JPH07244039A - Estimation of strength of coke - Google Patents

Estimation of strength of coke

Info

Publication number
JPH07244039A
JPH07244039A JP3613294A JP3613294A JPH07244039A JP H07244039 A JPH07244039 A JP H07244039A JP 3613294 A JP3613294 A JP 3613294A JP 3613294 A JP3613294 A JP 3613294A JP H07244039 A JPH07244039 A JP H07244039A
Authority
JP
Japan
Prior art keywords
coke
coal
strength
characteristic evaluation
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3613294A
Other languages
Japanese (ja)
Inventor
Shozo Itagaki
省三 板垣
Yoshio Suzuki
喜夫 鈴木
Izumi Shimoyama
泉 下山
Kiyoshi Fukada
喜代志 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3613294A priority Critical patent/JPH07244039A/en
Publication of JPH07244039A publication Critical patent/JPH07244039A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Coke Industry (AREA)

Abstract

PURPOSE:To certainly estimate the strength of coke with high accuracy by calculating the weighted mean of the characteristic evaluation index and average max. reflectivity calculated from the fluorescent spectrum characteristics of the compositional components at every raw material coal and the dispersion of the characteristic evaluation index and average max. reflectivity of coke raw material coal. CONSTITUTION:Fluorescent spectrum characteristics are measured under a constant condition at every compositional components of coal and a fluorescence relative intensity ratio I index at wavelengths of 800 and 550nm is calculated therefrom as a characteristic evaluation index. There is strong correlation between the weighted mean of the characteristic evaluation index and average max. reflectivity and coke strength and the calibration curve showing this correlation is preliminarily calculated experimentally. By using this calibration curve, coke strength can be accurately estimated. Further, the dispersion degree of the characteristic evaluation and the average max. reflectivity calculated at every coal to be compounded also correlates with coke strength. Therefore, by adding the dispersion of the characteristic evaluation index and the average max. reflectivity to calculation, the strength of coke can be estimated with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、調整したコークス炉装
入炭を乾留して所定強度のコークスを製造する際のコー
クス強度を高精度に推定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for highly accurately estimating the coke strength when a coke having a predetermined strength is produced by carbonizing the adjusted coal charged in a coke oven.

【0002】[0002]

【従来の技術】我が国においては、多種多様の石炭を輸
入し、これらを適当に配合してコークス炉への装入炭を
調整している。しかし、この石炭の性質はその産出国、
炭鉱、炭層などによって異なるものであり、このように
性質の異なる石炭から品質の安定したコークスを製造す
るためには、原料炭の配合技術を駆使して常時一定した
品質のコークスを製造し得るような装入炭を調整する必
要がある。
2. Description of the Related Art In Japan, a wide variety of coals are imported, and these are appropriately blended to adjust the charging of coal to a coke oven. But the nature of this coal depends on its origin,
It depends on the coal mine, coal seam, etc.In order to produce stable quality coke from coal with different properties, it is necessary to use coking coal blending technology to produce coke of consistent quality at all times. It is necessary to adjust the charging charcoal.

【0003】コークスの品質管理項目の一つとしてコー
クス強度が挙げられる。このコークス強度の推定法に関
しては従来から膨大な研究が行われており、一定の乾留
条件下では、コークス強度が石炭の粘結性を表すパラメ
ータおよび石炭化度を表すパラメータで推定されること
は周知の事実である。この粘結性を表すパラメータに
は、ギセラー流動度試験(JISM8801)による最
大流動度(MF)、石炭化度を表すパラメータとして
は、ビトリニットの平均最大反射率(JISM881
6)が良く使われている。
Coke strength is one of the quality control items of coke. A huge amount of research has been conducted on the method of estimating the coke strength, and under certain conditions of carbonization, the coke strength cannot be estimated using the parameters representing the caking property of coal and the parameter representing the degree of coalification. It is a well-known fact. The parameter indicating the caking property is the maximum fluidity (MF) by the Gisellar fluidity test (JISM8801), and the parameter indicating the coalification degree is the average maximum reflectance of vitrinite (JISM881).
6) is often used.

【0004】しかしながら、多種類の石炭を配合した場
合、石炭銘柄の相違により軟化開始温度、最高流動度温
度、固化温度が異なるため、配合炭のMF推定に単味銘
柄のMFを加算してその平均にて算出すると、実際の配
合炭のMFとは大きく異なり、コークス強度を正確に推
定することは困難である。このため最近では、特開平2
−20592号公報に示すように軟化開始温度〜固化温
度間の一定温度毎の配合石炭の流動度の対数値を求め、
その値を加重平均して配合炭の流動度を算出し、その最
大値を配合石炭の最大流動度として用いる方法が検討さ
れている。
However, when various kinds of coal are blended, the softening start temperature, the maximum fluidity temperature, and the solidification temperature are different due to the difference in the coal brand, so the MF of the plain brand is added to the MF estimation of the blended coal. When calculated as an average, it is very different from the MF of the actual blended coal, and it is difficult to accurately estimate the coke strength. For this reason, recently, Japanese Patent Laid-Open No.
As shown in -20592, the logarithmic value of the fluidity of the blended coal for each constant temperature between the softening start temperature and the solidification temperature is determined,
A method of calculating the fluidity of blended coal by weighted averaging the values and using the maximum value as the maximum fluidity of blended coal is being studied.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の方
法では、非微粘結炭、風化炭などMFを示さない石炭を
も他の石炭と同様に取り扱うようになるため、コークス
強度推定精度が低下する原因となるという問題がある。
また、MFの測定には長時間を要し、手作業が多くて手
間が掛かるばかりでなく、測定精度も悪いので、他の新
しい指数管理方法が望まれている。
In the conventional method as described above, the coal having no MF, such as non-coking coal and weathered coal, is handled in the same manner as other coals, and therefore the coke strength estimation accuracy is improved. However, there is a problem in that
In addition, it takes a long time to measure the MF, which requires a lot of manual work, which is troublesome, and the measurement accuracy is poor. Therefore, another new index management method is desired.

【0006】この発明は、かかる問題点を解決するため
になされたもので、労力を少なく、確実に精度の高いコ
ークス強度推定を行うコークス強度推定法を得ることを
目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a coke strength estimating method that reliably and accurately estimates coke strength with less labor.

【0007】[0007]

【課題を解決するための手段】本発明に係るコークス強
度推定法は、複数の種類の原料石炭を混合して乾留しコ
ークスを製造する際のコークス強度の推定法において、
原料石炭毎に各組織成分の蛍光スペクトル特性を測定し
て特性評価指数を求めると共に、原料石炭毎に平均最大
反射率を求め、コークス原料石炭について前記特性評価
指数、平均最大反射率の荷重平均と特性評価指数、平均
最大反射率のばらつきを求め、これらの加重平均とばら
つきに基づいてコークス強度を推定することものであ
る。
A coke strength estimating method according to the present invention is a coke strength estimating method for producing a coke by mixing a plurality of types of raw material coal and carbonizing the mixture.
Along with determining the characteristic evaluation index by measuring the fluorescence spectrum characteristics of each tissue component for each raw coal, obtain the average maximum reflectance for each raw coal, the characteristic evaluation index for coke raw coal, the weighted average of the average maximum reflectance and The characteristic evaluation index and the variation in the average maximum reflectance are obtained, and the coke strength is estimated based on the weighted average and the variation.

【0008】[0008]

【作用】コークス原料石炭についての特性評価指数と平
均最大反射率の各々の荷重平均とコークス強度の間には
強い相関がある。よって、特性評価指数、平均最大反射
率の荷重平均とコークス強度の関係を表す検量線を予め
実験等により求めておき、この検量線を使用することに
より、正確にコークス強度を推定できる。さらに、配合
される石炭ごとに求められる特性評価指数、平均最大反
射率が、配合されたコークス原料石炭においてどの程度
ばらついているかということも、コークスの強度と相関
がある。よって、特性評価指数、平均最大反射率のばら
つきを計算に加えることにより、より正確なコークス強
度の推定が可能となる。
[Function] There is a strong correlation between the weighted average of the characterization index and the average maximum reflectance of the coke raw material coal and the coke strength. Therefore, the coke strength can be accurately estimated by previously obtaining a calibration curve representing the relationship between the characteristic evaluation index, the weighted average of the average maximum reflectance, and the coke strength by an experiment, and using this calibration curve. Furthermore, how much the characteristic evaluation index and average maximum reflectance required for each blended coal vary in the blended coke raw material coal is also correlated with the strength of the coke. Therefore, by adding the characteristic evaluation index and the variation in the average maximum reflectance to the calculation, it is possible to more accurately estimate the coke strength.

【0009】[0009]

【実施例】本発明の実施例を図面に基づいて以下に説明
する。先ず、石炭組織成分毎に蛍光スペクトル特性を一
定条件(励起波長450−490nm,測定視野絞り
0.63mm,波長走査ステップ幅2nm)下にて測定
し、これから特性評価指数として波長800nmと55
0nmの蛍光相対強度の比であるI指数(I=I800
550 )を求める。
Embodiments of the present invention will be described below with reference to the drawings. First, the fluorescence spectrum characteristic is measured for each coal tissue component under a constant condition (excitation wavelength 450-490 nm, measurement field stop 0.63 mm, wavelength scanning step width 2 nm), and then the wavelength 800 nm and 55 are used as characteristic evaluation indexes.
I index, which is the ratio of the relative fluorescence intensities at 0 nm (I = I 800 /
I 550 ).

【0010】図1は石炭組織成分毎の蛍光スペクトル特
性を示すグラフで、横軸は波長(nM)であり、縦軸は
その時の蛍光相対強度(%)である。又、図中の符号は
石炭の組織成分を表し、次の通りである。 Ex:エクジニット、Sf:セミフジニット、F: フジニッ
ト、V: ビトリニット 図1に示すように蛍光スペクトル特性は石炭組織成分毎
に著しく異なるため、I指数も同様に異なる。同様に石
炭の銘柄によってもI指数が異なる。
FIG. 1 is a graph showing the fluorescence spectrum characteristics for each coal texture component, where the horizontal axis is the wavelength (nM) and the vertical axis is the relative fluorescence intensity (%) at that time. The symbols in the figure represent the texture components of coal and are as follows. Ex: ecdinite, Sf: semi-fuginite, F: fujinitite, V: vitrinite As shown in FIG. 1, the fluorescence spectrum characteristics are remarkably different for each coal texture component, so that the I index is also different. Similarly, the I index differs depending on the brand of coal.

【0011】このI指数から石炭を構成する組織成分を
考慮したQ指数を求めるには下記の式にて算出する。 Q=Σki・I(i)・Vi ここで、I(i)はマセラルiのI、Viはマセラルi
の含有率、kiは多くの石炭の溶融状況を詳細に調査
し、重回帰から求めた指数である。本実施例において
は、このQ指数が、特許請求の範囲に記載の特性評価指
数に対応する。
To obtain the Q index from the I index in consideration of the constituents of the coal, the following formula is used. Q = Σki · I (i) · Vi where I (i) is I of maceral i and Vi is maceral i.
The content rate of ki, ki, is an index obtained from multiple regressions by investigating the melting conditions of many coals in detail. In this embodiment, the Q index corresponds to the characteristic evaluation index described in the claims.

【0012】石炭の平均最大反射率はJISM8816
に基づき測定する。上記の方法を用いて、石炭性状の異
なる10銘柄の石炭のQ指数と平均最大反射率の加重平
均値を算出し、それぞれ分布が異なる配合炭を調整し、
一定条件下にて乾留を行いコークスを製造した。その
後、乾留したコークスの強度を測定して、それぞれの指
数との関係を調査した。
The average maximum reflectance of coal is JISM8816.
It measures based on. Using the above method, the weighted average of the Q index and average maximum reflectance of 10 brands of coal with different coal properties is calculated, and blended coals with different distributions are adjusted,
Coke was produced by dry distillation under constant conditions. Then, the strength of the dry-distilled coke was measured, and the relationship with each index was investigated.

【0013】図2はQ指数値、平均最大反射率の荷重平
均値とコークス強度の関係を示すグラフであって、縦軸
はコークス強度(DI30 15)、横軸はQ指数値の荷重平
均値を示す。図中の符号において、4は平均最大反射率
の荷重平均値が1.20の場合、5は平均最大反射率の
荷重平均値が1.10の場合、6は平均最大反射率の荷
重平均値が1.00の場合の曲線である。図によつて示
されるように平均最大反射率の荷重平均値が一定の場
合、Q指数の荷重平均値が極めて小さい時、または極め
て大きい場合にはコークス強度が低下することが判る。
FIG. 2 is a graph showing the relationship between the Q index value, the weighted average value of the average maximum reflectance and the coke strength, where the vertical axis is the coke strength (DI 30 15 ) and the horizontal axis is the weighted average of the Q index value. Indicates a value. In the symbols in the figure, 4 is a weighted average value of average maximum reflectance, 1.20 is a weighted average value of average maximum reflectance, 6 is a weighted average value of average maximum reflectance, and 6 is a weighted average value of average maximum reflectance. Is a curve when is 1.00. As shown in the figure, when the weighted average value of the average maximum reflectance is constant, when the weighted average value of the Q index is extremely small or extremely large, the coke strength decreases.

【0014】このように、Q指数値、平均最大反射率の
各々の加重平均値をRa、Q指数値の荷重平均値をQ
a、コークス強度をDIとすると、これらの間の相関関
係は極めて強いので、コークス強度DIの推定式は、 DI=f(Ra,Qa) と表すことができる。ここにfは、図2で示される関数
である。
Thus, the weighted average value of the Q index value and the average maximum reflectance is Ra, and the weighted average value of the Q index value is Q.
If a and coke strength are DI, the correlation between them is extremely strong, so the estimation formula of coke strength DI can be expressed as DI = f (Ra, Qa). Here, f is the function shown in FIG.

【0015】図3は、配合された石炭のQ指数の標準偏
差であるQ指数分布値σQ とコークス強度の関係を示す
グラフで、縦軸はコークス強度(DI30 15)、横軸はQ
指数分布値σQ を示す。Q指数分布値は、例えば、10
銘柄の石炭を配合する場合には、各銘柄毎の10個のQ
指数の標準偏差として求まる値である。図中の符号7
は、平均最大反射率が1.10、Q指数が0.35に一
定された場合の曲線を示す。図3によれば、Q指数が同
一であっても、その分布が大きいほどコークス強度が低
下することが判る。
FIG. 3 is a graph showing the relationship between the Q index distribution value σ Q which is the standard deviation of the Q index of blended coal and the coke strength. The vertical axis represents coke strength (DI 30 15 ) and the horizontal axis represents Q.
Indicates the exponential distribution value σ Q. The Q index distribution value is, for example, 10
When blending brands of coal, 10 Qs for each brand
This is the value obtained as the standard deviation of the index. Reference numeral 7 in the figure
Shows a curve when the average maximum reflectance is set to 1.10 and the Q index is set to 0.35. According to FIG. 3, even if the Q index is the same, the larger the distribution, the lower the coke strength.

【0016】又、図4は配合された石炭の平均最大反射
率の標準偏差である反射率分布σROとコークス強度との
関係を示すグラフで、縦軸はコークス強度(D
30 15)、横軸は反射率分布値σROを示す。反射率分布
値は、例えば、10銘柄の石炭を配合する場合には、各
銘柄毎の10個の平均最大反射率の標準偏差として求ま
る値である。図中の符号8は、平均最大反射率が1.1
0、Q指数値が0.35に一定された場合の曲線を示
す。図4によれば、反射率が同一であってもその分布が
大きいほどコークス強度が低下することが判る。
FIG. 4 is a graph showing the relationship between the coke strength and the reflectance distribution σ RO , which is the standard deviation of the average maximum reflectance of blended coal, and the vertical axis represents the coke strength (D
I 30 15 ), the horizontal axis represents the reflectance distribution value σ RO . The reflectance distribution value is a value obtained as a standard deviation of 10 average maximum reflectances for each brand when, for example, 10 brands of coal are blended. Reference numeral 8 in the figure has an average maximum reflectance of 1.1.
The curve when 0 and the Q index value are fixed to 0.35 is shown. It can be seen from FIG. 4 that the coke strength decreases as the distribution increases even if the reflectance is the same.

【0017】以上のことから、Q指数値、平均最大反射
率およびそれぞれの分布値は、コークス強度と高度に相
関があることが確認され、これらの指数を用いて次のよ
うなコークス強度推定式を作成した。 DI=f(Ra,Qa)+a・σQ +b・σRO+c ……(1) ここで、a,b,cは定数である。
From the above, it was confirmed that the Q index value, the average maximum reflectance and the respective distribution values have a high degree of correlation with the coke strength. It was created. DI = f (Ra, Qa) + a * [sigma] Q + b * [sigma] RO + c (1) where a, b, and c are constants.

【0018】(1)式を用いたコークス強度推定法と従
来のコークス強度推定法との比較を図5に示す。 図5
は6ケ月間にわたりコークス製造を行った実操業の5日
毎の計測回数におけるコークス強度の平均実測値1と、
同一のコークスに対して本発明のコークス強度推定法に
より推定されたコークス平均強度値2と、従来のコーク
ス強度推定法により推定されたコークス平均強度値3と
をそれぞれ同一縦軸上に配して羅列したものである。
FIG. 5 shows a comparison between the coke strength estimation method using the equation (1) and the conventional coke strength estimation method. Figure 5
Is the average measured value 1 of the coke strength at the number of measurements every 5 days in the actual operation of coke production for 6 months,
The coke average strength value 2 estimated by the coke strength estimation method of the present invention for the same coke and the coke average strength value 3 estimated by the conventional coke strength estimation method are arranged on the same vertical axis. It is a list.

【0019】この図5によれば、コークス強度の平均実
測値1に対して従来のコークス強度推定法により推定さ
れたコークス平均強度値3との差異バラツキは0.3で
あるのに比較して、 本発明のコークス強度推定法によ
り推定されたコークス平均強度値2との差異バラツキは
0.15となり、管理バラツキは半減される。
According to FIG. 5, the difference between the average measured value 1 of the coke strength and the average coke strength value 3 estimated by the conventional coke strength estimation method is 0.3. The difference variation from the coke average strength value 2 estimated by the coke strength estimation method of the present invention is 0.15, and the management variation is halved.

【0020】[0020]

【発明の効果】本発明によれば、原料石炭の各組織成分
の蛍光スペクトル特性を測定して特性評価指数を求める
と共に、原料石炭毎の平均最大反射率を求め、コークス
原料石炭について前記特性評価指数、平均最大反射率の
荷重平均と特性評価指数、平均最大反射率のばらつきを
求め、これらの加重平均とばらつきに基づいてコークス
強度を推定するので、高精度にてコークス強度を推定す
ることが可能となる。
EFFECT OF THE INVENTION According to the present invention, the fluorescence spectrum characteristic of each tissue component of the raw material coal is measured to obtain the characteristic evaluation index, and the average maximum reflectance for each raw material coal is obtained to evaluate the characteristics of the coke raw material coal. Index, average maximum reflectance weighted average and characterization index, average maximum reflectance variations are obtained, and coke strength is estimated based on these weighted averages and variations, so coke strength can be estimated with high accuracy. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】石炭組織成分毎の蛍光スペクトル特性を示すグ
ラフである。
FIG. 1 is a graph showing fluorescence spectrum characteristics for each coal texture component.

【図2】Q指数値、平均最大反射率とコークス強度の関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between Q index value, average maximum reflectance and coke strength.

【図3】Q指数分布値とコークス強度の関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the Q exponential distribution value and coke strength.

【図4】反射率分布値とコークス強度との関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between reflectance distribution values and coke strength.

【図5】実操業の5日毎の計測回数におけるコークス強
度の平均実測値、本発明による平均推定値と、従来の法
による平均推定値との比較を示す図である。
FIG. 5 is a diagram showing a comparison between an average measured value of coke strength, an average estimated value according to the present invention, and an average estimated value according to a conventional method at the number of measurements every five days in actual operation.

【符号の説明】[Explanation of symbols]

1 コークス強度の実測値 2 本発明のコークス強度推定法により推定されたコー
クス強度値 3 従来のコークス強度推定法により推定されたコーク
ス強度値 4 平均最大反射率が1.20の場合の曲線 5 平均最大反射率が1.10の場合の曲線 6 平均最大反射率が1.00の場合の曲線 7 平均最大反射率が1.10、Q指数値が0.35に
一定の場合の曲線 8 平均最大反射率が1.10、Q指数値が0.35に
一定の場合の曲線 Ex エクジニット Sf セミフジニット F フジニット V ビトリニット
1 Measured value of coke strength 2 Coke strength value estimated by coke strength estimation method of the present invention 3 Coke strength value estimated by conventional coke strength estimation method 4 Average Curve 5 when maximum reflectance is 1.20 5 Average Curve when maximum reflectance is 1.10 6 Curve when average maximum reflectance is 1.00 7 Curve when average maximum reflectance is 1.10 and Q index value is constant at 0.35 8 Average maximum Curve with constant reflectivity of 1.10 and Q index value of 0.35 Ex Eczinit Sf Semi-Fujinit F Fujinit V Vitrinit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深田 喜代志 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Fukada 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の種類の原料石炭を混合して乾留し
コークスを製造する際のコークス強度の推定法におい
て、原料石炭毎に各組織成分の蛍光スペクトル特性を測
定して特性評価指数を求めると共に、原料石炭毎に平均
最大反射率を求め、コークス原料石炭について前記特性
評価指数、平均最大反射率の荷重平均と特性評価指数、
平均最大反射率のばらつきを求め、これらの加重平均と
ばらつきに基づいてコークス強度を推定することを特徴
とするコークス強度の推定法。
1. In a method of estimating coke strength when coke is produced by mixing a plurality of types of raw material coal and carbonizing the mixture, the fluorescence spectrum characteristic of each tissue component is measured for each raw material coal to obtain a characteristic evaluation index. Along with, the average maximum reflectance is obtained for each raw material coal, the characteristic evaluation index for coke raw material coal, the weighted average and the characteristic evaluation index of the average maximum reflectance,
A coke strength estimation method characterized in that the coke strength is estimated based on the weighted average and the dispersion of the average maximum reflectance.
JP3613294A 1994-03-07 1994-03-07 Estimation of strength of coke Withdrawn JPH07244039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3613294A JPH07244039A (en) 1994-03-07 1994-03-07 Estimation of strength of coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3613294A JPH07244039A (en) 1994-03-07 1994-03-07 Estimation of strength of coke

Publications (1)

Publication Number Publication Date
JPH07244039A true JPH07244039A (en) 1995-09-19

Family

ID=12461264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3613294A Withdrawn JPH07244039A (en) 1994-03-07 1994-03-07 Estimation of strength of coke

Country Status (1)

Country Link
JP (1) JPH07244039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132795A (en) * 2005-11-10 2007-05-31 Japan Agengy For Marine-Earth Science & Technology Vitrinite reflectance measuring method, and vitrinite reflectance measuring device
KR100928977B1 (en) * 2002-11-27 2009-11-26 주식회사 포스코 Method for Analyzing Coking Characteristics of Coal by Non-Coking Method
KR101421208B1 (en) * 2012-11-07 2014-07-23 주식회사 포스코 Selection method of carboneous materials and manufacturing method of reduced iron using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928977B1 (en) * 2002-11-27 2009-11-26 주식회사 포스코 Method for Analyzing Coking Characteristics of Coal by Non-Coking Method
JP2007132795A (en) * 2005-11-10 2007-05-31 Japan Agengy For Marine-Earth Science & Technology Vitrinite reflectance measuring method, and vitrinite reflectance measuring device
KR101421208B1 (en) * 2012-11-07 2014-07-23 주식회사 포스코 Selection method of carboneous materials and manufacturing method of reduced iron using the same

Similar Documents

Publication Publication Date Title
WO2010103828A1 (en) Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending
JP4385816B2 (en) Method for estimating coke strength of blended coal and method for producing coke
JP2020200360A (en) Method for estimating coke strength after hot reaction and method for manufacturing coke
US4370201A (en) Process for maintaining coal proportions in a coal blend
JPH07244039A (en) Estimation of strength of coke
RU2675567C1 (en) Coal assessment method and the coke production method
JP4547766B2 (en) Method for measuring coke strength of coal and method for producing coke
JP4147986B2 (en) Method for measuring coke strength of coal and method for producing coke
JP4899326B2 (en) Method for estimating coke shrinkage of blended coal and method for producing coke
JP3550862B2 (en) Estimation method of coke characteristics of blended coal
JP5820668B2 (en) Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method
JP2699180B2 (en) Coke production method
JP6274165B2 (en) Coal evaluation method and coke production method
KR102299553B1 (en) Prediction method for cold strength of coke
CN113484282A (en) Identification method for doping inferior lean coal, lean coal or anthracite in semi-coke powder
JP2001133379A (en) Method for estimating maximum fluidity of coal blend added with caking additive
JP3051193B2 (en) Manufacturing method of coke for metallurgy
KR102144195B1 (en) Evaluation method for reflectance distribution index of coal blend
JP3302446B2 (en) Determination method of coal weathering degree
JP2002173688A (en) Method for estimation of melting property of coal and strength of coke and method for producing coke
JPH0155313B2 (en)
JPH09151380A (en) Method for estimating strength of coke for blast furnace
JPH03239795A (en) Evaluation of properties of bulk density improver for use in coke oven
KR101205108B1 (en) Predicting method of fluidity of coal for coke making
JPH0972869A (en) Coke strength estimating method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508