diagram of an embodiment of the present invention.

【図7】 本発明の一実施例の系統図である。FIG. 7 is a system diagram of an embodiment of the present invention.

【図8】 本発明の一実施例における混練機運転のトレ
ンドチャートである。
FIG. 8 is a trend chart of kneading machine operation in one example of the present invention.

【図9】 本発明の一実施例における混練機運転のトレ
ンドチャートである。
FIG. 9 is a trend chart of kneading machine operation in one example of the present invention.

【図10】 本発明の一実施例における混練機運転のト
レンドチャートである。
FIG. 10 is a trend chart of kneading machine operation in one embodiment of the present invention.

【図11】 本発明の一実施例の系統図である。FIG. 11 is a system diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 原炭バンカ 2 粗粉砕機 3 粉砕炭ホッパー 4 石灰石バンカ 5 微粉砕機 6 混練機 7 CWPタンク 8 CWPポンプ 9 微粉炭スラリポンプ 10 コントロー
ル弁 12 動力測定装置 13 制御装置 14 回転翼 15 混練機出口
ゲート弁 17 噴霧ノズル 18 粘度計測装
置 19 ゲート弁開閉用モータ 40 原料総和演
算器 101 加圧流動層燃焼炉 102 流動媒体
粒子 104 圧力容器 105 空気分散
板 A 原炭 B 粉砕炭 C 石灰石 D 水
1 Raw coal bunker 2 Coarse crusher 3 Crushed coal hopper 4 Limestone bunker 5 Fine crusher 6 Kneader 7 CWP tank 8 CWP pump 9 Pulverized coal slurry pump 10 Control valve 12 Power measuring device 13 Controller 14 Rotor blade 15 Kneader outlet Gate valve 17 Spray nozzle 18 Viscosity measuring device 19 Gate valve opening / closing motor 40 Raw material summation calculator 101 Pressurized fluidized bed combustion furnace 102 Fluid medium particle 104 Pressure vessel 105 Air dispersion plate A Raw coal B Crushed carbon C Limestone D Water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝田 康常 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasutsune Katsuta 3-36 Takaracho, Kure City, Hiroshima Prefecture Babcock-Hitachi Kure Research Institute

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 粉砕炭と水あるいは粉砕炭と水と脱硫剤
を混練して石炭・水混合燃料とした後に、加圧流動層ボ
イラに供給する加圧流動層ボイラ燃料製造方法におい
て、 該燃料を構成する粒子中の0.02mm以下の粒径を有
する粒子の累積重量割合の増加分が、混練前後で1〜5
重量%の範囲となるようにして加圧流動層ボイラ用燃料
を製造する方法。
1. A method for producing a pressurized fluidized bed boiler fuel, comprising kneading pulverized coal and water, or pulverized coal and water and a desulfurizing agent to prepare a coal / water mixed fuel, which is then supplied to a pressurized fluidized bed boiler. The increase in the cumulative weight ratio of the particles having a particle size of 0.02 mm or less in the particles constituting the
A method for producing a fuel for a pressurized fluidized bed boiler such that the content of the fuel is in the range of% by weight.
【請求項2】 混練機において粉砕炭と水あるいは粉砕
炭と水と脱硫剤を混練機で混練して石炭・水混合燃料と
した後、該燃料を加圧流動層ボイラに供給する方法にお
いて、 該燃料を構成する粒子中の0.02mm以下の粒径を有
する粒子の累積重量割合の増加分が、混練前後で1〜5
重量%の範囲となるように混練機を運転することを特徴
とする混練機運転方法。
2. A method in which crushed coal and water or crushed carbon and water and a desulfurizing agent are kneaded in a kneader to obtain a coal / water mixed fuel, and the fuel is supplied to a pressurized fluidized bed boiler, An increase in the cumulative weight ratio of particles having a particle diameter of 0.02 mm or less among the particles constituting the fuel is 1 to 5 before and after kneading.
A method for operating a kneading machine, which comprises operating the kneading machine so that the content of the kneading machine is in the range of% by weight.
【請求項3】 混練機の撹拌翼の回転数、混練機出口に
設けられたゲート弁の開度の少なくともいずれか一方を
調節して、燃料を構成する粒子中の0.02mm以下の
粒径を有する粒子の累積重量割合の増加分が、混練前後
で1〜5重量%の範囲となるようにすることを特徴とす
る請求項2記載の混練機運転方法。
3. A particle diameter of 0.02 mm or less among particles forming fuel by adjusting at least one of the number of revolutions of a stirring blade of the kneader and the opening degree of a gate valve provided at the kneader outlet. 3. The method for operating a kneading machine according to claim 2, wherein the increase in the cumulative weight ratio of the particles having the above is set in a range of 1 to 5% by weight before and after the kneading.
【請求項4】 混練機での消費動力測定値を石炭・水混
合燃料の製造量で除した値である単位燃料量当たりの混
練エネルギー(kWh/トン−燃料)に基づいて、燃料
を構成する粒子中の0.02mm以下の粒径を有する粒
子の累積重量割合の増加分が、混練前後で1〜5重量%
の範囲となるようにすることを特徴とする請求項3記載
の混練機運転方法。
4. The fuel is constituted based on the kneading energy per unit amount of fuel (kWh / ton-fuel) which is a value obtained by dividing the measured power consumption in the kneading machine by the production amount of the coal / water mixed fuel. The increase in the cumulative weight ratio of particles having a particle size of 0.02 mm or less in the particles is 1 to 5% by weight before and after kneading.
The method of operating a kneading machine according to claim 3, characterized in that
【請求項5】 単位石炭・水混合燃料量当たりの混練エ
ネルギーが、1〜5kWh/トン−燃料となるように制
御することを特徴とする請求項4記載の混練機運転方
法。
5. The kneading machine operating method according to claim 4, wherein the kneading energy per unit coal / water mixed fuel amount is controlled to be 1 to 5 kWh / ton-fuel.
【請求項6】 石炭・水混合燃料の流動性の測定値と設
定値との偏差に基づいて、燃料を構成する粒子中の0.
02mm以下の粒径を有する粒子の累積重量割合の増加
分が、混練前後で1〜5重量%の範囲となるようにする
ことを特徴とする請求項3記載の混練機運転方法。
6. Based on the deviation between the measured value and the set value of the fluidity of the coal-water mixed fuel, the 0.
4. The kneading machine operating method according to claim 3, wherein the increment of the cumulative weight ratio of particles having a particle diameter of 02 mm or less is set to be in the range of 1 to 5% by weight before and after kneading.
【請求項7】 ボイラ負荷変化指令に基づいて、燃料を
構成する粒子中の0.02mm以下の粒径を有する粒子
の累積重量割合の増加分が、混練前後で1〜5重量%の
範囲となるようにすることを特徴とする請求項3記載の
混練機運転方法。
7. Based on the boiler load change command, the increment of the cumulative weight ratio of particles having a particle diameter of 0.02 mm or less among the particles constituting the fuel is in the range of 1 to 5% by weight before and after kneading. The method of operating a kneader according to claim 3, wherein
【請求項8】 粉砕炭と水あるいは粉砕炭と水と脱硫剤
を混練して石炭・水混合燃料とした後に、加圧流動層ボ
イラに供給する加圧流動層ボイラの運転方法において、 ボイラ負荷変化指令に基づいて、混練して得られた石炭
・水混合燃料を加圧流動層ボイラに供給する燃料供給量
を制御し、該燃料供給量に基づき燃料を構成する粒子中
の0.02mm以下の粒径を有する粒子の累積重量割合
の増加分が、混練前後で1〜5重量%の範囲となるよう
にすることを特徴とする加圧流動層ボイラの運転方法。
8. A method for operating a pressurized fluidized bed boiler, which comprises supplying the pressurized fluidized bed boiler after kneading the pulverized coal and water or the pulverized coal and water and a desulfurizing agent to obtain a coal / water mixed fuel, and then loading the boiler load. Based on the change command, the fuel supply amount for supplying the coal-water mixed fuel obtained by kneading to the pressurized fluidized bed boiler is controlled, and 0.02 mm or less in particles forming the fuel based on the fuel supply amount. The method for operating a pressurized fluidized bed boiler, wherein the increment of the cumulative weight ratio of particles having the particle size of is set to be in the range of 1 to 5% by weight before and after kneading.
【請求項9】 粉砕炭と水あるいは粉砕炭と水と脱硫剤
を混練して石炭・水混合燃料とする際に用いる加圧流動
層ボイラ用燃料製造用混練機において、 混練機内部に設けられた前記粉砕炭と水あるいは粉砕炭
と水と脱硫剤を混練するための撹拌翼の回転数、混練機
出口に設けられたゲート弁の開度の少なくともいずれか
一方を調節して、燃料を構成する粒子中の0.02mm
以下の粒径を有する粒子の累積重量割合の増加分が、混
練前後で1〜5重量%の範囲となるようにする混練機の
混練度を制御する制御手段を有することを特徴とする加
圧流動層ボイラ用燃料製造用混練機。
9. A kneader for producing fuel for a pressurized fluidized bed boiler, which is used when kneading crushed coal and water or crushed coal and water and a desulfurizing agent to prepare a coal-water mixed fuel, which is provided inside the kneader. The fuel is constituted by adjusting at least one of the rotational speed of the stirring blade for kneading the crushed coal and water or the crushed carbon and water and the desulfurizing agent, and the opening degree of the gate valve provided at the kneader outlet. 0.02 mm in particles
Pressurization characterized by having a control means for controlling the kneading degree of the kneader so that the increment of the cumulative weight ratio of the particles having the following particle diameters is in the range of 1 to 5% by weight before and after kneading. Kneader for fuel production for fluidized bed boiler.
【請求項10】 混練機での消費動力を測定する手段
と、該手段で測定される消費動力測定値を石炭・水混合
燃料の製造量で除した値である該単位燃料量当たりの混
練エネルギー(kWh/トン−燃料)を演算する手段を
設け、該演算手段の演算値に基づいて混練機の混練度を
制御する制御手段は混練機の運転を制御することを特徴
とする請求項9記載の加圧流動層ボイラ用燃料製造用混
練機。
10. A means for measuring power consumption in a kneader, and a kneading energy per unit amount of fuel, which is a value obtained by dividing the measured value of power consumption by the means by the production amount of coal / water mixed fuel. The means for calculating (kWh / ton-fuel) is provided, and the control means for controlling the kneading degree of the kneader based on the calculated value of the calculating means controls the operation of the kneader. Kneader for fuel production for pressurized fluidized bed boiler.
【請求項11】 混練機の混練度を制御する制御手段は
前記演算手段で演算される単位石炭・水混合燃料量当た
りの混練エネルギーが、1〜5kWh/トン−燃料とな
るように制御することを特徴とする請求項10記載の加
圧流動層ボイラ用燃料製造用混練機。
11. The control means for controlling the kneading degree of the kneading machine is controlled so that the kneading energy per unit coal / water mixed fuel amount calculated by the calculating means is 1 to 5 kWh / ton-fuel. A kneader for producing fuel for a pressurized fluidized bed boiler according to claim 10.
【請求項12】 石炭・水混合燃料の流動性を測定する
手段と、該測定値と設定値との偏差を演算する演算手段
を設け、該演算手段の演算値に基づいて混練機の混練度
を制御する制御手段は混練機の運転を制御することを特
徴とする請求項9記載の加圧流動層ボイラ用燃料製造用
混練機。
12. A means for measuring the fluidity of a coal / water mixed fuel, and a calculating means for calculating a deviation between the measured value and a set value, the kneading degree of a kneading machine based on the calculated value of the calculating means. 10. The kneader for producing fuel for a pressurized fluidized bed boiler according to claim 9, wherein the control means for controlling the kneader controls the operation of the kneader.
【請求項13】 混練機の混練度を制御する制御手段は
ボイラ負荷変化指令を受信し、該負荷変化信号に基づい
て混練機の運転を制御することを特徴とする請求項9記
載の加圧流動層ボイラ用燃料製造用混練機。
13. The pressurizing apparatus according to claim 9, wherein the control means for controlling the kneading degree of the kneading machine receives the boiler load change command and controls the operation of the kneading machine based on the load change signal. Kneader for fuel production for fluidized bed boiler.
【請求項14】 粉砕炭と水あるいは粉砕炭と水と脱硫
剤を混練して石炭・水混合燃料とする混練機と、該混練
機で得られた石炭・水混合燃料を加圧流動層ボイラに供
給する燃料ポンプなどからなる石炭・水混合燃料供給部
を備えた加圧流動層ボイラにおいて、 混練機内部に設けられた前記粉砕炭と水あるいは粉砕炭
と水と脱硫剤を混練するための撹拌翼の回転数、混練機
出口に設けられたゲート弁の開度の少なくともいずれか
一方を調節して、燃料を構成する粒子中の0.02mm
以下の粒径を有する粒子の累積重量割合の増加分が、混
練前後で1〜5重量%の範囲となるようにする混練機の
混練度を制御する制御手段と混練機で得られた石炭・水
混合燃料の加圧流動層ボイラへの燃料供給量を制御する
燃料ポンプ制御手段を設け、 該燃料ポンプ制御手段はボイラ負荷変化指令を受信し、
燃料ポンプ制御量を演算して出力し、混練機の混練度を
制御する制御手段は前記燃料ポンプ制御量に基づいて混
練機の混練度を制御することを特徴とする加圧流動層ボ
イラ。
14. A kneader for kneading crushed coal and water or crushed coal, water and a desulfurizing agent to obtain a coal / water mixed fuel, and a pressurized fluidized bed boiler for the coal / water mixed fuel obtained by the kneader. In a pressurized fluidized bed boiler equipped with a coal / water mixed fuel supply unit consisting of a fuel pump, etc., for mixing the crushed coal and water or the crushed coal and water and a desulfurizing agent inside the kneader. 0.02 mm in the particles forming the fuel by adjusting at least one of the rotation speed of the stirring blade and the opening degree of the gate valve provided at the kneader outlet.
A control means for controlling the kneading degree of the kneader so that the increment of the cumulative weight ratio of the particles having the following particle diameters is in the range of 1 to 5% by weight before and after the kneading, and the coal obtained by the kneader. A fuel pump control means for controlling a fuel supply amount of the water-mixed fuel to the pressurized fluidized bed boiler, the fuel pump control means receiving a boiler load change command;
A pressurized fluidized bed boiler, wherein a control means for calculating and outputting a fuel pump control amount and controlling the kneading degree of the kneader controls the kneading degree of the kneader based on the fuel pump control amount.
JP31281295A 1995-11-30 1995-11-30 Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method Expired - Lifetime JP4079285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31281295A JP4079285B2 (en) 1995-11-30 1995-11-30 Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31281295A JP4079285B2 (en) 1995-11-30 1995-11-30 Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method

Publications (2)

Publication Number Publication Date
JPH09151385A true JPH09151385A (en) 1997-06-10
JP4079285B2 JP4079285B2 (en) 2008-04-23

Family

ID=18033712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31281295A Expired - Lifetime JP4079285B2 (en) 1995-11-30 1995-11-30 Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method

Country Status (1)

Country Link
JP (1) JP4079285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107890A (en) * 2019-04-02 2019-08-09 张正周 A method of preventing circulating fluidized bed boiler coking

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107890A (en) * 2019-04-02 2019-08-09 张正周 A method of preventing circulating fluidized bed boiler coking
CN110107890B (en) * 2019-04-02 2020-06-26 淄博齐林贵和热电有限公司 Method for preventing circulating fluidized bed boiler from coking

Also Published As

Publication number Publication date
JP4079285B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
KR20090088903A (en) System for producing cement and production method
US4325514A (en) Comminution of minerals
JPS5927789B2 (en) Coal/water suspension for coal gasification and its production method
JP4079285B2 (en) Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method
JPH11237032A (en) Manufacture of coal-water paste
JPH10296117A (en) Sand making method and sand making device
JP2000265182A (en) Production of coal/water mixed fuel and its device
US4850700A (en) Method and apparatus for producing a coal/water mixture for combustion in a fluidized bed unit
JPH11262650A (en) Automatic granulating apparatus for powder
JP2631623B2 (en) Apparatus and method for producing coal / water slurry
JP3588128B2 (en) Coal / water mixture and its production method
JPH06277477A (en) Device for producing high-concentration slurry and its production
JP3807466B2 (en) Method for producing granulated material containing coal ash
KR101983690B1 (en) Grinding method for size control of raw hardening agent, and method of constructions using the hardening agent
JP2729763B2 (en) Method and apparatus for manufacturing CWP
JP2511129B2 (en) Method for producing high concentration coal water slurry
JPH07228878A (en) Apparatus for controlling kneading of coal/water mixture
JP3616110B2 (en) Pasty fuel manufacturing method and apparatus
JP2010229354A (en) Production method for waste oil-based solid fuel, and method of use of the waste oil-based solid fuel
JP2729775B2 (en) Stirring adjustment device for high concentration CWM and its operation method
JPH09241665A (en) Apparatus for producing and supplying coal/water slurry
JPH1135956A (en) Viscosity measuring device of coal-water mixture paste and its control method
EP0157307B1 (en) Apparatus for preparing coal slurry of high concentration
JPH06108067A (en) Process and apparatus for producing coal/water paste
JPH10246423A (en) Method and equipment for transfer through piping of fuel for pressurized fluidized bed boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term