JPH09151380A - Method for estimating strength of coke for blast furnace - Google Patents

Method for estimating strength of coke for blast furnace

Info

Publication number
JPH09151380A
JPH09151380A JP31260195A JP31260195A JPH09151380A JP H09151380 A JPH09151380 A JP H09151380A JP 31260195 A JP31260195 A JP 31260195A JP 31260195 A JP31260195 A JP 31260195A JP H09151380 A JPH09151380 A JP H09151380A
Authority
JP
Japan
Prior art keywords
coal
coke
strength
average reflectance
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31260195A
Other languages
Japanese (ja)
Inventor
Seiji Sakamoto
誠司 坂本
Katsutoshi Igawa
勝利 井川
Kenichi Tanmachi
健一 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31260195A priority Critical patent/JPH09151380A/en
Publication of JPH09151380A publication Critical patent/JPH09151380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate the strength of coke with high accuracy, which is useful for the mixing management of coals to be fed to a coke furnace, by using each value of the maximum fluidity and an average reflectivity of each single coal, an average of these values and the degrees of the distributions of the physical properties of mixed coal as parameters. SOLUTION: In order to estimate the strength of coke which is used for the mixing management of coals to be fed to a coke furnace, following values are used as parameters. Each value of the maximum fluidity (MFi ) and an average reflectivity (Romi ) of each single coal (i). Weighted mean values (MFB) and (Rom B) of the maximum fluidity and average mean values of mixed coal in terms of a compounding ratio (fi ) of each single coal (i). Besides these, following values expressing the distributions of the physical properties of the mixed coal: a value expressed by equation I [(v) is a variance; xi is a physical property of a single coal (i) (e.g. Romi ); N=Σfi ; Xav =(1/N)Σfi xi (e.g. Romi ); σ is a standard deviation], a value expressed by equation II [γ1 is a skewness; μ3 =(1/N)Σfi (xi - xav )<3> ] and a value expressed by equation III [γ2 is a kurtosis; μ4 =(1/N)Σfi (xi - xav )<4> ].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コークスの強度設
計を行う上で不可欠な配合炭の配合方法に関し、コーク
ス強度の推定精度の向上を目的とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blending method of blended coal which is indispensable for designing the strength of coke, and has an object of improving the accuracy of estimating the strength of coke.

【0002】[0002]

【従来の技術】コークス強度の推定には、一般には石炭
の炭化度に起因する指数と、流動度に起因する指数が用
いられる。例えば、特開平2−20592号公報では、
配合炭の流動度の推定精度を向上させる目的で、各原料
炭の流動開始温度と固化温度間の一定温度毎の各流動度
の対数値を求めて、それらの加重平均値から配合炭の流
動度を求め、得られた配合炭の流動度の最大値を配合炭
の最大流動度(MF)と推定し、コークス強度の推定に
用いる方法が提案されている。
2. Description of the Related Art In order to estimate the coke strength, generally, an index due to the carbonization degree of coal and an index due to the fluidity are used. For example, in Japanese Patent Application Laid-Open No. 2-20592,
In order to improve the estimation accuracy of the flowability of blended coal, the logarithmic value of each flowability at each constant temperature between the flow start temperature and the solidification temperature of each raw coal is calculated, and the flow of the blended coal is calculated from the weighted average value A method has been proposed in which the maximum value of the fluidity of the coal blend obtained is estimated as the maximum fluidity (MF) of the coal blend and the coke strength is estimated.

【0003】また、各原料炭の最大流動度の加重平均値
と固化温度の加重平均値および固化温度のバラツキをパ
ラメータとしたコークス強度の推定式が提案されている
(特公平2−14398号公報)。しかしながら、前記
の従来技術によっても、コークス強度の推定精度は未だ
充分ではないのが現状である。
Further, an estimation formula of coke strength using the weighted average value of the maximum fluidity of each coking coal, the weighted average value of the solidification temperature, and the variation of the solidification temperature has been proposed (Japanese Patent Publication No. 2-14398). ). However, even with the above-mentioned conventional technique, the present situation is that the estimation accuracy of the coke strength is still insufficient.

【0004】すなわち、従来のコークス強度推定方法
は、比較的粘結炭の配合率の高いケースに対して検討さ
れたものであるが、コークスの製造コストを削減するた
めに、流動性の低い非粘結炭および微粘結炭(以下、非
微粘結炭と略す)の増配合が行われるようになり、従来
の推定方法では予想できないコークス強度の変動が顕在
化してきた。
That is, the conventional coke strength estimation method has been studied for the case where the mixing ratio of coking coal is relatively high, but in order to reduce the production cost of the coke, the non-liquid coke having a low fluidity is used. Caking coal and slightly coking coal (hereinafter, abbreviated as non-coking coal) have been added more and more, and fluctuations in coke strength that cannot be predicted by conventional estimation methods have become apparent.

【0005】このような変動は、粘結炭と非微粘結炭と
では図3に示すように、流動温度領域が異なること、非
微粘結炭の増配合に伴って配合炭の平均反射率の分布の
形状が変化することなどが原因と推定された。
Such fluctuations are caused by the fact that the flow temperature range is different between caking coal and non-slightly caking coal, as shown in FIG. It was estimated that the shape of the rate distribution changed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、従来の方法では予測できない
コークス強度の変動を精度良く推定する技術を提供する
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a technique for accurately estimating fluctuations in coke strength that cannot be predicted by the conventional method.

【0007】[0007]

【課題を解決するための手段】本発明は、コークス炉装
入炭の配合管理に用いるコークス強度の推定方法におい
て、各単味炭iの最大流動度(MFi )および平均反射
率(R0mi ) の各々と配合率の加重平均値である配合炭
の最大流動度(MFB )および平均反射率(R 0mB )に
加えて、配合炭の物性値の分布を表す下記式(1) 、(2)
および(3) で定義される分散、歪度および尖度をパラメ
ータとして用いることを特徴とするコークス強度の推定
方法である。
The present invention is directed to coke oven equipment.
How to Estimate Coke Strength Used for Coaling Mixing Control
, The maximum fluidity of each plain coal i (MFi) And average reflection
Rate (R0mi) And the blended coal which is the weighted average value of the blending ratio
Maximum fluidity (MFB) And average reflectance (R 0 mB)
In addition, the following equations (1), (2) expressing the distribution of physical properties of blended coal
And the variance, skewness, and kurtosis defined in (3).
Estimation of coke strength characterized by being used as data
Is the way.

【0008】 分散:v (x)=(1/N) Σfi (xi − xav2 ={σ(x) }2 ・・・・・ (1) 歪度:γ1(x)=μ3 / {σ(x) }3 ・・・・・・・・・・・・・・・・ (2) 尖度:γ2(x)=〔μ4 / {σ(x) }4 〕−3・・・・・・・・・・・・ (3) ここで、μr =(1/N) Σfi (xi − xavr 、 N=Σf
i 、 xav=(1/N) Σf i x i 、fi :i炭種の配合率、
x i :i炭種の物性値を示す。
Dispersion: v (x) = (1 / N) Σfi(xi− Xav)Two= {Σ (x)}Two(1) Distortion: γ1(x) = μThree/ {Σ (x)}Three・ ・ ・ ・ ・ (2) Kurtosis: γTwo(x) = [μFour/ {Σ (x)}Four] -3 ... (3) where μr= (1 / N) Σfi(xi− Xav)r, N = Σf
i, Xav= (1 / N) Σf ixi, Fi: Blending ratio of i coal type,
xi: I Indicates the physical property value of coal species.

【0009】また、本発明においては、前記したx i
して、各単味炭iの平均反射率(R 0mi )を用い、 xav
として前記(R0mi )と配合率fi の加重平均値である
配合炭の平均反射率(R0mB )を用いることが好まし
い。
Further, in the present invention, the above-mentioned xiWhen
Then, the average reflectance (R 0mi), Xav
As above (R0mi) And blending ratio fiIs the weighted average of
Average reflectance of blended coal (R0 mB) Is preferred
No.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、前記問題点を解決するために、配合炭の各単
味炭の流動温度の重なりをコークス強度の推定式に反映
させるために新たに石炭の平均反射率など石炭の物性値
の分布形状の指標である歪度、尖度を強度推定式に導入
し、推定精度の向上を図ったものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention, in order to solve the above problems, in order to reflect the overlapping of the flow temperature of each plain coal of blended coal in the estimation formula of the coke strength, the distribution of physical property values of coal such as average reflectance of coal is newly added. The skewness and kurtosis, which are indices of the shape, are introduced into the strength estimation formula to improve the estimation accuracy.

【0011】非微粘結炭の平均反射率(R0mi )は、非
微粘結炭の炭種によって粘結炭の平均反射率(R0mi
より低いものと高いものがあり(図3)、非微粘結炭の
増配合に伴って配合炭の平均反射率の分布形状が図2
(a) ,(b) のように偏平となったり、分布のピークが左
右に偏る形状となる。このため、配合炭における各単味
炭の流動温度の重なり状況が変化し、流動温度領域の幅
や膨張圧の発生状況など、石炭粒子の融着条件が変化
し、配合炭のコークス強度が変化すると考えられる。
The average reflectance (R 0mi ) of non-caking coal depends on the type of non-caking coal and the average reflectance (R 0mi ) of caking coal.
There is a lower one and a higher one (Fig. 3), and the distribution profile of the average reflectance of the blended coal is shown in Fig. 2 as the addition of the non-caking coal increases.
As in (a) and (b), the shape is flat or the distribution peaks are skewed to the left and right. For this reason, the overlapping conditions of the flow temperatures of the individual coals in the blended coal change, the coal particle fusion conditions such as the width of the flow temperature region and the occurrence of expansion pressure change, and the coke strength of the blended coal changes. It is thought that.

【0012】本発明では、配合炭の各銘柄の物性値( x
i ) の分布の分散v (x)、正規分布からのズレを表す歪
度γ1(x)、尖度γ2(x)を強度推定式に用いる。歪度γ
1(x)、尖度γ2(x)は下記式(2) 、(3) で表され、図1
(a) ,(b) ,(c),(d) に示すように分布形状を表すこ
とができる。 分散:v (x)=(1/N) Σfi (xi − xav2 ={σ(x) }2 ・・・・・ (1) 歪度:γ1(x)=μ3 / {σ(x) }3 ・・・・・・・・・・・・・・・・ (2) 尖度:γ2(x)=〔μ4 / {σ(x) }4 〕−3・・・・・・・・・・・・ (3) ここで、μr =(1/N) Σfi (xi − xavr 、 N=Σf
i 、 xav=(1/N) Σf i x i 、fi :i炭種の配合率、
x i :i炭種の物性値を示す。
In the present invention, the physical property values (x
i), The variance of the distribution v (x), the distortion that represents the deviation from the normal distribution
Degree γ1(x), kurtosis γTwo(x) is used in the strength estimation formula. Skewness γ
1(x), kurtosis γTwo(x) is expressed by the following equations (2) and (3), and
The distribution shape should be expressed as shown in (a), (b), (c), and (d).
Can be. Variance: v (x) = (1 / N) Σfi(xi− Xav)Two= {Σ (x)}Two(1) Distortion: γ1(x) = μThree/ {Σ (x)}Three・ ・ ・ ・ ・ (2) Kurtosis: γTwo(x) = [μFour/ {Σ (x)}Four] -3 ... (3) where μr= (1 / N) Σfi(xi− Xav)r, N = Σf
i, Xav= (1 / N) Σf ixi, Fi: Blending ratio of i coal type,
xi: I Indicates the physical property value of coal species.

【0013】(なお、正規分布のときのγ1(x),γ2(x)
=0である。) 各銘柄炭(各単味炭)の物性値x i としては、例えば各
単味炭iの平均反射率(R0mi )を用い、 xavとして
は、前記(R0mi )と配合率fi の加重平均値である配
合炭の平均反射率(R0mB )を用いることが好ましい。
石炭の平均反射率は固化温度と相関があるため、配合炭
の平均反射率の分散、歪度、尖度が固化温度の分布状態
の指標となる。
(Note that γ 1 (x) and γ 2 (x) in the case of normal distribution
= 0. ) As the physical property value x i of each brand coal (each plain coal), for example, the average reflectance (R 0mi ) of each plain coal i is used, and as x av , the (R 0mi ) and the blending ratio f i are used. It is preferable to use the average reflectance (R 0mB ) of the blended coal, which is the weighted average value of
Since the average reflectance of coal has a correlation with the solidification temperature, the variance, skewness, and kurtosis of the average reflectance of blended coal are indicators of the distribution of the solidification temperature.

【0014】前記した特公平2−14398号公報に開
示された方法では、固化温度の分散を考慮して補正して
いるが、その分布が正規分布からずれるほど補正精度が
低下し、強度の推定精度が低下する。これに対し、本発
明の推定方法では分布形状をも考慮しているため、特に
非微粘結炭を増配合し、配合炭品位のバラツキが大きく
なるほど好ましく適用される。
In the method disclosed in the above Japanese Patent Publication No. 2-14398, the correction is made in consideration of the dispersion of the solidification temperature. However, as the distribution deviates from the normal distribution, the correction accuracy decreases and the strength is estimated. The accuracy decreases. On the other hand, in the estimation method of the present invention, since the distribution shape is also taken into consideration, it is preferably applied as non-slightly caking coal is increased and the variation in the quality of the mixed coal increases.

【0015】以上は、配合炭における平均反射率の分布
に関して説明したが、配合炭における最大流動度の分布
を表す分散、歪度および尖度(以下分布と記す)をコー
クス強度の推定に用いることも好ましい。また、配合炭
における、固化温度の分布、最大流動温度の分布、流動
開始温度の分布、およびこれらと相関のある物性値の分
布を用いても良い。
Although the distribution of the average reflectance in the blended coal has been described above, the variance, the skewness and the kurtosis (hereinafter referred to as the distribution) representing the distribution of the maximum fluidity in the blended coal should be used for estimating the coke strength. Is also preferable. Further, the distribution of the solidification temperature, the distribution of the maximum flow temperature, the distribution of the flow start temperature, and the distribution of the physical property values correlated with these may be used in the coal blend.

【0016】さらに、平均反射率の分布、最大流動度の
分布、固化温度の分布など前記した物性値の分布を併用
してコークス強度の推定に用いることも好ましい。な
お、本発明においては、下記の実施例に示すとおり、前
記した配合炭の最大流動度(MFB )、平均反射率(R
0mB )に加えて、配合炭の物性値の分布を表す前記式
(1) 、(2) および(3) で定義される分散:v (x)、歪
度:γ1(x)、および尖度:γ2(x)をパラメータとし、強
度を従属変数とする下記式(4) を予め設定することによ
りコークス強度の予測が可能である。
Further, it is also preferable to use the distribution of the above-mentioned physical properties such as the distribution of the average reflectance, the distribution of the maximum fluidity and the distribution of the solidification temperature together to estimate the coke strength. In the present invention, as shown in the examples below, the maximum fluidity (MF B ) and the average reflectance (R
0mB ), in addition to the above formula expressing the distribution of physical properties of blended coal
Variance defined by (1), (2) and (3): v (x), skewness: γ 1 (x), and kurtosis: γ 2 (x) are parameters, and strength is a dependent variable. The coke strength can be predicted by presetting the following equation (4).

【0017】 強度=f(MFB 、R0mB 、v (x)、γ1(x)、γ2(x))・・・・・・・ (4) すなわち、予め各種配合炭に関して前記パラメータの値
を求め、それらの各種配合炭から得られたコークス強度
の測定値とから前記式(4) 中の定数(係数)を重回帰分
析などの統計解析で求め、得られた回帰式を用いて必要
な配合炭におけるコークス強度の予測を行うことが可能
である。
Strength = f (MF B , R 0mB , v (x), γ 1 (x), γ 2 (x)) ··· (4) That is, in advance of the above parameters for various blended coals The value is obtained, and the constant (coefficient) in the above equation (4) is obtained by statistical analysis such as multiple regression analysis from the measured values of coke strength obtained from those various blended coals, and the obtained regression equation is used. It is possible to predict the coke strength of the required coal blend.

【0018】前記式(4) は一次関数、二次関数、分数関
数などを用いることが可能であり、後記の実施例に示さ
れる一次関数が好ましいが、特には関数形に制限される
ものではない。
It is possible to use a linear function, a quadratic function, a fractional function or the like in the above formula (4), and the linear function shown in the embodiment described later is preferable, but it is not particularly limited to the functional form. Absent.

【0019】[0019]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。表1に示す5種類の配合炭を表2の乾留条件で装
炭量40kgの室炉タイプの試験炉(電気炉)で乾留して塊
コークスを得た。コークス強度の測定は、タンブラー強
度試験方法(JIS K2151 )で実施した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. The five types of blended coal shown in Table 1 were dry-distilled under the dry-distillation conditions shown in Table 2 in a chamber furnace type test furnace (electric furnace) having a coal loading of 40 kg to obtain agglomerated coke. The coke strength was measured by the tumbler strength test method (JIS K2151).

【0020】すなわち、塊コークスをタンブラー試験機
内へ装入し、400 回転させた後の+6mm歩留(%)であ
るタンブラー強度TI6 400の測定結果と、本発明の推定
方法で得られた推定値との関係を調べた。なお、タンブ
ラー強度TI6 400はコークスの耐磨耗性を表す指数であ
る。得られたコークスのタンブラー強度の測定結果と、
前記表1の物性値および予め統計解析(重回帰分析)か
ら別個に得られた強度推定式に基づく推定値を表3に示
す。
That is, after the lump coke was loaded into the tumbler tester and rotated 400 times, the tumbler strength TI 6 400 , which is the yield (%) of +6 mm, was measured, and the estimation obtained by the estimation method of the present invention. The relationship with the value was investigated. The tumbler strength TI 6 400 is an index showing the abrasion resistance of coke. With the measurement result of the tumbler strength of the obtained coke,
Table 3 shows the physical property values shown in Table 1 and the estimated values based on the intensity estimation formulas separately obtained from the statistical analysis (multiple regression analysis) in advance.

【0021】なお、強度推定式としては、石炭の物性値
として平均反射率を用い、[A] 平均反射率の分散:v
(R0m) 、歪度:γ1(R0m) 、尖度:γ2(R0m) を考慮
した下記式(5) 〔本発明例〕、および[B] 平均反射率の
分散:v (R0m) のみを考慮した下記式(6) 〔比較例〕
を用いた。 TI6 400=a+b×MFB +c×R0mB +d×v (R0m) +e×γ1(R0m) + f×γ2(R0m) ・・・(5) TI6 400=a′+b′×MFB +c′×R0mB +d′×v (R0m) ・・・・・ ・・・・・・・・・・(6) ここで、MFB :配合炭の最大流動度(単味炭の配合率
に基づく加重平均値)、R0mB :配合炭の平均反射率
(単味炭の配合率に基づく加重平均値)、v (R 0m) :
配合炭の平均反射率の分布の分散、γ1(R0m) :配合炭
の平均反射率の分布の歪度、γ2(R0m) :配合炭の平均
反射率の分布の尖度、a、b、c、d、e、f、a′、
b′、c′、d′:回帰係数(定数)を示す。
The strength estimation formula is as follows:
The average reflectance is used as [A], and the average reflectance variance: v
(R0m), Skewness: γ1(R0m), Kurtosis: γTwo(R0m) Consider
The following formula (5) [Example of the present invention], and [B] of the average reflectance
Variance: v (R0m(6) (Comparative example)
Was used. TI6 400= A + b × MFB+ C × R0 mB+ D × v (R0m) + E × γ1(R0m) + F × γTwo(R0m) ・ ・ ・ (5) TI6 400= A '+ b' x MFB+ C '× R0 mB+ D '× v (R0m) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (6) Where MFB: Maximum fluidity of blended coal (blending ratio of plain coal
Weighted average value), R0 mB: Average reflectance of blended coal
(Weighted average value based on blending ratio of plain coal), v (R 0m):
Variance of average reflectance distribution of blended coal, γ1(R0m): Blended coal
Skewness of the average reflectance distribution of, γTwo(R0m): Average of blended coal
Kurtosis of reflectance distribution, a, b, c, d, e, f, a ',
b ', c', d ': regression coefficients (constants) are shown.

【0022】表3より、歪度γ1(R0m) と尖度γ
2(R0m) が各配合炭のほぼ中間の値である配合炭Cで
は、タンブラー強度の実測値と推定値は比較例、本発明
例共に一致するが、歪度γ1(R0m) と尖度γ2(R0m) の
変化に伴って比較例では対応しなくなるが、本発明例で
はよく対応することが分かる。以上の結果から、配合炭
の各単味炭の物性値から得られる配合炭の物性値の分布
形状を導入することにより、タンブラー強度の推定精度
の向上が可能であることが判明した。
From Table 3, the skewness γ 1 (R 0m ) and the kurtosis γ
In the blended coal C in which 2 (R 0m ) is an almost intermediate value of each blended coal, the measured value and the estimated value of the tumbler strength are the same in the comparative example and the example of the present invention, but the skewness γ 1 (R 0m ) It can be seen that although the comparative example does not correspond to the change in the kurtosis γ 2 (R 0m ), the invention example corresponds well. From the above results, it was found that it is possible to improve the estimation accuracy of the tumbler strength by introducing the distribution shape of the physical property values of the blended coal obtained from the physical property values of each plain coal of the blended coal.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】本発明によれば、コークスのタンブラー
強度を高精度に予測可能となり、高炉操業の安定に寄与
するばかりでなく、コークス原料炭の配合の自由度が拡
大し、劣質炭の増配合が可能となり、原料炭コストの低
減に寄与できる。
EFFECTS OF THE INVENTION According to the present invention, the tumbler strength of coke can be predicted with high accuracy, which not only contributes to the stability of blast furnace operation, but also increases the degree of freedom in the blending of coking coking coal and increases the amount of inferior coal. Blending is possible, and it can contribute to the reduction of coking coal cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】配合炭の平均反射率の分布の歪度と尖度の関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the skewness and kurtosis of the distribution of average reflectance of blended coal.

【図2】配合炭の平均反射率の分布パターンを示すグラ
フである。
FIG. 2 is a graph showing a distribution pattern of average reflectance of blended coal.

【図3】非微粘結炭および粘結炭の平均反射率、流動温
度領域を示すグラフである。
FIG. 3 is a graph showing an average reflectance and a flow temperature region of non-slightly caking coal and caking coal.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コークス炉装入炭の配合管理に用いるコ
ークス強度の推定方法において、各単味炭iの最大流動
度(MFi )および平均反射率(R0mi ) の各々と配合
率の加重平均値である配合炭の最大流動度(MFB )お
よび平均反射率(R0mB )に加えて、配合炭の物性値の
分布を表す下記式(1) 、(2) および(3) で定義される分
散、歪度および尖度をパラメータとして用いることを特
徴とするコークス強度の推定方法。 記 分散:v (x)=(1/N) Σfi (xi − xav2 ={σ(x) }2 ・・・・・ (1) 歪度:γ1(x)=μ3 / {σ(x) }3 ・・・・・・・・・・・・・・・・ (2) 尖度:γ2(x)=〔μ4 / {σ(x) }4 〕−3・・・・・・・・・・・・ (3) ここで、μr =(1/N) Σfi (xi − xavr 、 N=Σf
i 、 xav=(1/N) Σf i x i 、fi :i炭種の配合率、
x i :i炭種の物性値を示す。
1. A coke used for controlling the composition of a coal charged in a coke oven.
Maximum flow for each plain coal i
Degree (MFi) And average reflectance (R0mi) Each
Maximum fluidity (MF) of blended coal, which is a weighted average value ofB)
And average reflectance (R0 mB) In addition to the
The distribution defined by the following equations (1), (2) and (3)
It is special to use dispersion, skewness and kurtosis as parameters.
Method for estimating the strength of coke. Dispersion: v (x) = (1 / N) Σfi(xi− Xav)Two= {Σ (x)}Two(1) Distortion: γ1(x) = μThree/ {Σ (x)}Three・ ・ ・ ・ ・ (2) Kurtosis: γTwo(x) = [μFour/ {Σ (x)}Four] -3 ... (3) where μr= (1 / N) Σfi(xi− Xav)r, N = Σf
i, Xav= (1 / N) Σf ixi, Fi: Blending ratio of i coal type,
xi: I Indicates the physical property value of coal species.
【請求項2】 x i として、各単味炭iの平均反射率
(R0mi )を用い、 x avとして前記(R0mi )と配合率
i の加重平均値である配合炭の平均反射率(R0mB
を用いる請求項1記載のコークス強度の推定方法。
2. xiAs the average reflectance of each plain coal i
(R0mi), X avAs above (R0mi) And blending ratio
fiAverage reflectance of blended coal (R0 mB)
The method for estimating coke strength according to claim 1, wherein
JP31260195A 1995-11-30 1995-11-30 Method for estimating strength of coke for blast furnace Pending JPH09151380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31260195A JPH09151380A (en) 1995-11-30 1995-11-30 Method for estimating strength of coke for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31260195A JPH09151380A (en) 1995-11-30 1995-11-30 Method for estimating strength of coke for blast furnace

Publications (1)

Publication Number Publication Date
JPH09151380A true JPH09151380A (en) 1997-06-10

Family

ID=18031177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31260195A Pending JPH09151380A (en) 1995-11-30 1995-11-30 Method for estimating strength of coke for blast furnace

Country Status (1)

Country Link
JP (1) JPH09151380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122678B1 (en) * 2019-03-25 2020-06-12 현대제철 주식회사 Prediction method for hot strength of coke
CN113684048A (en) * 2021-08-19 2021-11-23 首钢集团有限公司 Coking coal blending method, coal blending system and industrial control equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122678B1 (en) * 2019-03-25 2020-06-12 현대제철 주식회사 Prediction method for hot strength of coke
CN113684048A (en) * 2021-08-19 2021-11-23 首钢集团有限公司 Coking coal blending method, coal blending system and industrial control equipment
CN113684048B (en) * 2021-08-19 2022-10-21 首钢集团有限公司 Coking coal blending method, coal blending system and industrial control equipment

Similar Documents

Publication Publication Date Title
WO2000006669A1 (en) Method for producing metallurgical coke
CA1158048A (en) Process for adjusting the proportions of coals in a coal blend
JP2020200360A (en) Method for estimating coke strength after hot reaction and method for manufacturing coke
JPH09151380A (en) Method for estimating strength of coke for blast furnace
JP2005232350A (en) Estimation method of coke strength after hot-reaction and manufacturing method of coke
JP4899326B2 (en) Method for estimating coke shrinkage of blended coal and method for producing coke
JP3550862B2 (en) Estimation method of coke characteristics of blended coal
JP3152159B2 (en) Manufacturing method of metallurgical coke
JP4147986B2 (en) Method for measuring coke strength of coal and method for producing coke
KR20010057532A (en) A Blending Method of Coals for Making Coke
KR102299553B1 (en) Prediction method for cold strength of coke
JP2001172643A (en) Method for estimating strength of coke
JP2001133379A (en) Method for estimating maximum fluidity of coal blend added with caking additive
JPH0297410A (en) Production of coke
JP4279972B2 (en) Method for producing blast furnace coke
KR102144195B1 (en) Evaluation method for reflectance distribution index of coal blend
JPH04275389A (en) Production of metallurgical coke
JPH0155313B2 (en)
JPH0972869A (en) Coke strength estimating method
JP7188245B2 (en) Method for estimating surface fracture strength of blast furnace coke
JPH07244039A (en) Estimation of strength of coke
JPS6341423B2 (en)
JP6740833B2 (en) Bulk density estimation method and compounding adjustment method for coke oven charging coal
JPH11302661A (en) Method for compounding coal for coke making
KR20140119905A (en) Method for ash predicting of cokes