JP3550862B2 - Estimation method of coke characteristics of blended coal - Google Patents
Estimation method of coke characteristics of blended coal Download PDFInfo
- Publication number
- JP3550862B2 JP3550862B2 JP06429296A JP6429296A JP3550862B2 JP 3550862 B2 JP3550862 B2 JP 3550862B2 JP 06429296 A JP06429296 A JP 06429296A JP 6429296 A JP6429296 A JP 6429296A JP 3550862 B2 JP3550862 B2 JP 3550862B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- coke
- blended
- types
- coke characteristics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Coke Industry (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、複数の石炭を配合してコークスを製造するに際し、石炭の配合を管理するために、配合炭の所望のコークス特性を推定する方法に関するものである。
【0002】
【従来の技術】
例えば、高炉に用いられるコークスには、高炉の安定操業の点から、強度、粒度、気孔率などにおいて安定した品質が要求され、なかでも強度は特に重要な要素となっている。この高炉用コークスは、通常、10〜20銘柄の配合炭で製造されるが、原料炭に用いられる石炭は、産出国、炭鉱、炭層などにより性質が異なるため、安定した品質のコークスを製造するためには、種々の原料炭の配合におけるコークス特性、特に強度を推定して、石炭の配合管理を行うことが不可欠となる。
【0003】
このようなことから、例えば、特開平2−20592号公報には、配合炭を構成する各原料炭について、流動開始温度から固化温度までの一定温度毎の流動度の対数値を求め、それらの対数値を加重平均して配合炭の流動度を算出し、その最大値を配合炭の最高流動度として、コークス強度の推定に用いることが提案されている。また、特公平2−14398号公報には、配合炭の配合比率を考慮して、各原料炭の固化温度の平均値、固化温度のバラツキおよび最高流動度の平均値を算出し、これらをパラメータとして用いてコークス強度を推定することが提案されている。
【0004】
さらに、特開昭63−199286号公報には、コークス強度の指標となる熱間反応後強度(CSR)を、多銘柄配合炭を2銘柄配合炭の組み合わせの集合として推定した配合効果と、それぞれの石炭を単独で乾留した際に得られるコークスのCSRに配合率を乗じて算出するCSR加成値との和により推定する、すなわち単味コークスのCSRの加成値からのずれを、流動温度の重なり率に起因するものとして推定することが提案されている。
【0005】
【発明が解決しようとする課題】
ところで、石炭は、上述したように、産出国、炭鉱、炭層などにより性質、すなわち軟化溶融温度、温度幅、流動性などが異なる。高炉用コークスは、このような性質の異なる石炭を配合して製造されるが、最近では、その配合による石炭粒子間の相互作用、いわゆる相性があることが指摘されている。
【0006】
しかしながら、上記の特開平2−20592号公報や特公平2−14398号公報において提案されている方法では、石炭の炭化度に起因する指数と、流動度に起因する指数とを用いてコークス強度を推定するもので、ここには配合の相性については何ら考慮されていない。これに対し、上記の特開昭63−199286号公報において提案されている方法では、単味コークスのCSRの加成値からのずれを、流動温度の重なり率に起因するものとして、CSRを推定することから、配合の相性を考慮しているが、ここでの相性の導入は補正程度のもので、不十分と言わざるを得ない。このため、従来は、配合炭のコークス強度を精度良く推定することができないという問題があった。
【0007】
この発明は、このような従来の問題点に着目してなされたもので、配合炭の所望のコークス特性を高精度で推定できる配合炭のコークス特性推定方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記目的を達成するため、この発明は、複数種の石炭からなる配合炭のコークス特性を推定するにあたり、
前記配合炭を、各石炭の2種類の組み合わせの集合として、
石炭(i)および石炭(j)の各2炭種の組み合わせのコークス特性S(i,j)を、各単味コークス特性S(i,i)およびS(j,j)の実測値の平均値と、各2炭種の組み合わせのコークス特性の平均値からのずれの尺度で求める配合効果係数a(i,j)を用いて、
S(i,j)={1+a(i,j)}{S(i,i)+S(j,j)}/2
で表し、
複数種の石炭からなる配合炭のコークス特性Sを、前記各2炭種の組み合わせのコークス特性S(i,j)と、各石炭の単味コークス特性S(i,i)とを用いて、単味コークス特性の加成性項と、組み合わせによって生じる相互作用項とに分離された下記の推定式を用いて推定することを特徴とするものである。
【数2】
【0010】
この発明の一実施形態では、前記単味コークス特性S(i,i) および配合効果係数a(i,j) を、各石炭について予め実測した最高流動度(MF)、平均反射率(Ro)、全活性成分量(TR)の特性値や、2炭種の特性値の差で重回帰により求めた推定式で推定する。
【0011】
【発明の実施の形態】
この発明は、配合炭のコークス強度などの特性を精度良く推定するために、強度などの特性の推定式に、配合による石炭粒子間の相互作用である相性を指標化して導入するものである。したがって、基本的には、Merrick の考え方(D.Merrick,Fvel,Vol62,567,1983 )に基づいているが、この発明では、混合による異炭種との組み合わせ強度を、各単味コークス強度の平均値と、その平均値からのズレの尺度としての配合効果係数とで表すことにより、相互作用を考慮している。ここで、配合効果係数は、平均値からのズレの尺度であり、組み合わせによって定まるいわゆる相性を指標化したものである。
【0012】
上述したMerrick の考え方によれば、N銘柄配合炭のコークス強度Sは、図1に示すように、2炭種の組み合わせの集合と考えて、第3成分の影響を受けないと仮定して、下記の(1)式で示すように、石炭(i) と石炭(j) との2炭種間のコークス強度S(i,j) と、各々の配合率f(i),f(j) で定まる接触確率f(i) f(j) との積の総和で表される。
【数3】
【0013】
(1)式から明らかなように、N銘柄配合炭のコークス強度Sを求めるにあたって、異炭種間のコークス強度S(i,j) を考慮するということは、異炭種間の相互作用を考慮したことになる。この発明は、上記の考え方を更に拡張し、異炭種間の相互作用を指標化して、配合炭のコークス強度などの特性の推定精度を向上させるものである。
【0014】
以下、この発明のコークス特性の推定方法について、簡単のために、2種配合炭のコークス強度を推定する場合を例にとって説明する。
2種配合炭の組み合わせは、図2に示すようになるので、上記(1)式は、
【数4】
【0015】
ここで、2炭種間のコークス強度が、単味コークス強度の平均値となる場合には、S(1,2) ={S(1,1) +S(2,2) }/2となるので、(2)式は、
【数5】
となって、加成性が成立する。
【0016】
これに対し、2炭種間のコークス強度が、相互作用によって、平均値とならない場合には、平均値からのズレを、その変化率として、S(1,1) とS(2,2) との石炭の組み合わせに起因する配合効果係数a(1,2) を導入して、
【数6】
と表して、2種配合炭のコークス強度Sを、(2)および(4)式から、
【数7】
によって推定する。(5)式において、右辺第1項および第2項は、単味炭の性状起因項(加成性項)を表し、右辺第3項は、相互作用項(配合効果項)を表している。
【0017】
このように、2種配合炭のコークス強度Sは、単味炭の性状によって定まる単味コークス強度S(1,1) ,S(2,2) と、石炭(1) と石炭(2) との組み合わせによって定まる配合効果係数a(1,2) とで表され、単味コークス強度の加成性項と、組み合わせによって変化する相互作用項とに分離される。ここで、単味コークス強度は、実測可能であり、また、配合効果係数a(i,j) は、2種配合炭のコークス強度を実測することによって評価することができる。
【0018】
図3(a) は、図3(c) に示す石炭(1) と石炭(2) との2種配合炭のコークス強度の実測例を、図3(b) は、石炭(3) と石炭(1) との2種配合炭のコークス強度の実測例をそれぞれ示すものである。2種配合炭の配合効果は、図3(a),(b) からも明らかなように、石炭の組み合わせにより異なるが、その組み合わせによる配合効果係数は、以下に示すように、2種配合炭のコークスの実測強度Sと、単味コークス強度の加成値との差ΔSから評価することができる。
【数8】
【0019】
図4は、石炭Aおよび石炭Bとの2種配合炭について、それぞれの強度指数を90および70として、配合効果係数を−0.3 から 0.3へ変化させた場合のコークス強度の変化の一例を示すものである。
【0020】
次に、多銘柄配合炭について説明する。
N銘柄配合炭のコークス強度Sは、2種配合炭の場合と同様にして、
【数9】
で表すことができる。
【0021】
ここで、S(i,j) ={1+a(i,j) }{S(i,i) +S(j,j) }/2として、(7)式に代入すると、
【数10】
となる。この(8)式において、右辺第1項は、単味炭の性状起因項(加成性項)を表し、右辺第2項は、相互作用項(配合効果項)を表している。
【0022】
以上のように、多銘柄配合炭のコークス強度Sは、単味コークス強度S(i,i) と、配合効果係数a(i,j) とで表される。ここで、単味コークス強度は、単味炭の石炭化度を表す平均反射率(Ro)、最高流動度(MF)、全活性成分量(TR)などの特性値で推定可能である。また、配合効果係数a(i,j) は、上述したようにして実際に求めるか、Ro、MF、TRなどの特性値の平均と特性値の差などから推定する。これらの単味コークス強度S(i,i) 、配合効果係数a(i,j) を用いて多銘柄配合炭のコークス強度Sを推定することにより、高精度の推定が可能となる。
【0023】
【実施例】
この発明に従って配合炭のコークス強度を推定するにあたっては、単味コークス強度および配合効果係数を必要とすることから、各々の推定式を得るための実験を実施した。実験に用いた石炭は、10種(A〜J)で、乾留は第1表に示す条件で、石炭を内径100mmφのルツボに充填して行った。得られたコークスは、15〜20mmに整粒し、200gをCRS(熱間反応後強度)測定用のI型ドラム強度試験機で600回転した後、+2.83mmの重量パーセントを強度指数I3 として強度評価を実施した。その測定結果を第2表に示す。また、TR,TR×Ro,TR×Ro2 ,TR×MF,TR×MF2 をパラメータとするI3 の回帰結果を図5に示す。
【0024】
【表1】
【0025】
【表2】
以上により、測定精度の高い単味コークス強度の推定式が得られる。
【0026】
また、2種配合炭(配合率50%/50%)のコークス強度の測定から得られた配合効果係数の推定結果を第3表に示し、回帰結果を図6に示す。
【表3】
【0027】
なお、配合効果は、2種炭のRo,MF,TRなどの性状の差によって生じるものと考えられるので、配合効果係数を推定するパラメータとしては、平均性状と性状の差、具体的には、TR,TR×Ro,TR×Ro2 ,TR×MF,TR×MF2 ,dTR,dTR×Ro,dTR×Ro2 ,dTR×MF,dTR×MF2 を用いた。このように、配合効果係数の推定は可能である。
なお、配合効果係数を推定するパラメータにおいて、Ro,MF,TRは2炭種の平均値を、dTR×Ro2 =|TR(i) ×Ro(i)2−TR(j) ×Ro(j)2|,dRo=|Ro(i) −Ro(j) |等は、2炭種のパラメータの差を用いた。
【0028】
上記の単味コークス強度および配合効果係数の推定式を用い、第1表に示した10種の石炭の配合率を変えた5種類の多銘柄配合コークスについて、強度推定を試みた。その推定強度と実測強度との関係を図7に示す。なお、図7には、参考のために、従来法による推定値も示してある。図7から明らかなように、この発明によるコークス強度の推定値は、実測値とよく一致し、従来法では推定できない強度の変動を検出できることがわかる。
【0029】
なお、この発明は、上述したコークス強度の推定に限定されるものではなく、他のコークス特性、例えば、膨張性や収縮性などの特性の推定にも有効に適用することができる。
【0030】
【発明の効果】
この発明によれば、配合炭のコークス特性の推定に、異炭種間の相互作用を指標化して導入したので、所望のコークス特性を精度良く推定することができる。したがって、安定した品質のコークスを製造することができるので、高炉に用いる場合には、操業の安定に寄与するばかりでなく、装入炭の配合の自由度が広がり、劣質炭の増配合も可能となるので、原料炭のコスト低減にも寄与することができる。
【図面の簡単な説明】
【図1】N銘柄配合炭の2炭種の組み合わせを示す図である。
【図2】2種配合炭の組み合わせを示す図である。
【図3】2種配合炭のコークス強度の二つの実測例を示す図である。
【図4】2種配合炭の配合効果係数を変化させた場合のコークス強度の変化の一例を示す図である。
【図5】単味コークス強度の推定値と実測値との回帰結果を示す図である。
【図6】配合効果係数の推定値と測定値との回帰結果を示す図である。
【図7】多銘柄配合コークスの推定強度と実測強度との回帰結果を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE
[0002]
[Prior art]
For example, coke used in a blast furnace is required to have stable quality in terms of strength, particle size, porosity, etc. from the viewpoint of stable operation of the blast furnace, and among these, strength is a particularly important factor. This blast furnace coke is usually manufactured using 10 to 20 brands of blended coal, but the coal used for the raw coal has different properties depending on the country of origin, coal mine, coal seam, etc., and thus produces coke of stable quality. Therefore, it is indispensable to estimate the coke characteristics, especially the strength, in the blending of various raw coals and to manage the blending of the coal.
[0003]
For this reason, for example, JP-A-2-20592 discloses that for each raw coal constituting a blended coal, the logarithmic value of the fluidity at a constant temperature from the flow start temperature to the solidification temperature is obtained, It has been proposed to calculate the fluidity of blended coal by weighted averaging of logarithmic values and use the maximum value as the maximum fluidity of blended coal for estimating coke strength. In Japanese Patent Publication No. 2-14398, the average value of the solidification temperature, the variation of the solidification temperature, and the average value of the maximum fluidity of each raw coal are calculated in consideration of the mixing ratio of the coal blend, and these are calculated as parameters. It has been proposed to estimate the coke strength using
[0004]
Further, JP-A-63-199286 discloses a blending effect in which the post-hot-strength strength (CSR), which is an index of coke strength, is estimated as a set of combinations of multi-brand blended coals with two brands of blended coals. Is estimated by the sum of the CSR of the coke obtained by dry distillation of the coal alone and the CSR addition value calculated by multiplying the mixing ratio by the blending ratio, that is, the deviation from the CSR addition value of the plain coke is determined by the flow temperature. It has been proposed to estimate it as due to the overlap rate of.
[0005]
[Problems to be solved by the invention]
As described above, coal has different properties, such as a softening melting temperature, a temperature range, and fluidity, depending on the country of origin, coal mine, coal seam, and the like. Blast furnace coke is produced by blending coals having different properties. Recently, it has been pointed out that there is an interaction between coal particles due to the blending, so-called compatibility.
[0006]
However, in the methods proposed in the above-mentioned Japanese Patent Application Laid-Open Nos. Hei 2-20592 and Japanese Patent Publication No. Hei 2-14398, the coke strength is calculated using an index attributed to the carbonization degree of coal and an index attributed to the fluidity. This is an estimate, and no consideration is given to the compatibility of the formulation. On the other hand, in the method proposed in the above-mentioned Japanese Patent Application Laid-Open No. 63-199286, the CSR is estimated by assuming that the deviation from the added value of the CSR of the plain coke is caused by the overlapping rate of the flow temperature. Therefore, the compatibility of the composition is taken into consideration, but the introduction of the compatibility here is of a correction level and cannot be said to be insufficient. For this reason, conventionally, there was a problem that the coke strength of the blended coal could not be accurately estimated.
[0007]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a method for estimating coke characteristics of blended coal which can estimate a desired coke characteristic of blended coal with high accuracy. is there.
[0009]
[Means for Solving the Problems]
In order to achieve the above object , the present invention provides a method for estimating the coke characteristics of a blended coal comprising a plurality of types of coal,
The coal blend, as a set of two combinations of each coal,
The coke characteristics S (i, j) of the combination of each of the two types of coal, coal (i) and coal (j), are calculated by averaging the actual measured values of the simple coke characteristics S (i, i) and S (j, j). using the value, the blending effect coefficient Ru determined by the measure of the deviation a (i, j) from the mean value of the coke properties of the combination of the 2 coal type,
S (i, j) = {1 + a (i, j)} S (i, i) + S (j, j)} / 2
Represented by
Using the coke characteristics S (i, j) of the combination of the two types of coal and the simple coke characteristics S (i, i) of each coal, The estimation is performed using the following estimation formula separated into the additive term of the simple coke characteristic and the interaction term caused by the combination.
(Equation 2)
[0010]
In one embodiment of the present invention, the plain coke characteristics S (i, i) and the blending effect coefficient a (i, j) are determined by measuring the maximum fluidity (MF) and the average reflectance (Ro) previously measured for each coal. characteristic value and the total amount of active ingredient (TR), estimated at more obtained estimation equation heavy regression by the difference between the 2 coal type characteristic values.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, in order to accurately estimate properties such as coke strength of blended coal, the compatibility, which is the interaction between coal particles due to blending, is indexed and introduced into an equation for estimating properties such as strength. Therefore, it is basically based on the concept of Merrick (D. Merrick, Fvel, Vol 62, 567, 1983), but in the present invention, the combined strength of different coke types by mixing and the strength of each simple coke The interaction is considered by expressing the average value and the compounding effect coefficient as a measure of the deviation from the average value. Here, the compounding effect coefficient is a measure of deviation from the average value, and is an index of so-called compatibility determined by the combination.
[0012]
According to Merrick's concept described above, the coke strength S of the N brand blended coal is assumed to be a set of combinations of two coal types, as shown in FIG. 1, and is assumed not to be affected by the third component. As shown by the following equation (1), the coke strength S (i, j) between the two types of coal, coal (i) and coal (j), and the mixing ratio f (i), f (j) It is expressed by the sum of products with the contact probability f (i) and f (j) determined by
(Equation 3)
[0013]
As is clear from the equation (1), considering the coke strength S (i, j) between different coal types in obtaining the coke strength S of the N brand blended coal, the interaction between different coal types is considered. That is taken into account. The present invention further extends the above-described concept, improves the accuracy of estimating properties such as coke strength of blended coal by indexing the interaction between different types of coal.
[0014]
Hereinafter, for the sake of simplicity, the method for estimating the coke characteristics of the present invention will be described by taking, as an example, the case of estimating the coke strength of two types of blended coal.
The combination of the two types of coal blends is as shown in FIG.
(Equation 4)
[0015]
Here, when the coke strength between two coal types is the average value of the plain coke strength, S (1,2) = {S (1,1) + S (2,2)} / 2. Therefore, equation (2) is
(Equation 5)
Thus, additivity is established.
[0016]
On the other hand, when the coke strength between the two coal types does not become the average value due to the interaction, the deviation from the average value is defined as the rate of change, S (1,1) and S (2,2). Introducing the blending effect coefficient a (1,2) resulting from the combination of coal with
(Equation 6)
From the formulas (2) and (4), the coke strength S of the two types of blended coal is expressed as
(Equation 7)
Estimated by In the equation (5), the first and second terms on the right side represent a property-causing term (additive term) of the plain coal, and the third term on the right side represents an interaction term (combination effect term). .
[0017]
As described above, the coke strength S of the binary blended coal is determined by the properties of the plain coal, such as plain coke strengths S (1,1) and S (2,2), and coal (1) and coal (2). , And is divided into an additive term of simple coke strength and an interaction term that varies depending on the combination. Here, the plain coke strength can be actually measured, and the blending effect coefficient a (i, j) can be evaluated by actually measuring the coke strength of the binary blended coal.
[0018]
Fig. 3 (a) shows an actual measurement example of the coke strength of the two types of coal blended coal (1) and coal (2) shown in Fig. 3 (c), and Fig. 3 (b) shows the coal (3) and coal (1) shows actual measurement examples of coke strength of the two types of coal blends. The blending effect of the two kinds of coal blends differs depending on the combination of the coals, as is clear from FIGS. 3 (a) and 3 (b). Can be evaluated from the difference ΔS between the actually measured coke strength S and the additive value of the simple coke strength.
(Equation 8)
[0019]
FIG. 4 shows the change in coke strength when the blending effect coefficient was changed from −0.3 to 0.3, with the respective strength indexes of 90 and 70 for the two blended coals of coal A and coal B. An example is shown.
[0020]
Next, multi-brand blended coal will be described.
The coke strength S of N brand blended coal is the same as in the case of 2-class blended coal,
(Equation 9)
Can be represented by
[0021]
Here, S (i, j) = {1 + a (i, j)} S (i, i) + S (j, j)} / 2
(Equation 10)
It becomes. In the equation (8), the first term on the right-hand side represents a property-causing term (additive term) of the plain coal, and the second term on the right-hand side represents an interaction term (combination effect term).
[0022]
As described above, the coke strength S of the multi-brand blended coal is represented by the plain coke strength S (i, i) and the blending effect coefficient a (i, j). Here, the plain coke strength can be estimated by characteristic values such as an average reflectance (Ro), a maximum fluidity (MF), and a total active ingredient amount (TR), which indicate the degree of coalification of the plain coal. The mixing effect coefficient a (i, j) is actually obtained as described above, or is estimated from the difference between the average of characteristic values such as Ro, MF, and TR and the characteristic value. By estimating the coke strength S of the multi-brand blended coal using the plain coke strength S (i, i) and the blending effect coefficient a (i, j), highly accurate estimation is possible.
[0023]
【Example】
In estimating the coke strength of the blended coal according to the present invention, since simple plain coke strength and the blending effect coefficient are required, experiments were performed to obtain the respective estimation formulas. Ten types of coal (A to J) were used in the experiment, and dry distillation was performed under the conditions shown in Table 1 by filling the coal into a crucible having an inner diameter of 100 mmφ. The resulting coke is then granulated to 15 to 20 mm, after 600 rotates at 200g the CRS (strength after hot reaction) I drum strength tester for measuring, + intensity weight percent of 2.83mm index I 3 The strength was evaluated. Table 2 shows the measurement results. Also shown TR, TR × Ro, TR ×
[0024]
[Table 1]
[0025]
[Table 2]
As described above, a simple coke strength estimation equation with high measurement accuracy is obtained.
[0026]
In addition, Table 3 shows the estimation results of the blending effect coefficients obtained from the measurement of the coke strength of the two blended coals (blending ratio: 50% / 50%), and FIG. 6 shows the regression results.
[Table 3]
[0027]
Since the blending effect is considered to be caused by a difference in properties of the two types of coal, such as Ro, MF, and TR, the parameters for estimating the blending effect coefficient include a difference between the average property and the property, specifically, TR, was used TR × Ro, TR × Ro 2 , TR × MF, TR ×
In the parameters for estimating the blending effect coefficient, Ro, MF, and TR represent the average values of the two coal types, and dTR × Ro 2 = | TR (i) × Ro (i) 2 −TR (j) × Ro (j ) 2 |, dRo = | Ro (i) −Ro (j) | etc. used the difference between the parameters of the two coal types.
[0028]
Using the above equations for estimating simple coke strength and blending effect coefficient, strength estimation was attempted for five types of multi-brand blended coke with different blending ratios of the ten coals shown in Table 1. FIG. 7 shows the relationship between the estimated intensity and the measured intensity. FIG. 7 also shows an estimated value by the conventional method for reference. As is apparent from FIG. 7, the estimated value of the coke intensity according to the present invention is in good agreement with the actually measured value, and it can be seen that the fluctuation of the intensity which cannot be estimated by the conventional method can be detected.
[0029]
The present invention is not limited to the estimation of coke strength described above, but can be effectively applied to estimation of other coke characteristics, for example, characteristics such as expansion and contraction.
[0030]
【The invention's effect】
According to the present invention, since the interaction between different coal types is indexed and introduced into the estimation of the coke characteristics of the coal blend, the desired coke characteristics can be accurately estimated. Therefore, it is possible to produce coke of stable quality, so when used in a blast furnace, it not only contributes to the stability of the operation, but also increases the flexibility of blending the charged coal and increases the blending of inferior coal. Therefore, the cost of coking coal can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing combinations of two types of N brand blended coal.
FIG. 2 is a diagram showing a combination of two types of coal blends.
FIG. 3 is a diagram showing two actual measurement examples of the coke strength of two types of coal blends.
FIG. 4 is a diagram showing an example of a change in coke strength when a blending effect coefficient of two blended coals is changed.
FIG. 5 is a diagram illustrating a regression result between an estimated value and a measured value of the plain coke intensity.
FIG. 6 is a diagram showing a regression result between an estimated value and a measured value of a combination effect coefficient.
FIG. 7 is a diagram showing a regression result of estimated strength and measured strength of multi-brand mixed coke.
Claims (2)
前記配合炭を、各石炭の2種類の組み合わせの集合として、
石炭(i)および石炭(j)の各2炭種の組み合わせのコークス特性S(i,j)を、各単味コークス特性S(i,i)およびS(j,j)の実測値の平均値と、各2炭種の組み合わせのコークス特性の平均値からのずれの尺度で求める配合効果係数a(i,j)を用いて、
S(i,j)={1+a(i,j)}{S(i,i)+S(j,j)}/2
で表し、
複数種の石炭からなる配合炭のコークス特性Sを、前記各2炭種の組み合わせのコークス特性S(i,j)と、各石炭の単味コークス特性S(i,i)とを用いて、単味コークス特性の加成性項と、組み合わせによって生じる相互作用項とに分離された下記の推定式を用いて推定することを特徴とする配合炭のコークス特性推定方法。
The coal blend, as a set of two combinations of each coal,
The coke characteristics S (i, j) of the combination of each of the two types of coal, coal (i) and coal (j), are calculated by averaging the actual measured values of the simple coke characteristics S (i, i) and S (j, j). using the value, the blending effect coefficient Ru determined by the measure of the deviation a (i, j) from the mean value of the coke properties of the combination of the 2 coal type,
S (i, j) = {1 + a (i, j)} S (i, i) + S (j, j)} / 2
Represented by
The coke characteristics S of the blended coal composed of a plurality of types of coals are determined using the coke characteristics S (i, j) of the combination of the two types of coal and the simple coke characteristics S (i, i) of each coal. A method for estimating coke characteristics of blended coal, characterized in that the coke characteristics are estimated using the following estimation formula separated into an additive term of plain coke characteristics and an interaction term caused by a combination.
前記単味コークス特性S(i,i)および配合効果係数a(i,j)を、各石炭について予め実測した最高流動度(MF)、平均反射率(Ro)、全活性成分量(TR)の特性値や、2炭種の特性値の差で重回帰により求めた推定式で推定することを特徴とする配合炭のコークス特性推定方法。The method for estimating coke characteristics of blended coal according to claim 1,
The plain coke characteristics S (i, i) and the blending effect coefficient a (i, j) were measured for the maximum fluidity (MF), average reflectance (Ro), and total active ingredient amount (TR ) previously measured for each coal. characteristic value and the coke characteristics estimation method of coal blend, characterized by estimating a more obtained estimation equation heavy regression by the difference between the 2 coal type characteristic values.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06429296A JP3550862B2 (en) | 1996-03-21 | 1996-03-21 | Estimation method of coke characteristics of blended coal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06429296A JP3550862B2 (en) | 1996-03-21 | 1996-03-21 | Estimation method of coke characteristics of blended coal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09255966A JPH09255966A (en) | 1997-09-30 |
JP3550862B2 true JP3550862B2 (en) | 2004-08-04 |
Family
ID=13254026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06429296A Expired - Fee Related JP3550862B2 (en) | 1996-03-21 | 1996-03-21 | Estimation method of coke characteristics of blended coal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3550862B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4899326B2 (en) * | 2005-03-09 | 2012-03-21 | Jfeスチール株式会社 | Method for estimating coke shrinkage of blended coal and method for producing coke |
RU2570875C1 (en) | 2011-10-14 | 2015-12-10 | ДжФЕ СТИЛ КОРПОРЕЙШН | Coke production process |
WO2013129650A1 (en) * | 2012-03-01 | 2013-09-06 | 株式会社神戸製鋼所 | Process for producing raw material for coke production, and raw material for coke production produced by said process |
CA2866569C (en) | 2012-03-27 | 2016-09-13 | Jfe Steel Corporation | Method for preparing coal mixture for cokemaking, coal mixture, and method for producing coke |
IN2014MN01678A (en) | 2012-03-27 | 2015-07-03 | Jfe Steel Corp | |
WO2013145679A1 (en) | 2012-03-27 | 2013-10-03 | Jfeスチール株式会社 | Coal blending method for coke production, production method for coke |
CN112779037B (en) * | 2021-01-20 | 2021-12-14 | 山西太钢不锈钢股份有限公司 | Method for improving wear resistance of coke |
-
1996
- 1996-03-21 JP JP06429296A patent/JP3550862B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09255966A (en) | 1997-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3550862B2 (en) | Estimation method of coke characteristics of blended coal | |
KR101300941B1 (en) | Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending | |
WO2000006669A1 (en) | Method for producing metallurgical coke | |
TWI608092B (en) | Coal evaluation method and coke production method | |
JP2020200360A (en) | Method for estimating coke strength after hot reaction and method for manufacturing coke | |
JP6874502B2 (en) | Coke strength estimation method | |
JP4309780B2 (en) | Method for estimating strength after hot coke reaction and method for producing coke | |
JP2018048262A (en) | Estimation method of coke grain size | |
JP5820668B2 (en) | Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method | |
JP3493933B2 (en) | Method for estimating swellability of blended coal | |
JP2001133379A (en) | Method for estimating maximum fluidity of coal blend added with caking additive | |
JPH1192767A (en) | Method for estimating contraction of blend coal | |
JP2016164546A (en) | Method of evaluating coal and method of producing coke | |
JP4105794B2 (en) | Coke coking coal blending method | |
JPS6187787A (en) | Method for controlling blend of coal for production of coke | |
JPS6341423B2 (en) | ||
JPS6338664B2 (en) | ||
JP2006188609A (en) | Method for producing cokes | |
JPH0832882B2 (en) | Method for estimating apparent fluidity of non-caking coal | |
JPH0155313B2 (en) | ||
JPS60174951A (en) | Estimation of coke strength | |
JP5833473B2 (en) | Coke production raw material production method and coke production raw material produced by the production method | |
JPH07244039A (en) | Estimation of strength of coke | |
JP3551487B2 (en) | Bulk density management method for coke oven charging coal | |
JPH09255965A (en) | Method for estimating specific volume of coal blend |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040412 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |