JPH09151195A - Complex solution for separating oxygen and separation of oxygen - Google Patents

Complex solution for separating oxygen and separation of oxygen

Info

Publication number
JPH09151195A
JPH09151195A JP7311318A JP31131895A JPH09151195A JP H09151195 A JPH09151195 A JP H09151195A JP 7311318 A JP7311318 A JP 7311318A JP 31131895 A JP31131895 A JP 31131895A JP H09151195 A JPH09151195 A JP H09151195A
Authority
JP
Japan
Prior art keywords
oxygen
complex
solution
separation
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7311318A
Other languages
Japanese (ja)
Other versions
JP2703875B2 (en
Inventor
Kazuhisa Hiratani
和久 平谷
Toshikazu Takahashi
利和 高橋
Kazuyuki Kasuga
和行 春日
Riichi Nakatsuji
利一 中辻
Ichiro Nakayama
一郎 仲山
Ayumi Okamoto
歩 岡本
Nobuyoshi Ito
延義 伊東
Taizo Ichida
泰三 市田
Makoto Uchino
誠 内野
Takayoshi Adachi
貴義 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Taiyo Toyo Sanso Co Ltd
Nippon Sanso Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Japan Oxygen Co Ltd
Taiyo Toyo Sanso Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Japan Oxygen Co Ltd, Taiyo Toyo Sanso Co Ltd, Nippon Sanso Corp filed Critical Agency of Industrial Science and Technology
Priority to JP7311318A priority Critical patent/JP2703875B2/en
Publication of JPH09151195A publication Critical patent/JPH09151195A/en
Application granted granted Critical
Publication of JP2703875B2 publication Critical patent/JP2703875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject solution by dissolving a specific cobalt Schiff base complex in an organic solvent, capable of making the complex be bonded to oxygen by adsorption of oxygen, precipitating the resultant substance as a solid and separating oxygen from an oxygen-containing gas such as air in high efficiency. SOLUTION: This complex solution for separating oxygen is obtained by dissolving a cobalt Schiff base complex of the formula [R1 is a (substituted) phenylene, a (substituted) pyridylene or a (substituted) alkylene; R2 to R5 are each H, a (substituted) phenyl, a (substituted) alkyl, a halogen or a (substituted) alkoxy; Me is methyl] in an organic solvent (e.g. o-dichlorobenzene) in 0.1-1mol/l concentration of the cobalt Schiff base complex, causes a phase separation due to the binding of the complex to oxygen resulting from adsorption of oxygen to cause precipitation as a solid phase and is capable of separating oxygen from an oxygen-containing gas such as air in high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コバルトシッフ塩
基錯体を用いた酸素分離用錯体溶液及び酸素分離法に関
し、詳しくは空気等の酸素含有ガスから高効率で酸素を
分離可能な酸素分離用錯体溶液と、その酸素分離用錯体
溶液を用いて温度変動方式により空気等の酸素含有ガス
から高効率で酸素を分離可能な酸素分離法に関する。
TECHNICAL FIELD The present invention relates to a complex solution for oxygen separation using a cobalt Schiff base complex and an oxygen separation method, and more particularly to a complex for oxygen separation capable of separating oxygen from an oxygen-containing gas such as air with high efficiency. The present invention relates to an oxygen separation method capable of separating oxygen from an oxygen-containing gas such as air with high efficiency by a temperature fluctuation method using a solution and the complex solution for oxygen separation.

【0002】[0002]

【従来の技術】従来、工業的規模で空気中の酸素を分離
製造する方法としては、空気を加圧、冷却、膨張して液
化し、多段の精留工程を経て、沸点差によって窒素と酸
素とを分離する深冷分離方法がある。しかしこの方法で
は、多量のエネルギーを投入する必要がある。また高純
度の酸素または窒素を大量に製造する目的には適する
が、少量生産には適さない。また近年、ゼオライトまた
はカーボンモレキュラーシーブス等の吸着剤を用いて、
該吸着剤に窒素または酸素を選択的に吸着させることに
より、酸素または窒素を分離製造する吸着分離方法があ
る。この方法は運転操作が簡便で起動時間が短いという
利点を有しており比較的小容量の酸素や窒素の製造には
適している。しかし、この吸着分離方法は大容量の製造
には不適である。さらに、製品の製造量に比較して装置
が大きくなる欠点がある。特に酸素を製造する場合に
は、最大酸素濃度が95%に過ぎないという欠点があ
る。
2. Description of the Related Art Conventionally, as a method for separating and producing oxygen in air on an industrial scale, air is pressurized, cooled, expanded, liquefied, and subjected to multi-stage rectification processes. There is a cryogenic separation method that separates However, this method requires a large amount of energy input. It is suitable for mass production of high-purity oxygen or nitrogen, but is not suitable for small-quantity production. In recent years, using adsorbents such as zeolite or carbon molecular sieves,
There is an adsorption separation method for separating and producing oxygen or nitrogen by selectively adsorbing nitrogen or oxygen on the adsorbent. This method has the advantages of a simple operation and a short start-up time, and is suitable for producing a relatively small volume of oxygen or nitrogen. However, this adsorption separation method is not suitable for large-volume production. Further, there is a disadvantage that the apparatus becomes large as compared with the production amount of the product. Particularly when producing oxygen, there is a disadvantage that the maximum oxygen concentration is only 95%.

【0003】これらの欠点を克服するために、最近で
は、酸素とのみ可逆的に反応する錯体を利用して酸素を
分離する方法が幾つか提案されている。この方法は例え
ば、特開昭58−20296号公報に記載されているよ
うに、5℃以下の低温で錯体溶液と空気を接触させて、
空気中の酸素を錯体溶液に吸収させて、次いで25℃以
上の高温で酸素を錯体溶液から放出させ、これを製品酸
素として採取するもので、錯体溶液は再び5℃以下の低
温に冷却して酸素を吸収させる。以下同じ工程を繰り返
して酸素を連続的に採取し得るものである(温度変動式
化学吸収法)。また、この酸素分離法のもう一つの方法
は、錯体への酸素結合割合が気相中の酸素分圧の大きさ
により変化することにより、錯体溶液を温度一定条件下
にして、高酸素分圧下において酸素を吸収し、低酸素分
圧下で吸収していた酸素を脱離させて酸素を分離採取す
る圧力変動式化学吸収法がある。いずれにしてもこの種
の方法では錯体溶液を常に均一な液状として処理してい
た。
In order to overcome these drawbacks, recently, several methods have been proposed for separating oxygen using a complex that reacts reversibly only with oxygen. This method is carried out, for example, by contacting the complex solution with air at a low temperature of 5 ° C. or lower, as described in JP-A-58-20296.
Oxygen in the air is absorbed by the complex solution, then oxygen is released from the complex solution at a high temperature of 25 ° C or higher, and this is collected as product oxygen. The complex solution is cooled again to a low temperature of 5 ° C or lower. Absorb oxygen. Hereinafter, oxygen can be continuously collected by repeating the same process (temperature fluctuation type chemical absorption method). Another method of the oxygen separation method is that the complex solution is kept at a constant temperature under a high oxygen partial pressure by changing the oxygen bonding ratio to the complex according to the magnitude of the oxygen partial pressure in the gas phase. There is a pressure fluctuation type chemical absorption method in which oxygen is absorbed and the oxygen absorbed under a low oxygen partial pressure is desorbed to separate and collect oxygen. In any case, in this type of method, the complex solution is always treated as a uniform liquid.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の化学吸収法に用いられる錯体溶液には次のような欠点
がある。従来の錯体溶液は、酸素吸脱着条件が悪く、酸
素吸着時には5℃以下に冷却し、酸素脱着時には60℃
以上に加熱せねばならず、酸素の吸脱着に多大の加熱・
冷却エネルギーが必要となる。また従来の錯体溶液は、
錯体の酸素吸収能力が小さいため、錯体の利用効率が低
く、錯体溶液を0℃に冷却しても大気圧の空気から酸素
を吸収する時、錯体への酸素結合割合は20〜40%に
過ぎなかった。更に、錯体溶液はその組成を決めると、
酸素吸収温度と酸素放出温度も同時に定まり、これらの
温度を変更することができなかった。この為、環境熱や
排熱を十分に利用することができなかった。
However, the complex solutions used in these chemical absorption methods have the following disadvantages. The conventional complex solution has poor oxygen adsorption / desorption conditions, and is cooled to 5 ° C. or less during oxygen adsorption and 60 ° C. during oxygen desorption.
It must be heated as described above, and a great deal of heating and
Cooling energy is required. Also, the conventional complex solution is
Since the complex has a low oxygen absorption ability, the utilization efficiency of the complex is low. When the complex solution absorbs oxygen from atmospheric pressure air even when cooled to 0 ° C., the oxygen bond ratio to the complex is only 20 to 40%. Did not. Further, when the composition of the complex solution is determined,
The oxygen absorption temperature and the oxygen release temperature were determined at the same time, and these temperatures could not be changed. For this reason, it was not possible to sufficiently utilize environmental heat and exhaust heat.

【0005】また従来の錯体溶液は、錯体の立体障害が
不十分であるために、酸素の吸収・脱離を繰り返し行う
に従って錯体が二量体化し、酸素吸収能力が低下してし
まう問題があった。また錯体溶液の溶媒は、酸素の吸収
速度を速くするため、極性が大きい、例えば1−メチル
-2-ピロリジノン(双極子モーメント4.09デバイ)
の如きものを選択する必要があり、それらの多くは親水
性であった。従って酸素分離装置には、原料ガス中の水
分を除去する設備が必要であった。なお、上記双極子モ
ーメントの単位デバイ(Debye)は3.34×10-30C-
m(MKS)である。また従来の錯体溶液は、錯体の飽
和溶解度が低いために、実用的な酸素発生量を得るため
には多量の溶媒が必要であり、大量の錯体溶液を循環使
用せねばならず、設備の大型化を招いてしまう。
[0005] Further, the conventional complex solution has a problem in that the steric hindrance of the complex is insufficient, so that the complex is dimerized as oxygen is repeatedly absorbed and desorbed, and the oxygen absorbing ability is reduced. Was. Further, the solvent of the complex solution has a large polarity, for example, 1-methyl to increase the oxygen absorption rate.
-2-pyrrolidinone (dipole moment 4.09 Debye)
And many of them were hydrophilic. Therefore, the oxygen separation device required equipment for removing moisture in the raw material gas. Incidentally, the unit Debye of the dipole moment is 3.34 × 10 −30 C−.
m (MKS). In addition, the conventional complex solution has a low saturation solubility of the complex, so a large amount of solvent is required to obtain a practical amount of generated oxygen, and a large amount of the complex solution must be circulated and used. It will lead to conversion.

【0006】本発明は上記事情に鑑みてなされたもの
で、空気等の酸素含有ガスから高効率で酸素を分離可能
な酸素分離用錯体溶液と、その酸素分離用錯体溶液を用
いて温度変動方式により空気等の酸素含有ガスから高効
率で酸素を分離可能な酸素分離法の提供を目的としてい
る。
The present invention has been made in view of the above circumstances, and provides a complex solution for oxygen separation capable of separating oxygen from an oxygen-containing gas such as air with high efficiency, and a temperature fluctuation method using the complex solution for oxygen separation. It is an object of the present invention to provide an oxygen separation method capable of separating oxygen from an oxygen-containing gas such as air with high efficiency.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
式(A)
The invention according to claim 1 is
Formula (A)

【0008】[0008]

【化2】 Embedded image

【0009】(式中R1は、置換または未置換フェニレ
ン基、置換または未置換ピリジレン基、置換または未置
換アルキレン基からなる群より選択される1つであり、
R2〜R6は、水素、置換または未置換フェニル基、置換
または未置換アルキル基、ハロゲン、置換または未置換
アルコキシ基からなる群より選択される1つであり、M
eはメチル基を表す)で示されるコバルトシッフ塩基錯
体を有機溶媒に溶かしてなり、酸素の吸着によって錯体
が酸素と結合し固相として析出する相分離を生じること
を特徴とする酸素分離用錯体溶液である。請求項2に係
る発明は、前記有機溶媒が、疎水性溶媒であることを特
徴とする請求項1の酸素分離用錯体溶液である。請求項
3に係る発明は、前記コバルトシッフ塩基錯体の濃度を
0.1〜1mol/lとしたことを特徴とする請求項2
の酸素分離用錯体溶液である。請求項4に係る発明は、
請求項1から3のいずれか1項に記載の酸素分離用錯体
溶液に、空気または酸素を含む混合ガスを接触させて、
酸素と結合した前記錯体を固相として析出させる酸素吸
着工程と、析出した酸素結合錯体を加熱して酸素を脱着
させる酸素脱着工程とを備えた酸素分離法である。請求
項5に係る発明は、前記酸素吸着工程を−10〜50℃
の温度範囲で行い、前記酸素脱着工程を10〜80℃の
温度範囲で行うことを特徴とする請求項4記載の酸素分
離法である。
(Wherein R 1 is one selected from the group consisting of a substituted or unsubstituted phenylene group, a substituted or unsubstituted pyridylene group, a substituted or unsubstituted alkylene group,
R2 to R6 are one selected from the group consisting of hydrogen, a substituted or unsubstituted phenyl group, a substituted or unsubstituted alkyl group, a halogen, and a substituted or unsubstituted alkoxy group;
e represents a methyl group), and a cobalt Schiff base complex represented by the formula: is dissolved in an organic solvent, and the complex is bonded to oxygen by adsorption of oxygen to cause phase separation in which a solid phase is deposited to form a complex for oxygen separation. It is a solution. The invention according to claim 2 is the complex solution for oxygen separation according to claim 1, wherein the organic solvent is a hydrophobic solvent. The invention according to claim 3 is characterized in that the concentration of the cobalt Schiff base complex is 0.1 to 1 mol / l.
Is a complex solution for separating oxygen. The invention according to claim 4 is
Contacting the mixed solution containing oxygen or oxygen with the complex solution for oxygen separation according to any one of claims 1 to 3,
It is an oxygen separation method comprising an oxygen adsorption step of depositing the complex bound to oxygen as a solid phase and an oxygen desorption step of heating the deposited oxygen-bonded complex to desorb oxygen. In the invention according to claim 5, the oxygen adsorption step is performed at -10 to 50C.
5. The oxygen separation method according to claim 4, wherein the oxygen desorption step is performed in a temperature range of 10 to 80 ° C. 6.

【0010】[0010]

【発明の実施の形態】本発明の酸素分離用錯体溶液に用
いられる錯体は、前記式(A)で表される構造を有して
いる。この錯体は、一般的な有機溶媒に対する溶解度が
従来の錯体よりも向上する。また、この錯体は、立体障
害となる大きな置換基の導入によって安定性が高い。
BEST MODE FOR CARRYING OUT THE INVENTION The complex used in the complex solution for separating oxygen of the present invention has a structure represented by the above formula (A). This complex has a higher solubility in common organic solvents than conventional complexes. In addition, this complex has high stability due to the introduction of a large substituent that becomes a steric hindrance.

【0011】本発明の酸素分離用錯体溶液は、錯体
(A)を有機溶媒に溶解させてなるものである。このコ
バルトシッフ塩基錯体が酸素と結合すると固相となって
溶液中に析出し、それを加熱して酸素を脱離させると液
相化する相分離現象を生じる。即ち、コバルトシッフ塩
基錯体と特定の軸配位子と溶媒とからなる錯体溶液に空
気又は酸素含有ガスを接触させ、該錯体溶液に酸素を吸
収させた時、酸素が結合した酸素結合錯体が固相となっ
て溶液より析出して固化沈澱し、これを加熱により液相
化することにより吸収していた酸素を脱離させ、酸素を
得るとともに錯体溶液が再生される。
The complex solution for oxygen separation of the present invention is obtained by dissolving the complex (A) in an organic solvent. When this cobalt Schiff base complex binds to oxygen, it forms a solid phase and precipitates in a solution, and when it is heated to desorb oxygen, a phase separation phenomenon occurs in which it becomes a liquid phase. That is, when air or an oxygen-containing gas is brought into contact with a complex solution comprising a cobalt Schiff base complex, a specific axial ligand, and a solvent, and the complex solution absorbs oxygen, the oxygen-bonded complex to which oxygen is bound becomes solid. As a phase, it precipitates out of the solution and solidifies and precipitates, and this is converted into a liquid phase by heating to remove absorbed oxygen, thereby obtaining oxygen and regenerating the complex solution.

【0012】酸素分離の際に、相分離現象を利用する
と、例えば20℃の温度で大気圧の空気から酸素を吸収
させた時、90%以上の錯体に酸素が結合して固相化
し、この固相体を40〜50℃の温度に加熱すると吸収
されていたほとんどの酸素を放出して液相となる。この
結果、錯体溶液の冷却用エネルギーの低減、錯体の利用
効率が向上できる。更に、相分離現象を起こしやすい良
溶媒と、起こし難い貧溶媒との混合溶媒を錯体溶液の溶
媒とした場合、それらの組成を変えることにより相分離
解消温度が変えられるので、環境熱や排熱を利用するこ
とが可能となり、酸素分離のエネルギー効率が格段に向
上できる。又、相分離により固化沈澱した酸素結合錯体
は、溶液中に溶けている酸素結合錯体より反応性が低下
して、二量化の反応速度も無視できる程度に遅くなる。
この結果、長期にわたって繰り返し錯体溶液を使用でき
るのである。相分離現象により酸素結合錯体が固化沈澱
するということは、酸素結合の反応系の外に排除される
ということであり、そして錯体溶液中の酸素未結合の錯
体も、酸素結合により相分離し系外に排除される。従っ
て酸素未結合錯体の溶解度を超える固相の酸素未結合錯
体があると、この酸素未結合の錯体は溶液に順次溶解し
て酸素と反応することができる。このため、錯体濃度を
溶解度以上の濃度として反応に使用することが可能とな
り、酸素運搬量を所望の量に増加させることができる。
更に、溶媒の溶解度に関する条件が緩和されて疎水性の
溶媒を採用することができる。
When the phase separation phenomenon is utilized in the oxygen separation, for example, when oxygen is absorbed from the air at atmospheric pressure at a temperature of 20 ° C., 90% or more of the complex is bound with oxygen to be solidified. When the solid phase body is heated to a temperature of 40 to 50 ° C., most of the absorbed oxygen is released to become a liquid phase. As a result, the energy for cooling the complex solution can be reduced, and the utilization efficiency of the complex can be improved. Furthermore, when a mixed solvent of a good solvent that easily causes a phase separation phenomenon and a poor solvent that hardly causes a phase separation phenomenon is used as a solvent for the complex solution, the phase separation elimination temperature can be changed by changing their composition, so that environmental heat or waste heat Can be used, and the energy efficiency of oxygen separation can be significantly improved. Further, the oxygen-bonded complex solidified and precipitated by the phase separation has lower reactivity than the oxygen-bonded complex dissolved in the solution, and the reaction rate of dimerization becomes negligibly slow.
As a result, the complex solution can be used repeatedly over a long period of time. The fact that the oxygen-bonded complex solidifies and precipitates due to the phase separation phenomenon means that it is excluded from the reaction system of the oxygen bond, and the unbonded complex in the complex solution also undergoes phase separation by the oxygen bond. Be excluded outside. Therefore, if there is a solid-state oxygen-unbound complex exceeding the solubility of the oxygen-unbound complex, the oxygen-unbound complex can be sequentially dissolved in the solution to react with oxygen. Therefore, it is possible to use the complex at a concentration equal to or higher than the solubility in the reaction, and it is possible to increase the oxygen transport amount to a desired amount.
Further, the conditions concerning the solubility of the solvent are relaxed, so that a hydrophobic solvent can be employed.

【0013】本発明の酸素分離用錯体溶液に用いる有機
溶媒としては、疎水性溶媒と親水性溶媒を含む各種の溶
媒が使用できる。これら有機溶媒のうち、疎水性溶媒を
使用することによって、原料空気等の原料混合ガス中に
含まれる水分を除去する操作を省くことができる。従っ
て、本発明の酸素分離用錯体溶液に用いる有機溶媒とし
ては、疎水性の高い有機溶媒が好適である。このような
有機溶媒としては、鎖式炭化水素、環式炭化水素、芳香
族炭化水素、ハロゲン化炭化水素、O,N,Sを含む疎
水性炭化水素化合物のうちから適宜選択して用いること
ができ、例えば、ヘキサン、シクロヘキサン等のC5
12の飽和炭化水素化合物、1,2−ジクロロベンゼ
ン、1,2−ジブロモベンゼン、3,4−ジクロロトル
エン、2,4−ジクロロトルエン、2,3−ジクロロト
ルエン、2,6−ジクロロトルエン、2−クロロパラキ
シレン、4−クロロパラキシレン、1−クロロナフタレ
ン、1,2,3,4−テトラヒドロナフタレン、1−メ
チルナフタレン、2−エチルナフタレン、1,2,3−
トリメチルベンゼン、1,2,3,5−テトラメチルベ
ンゼン、1,4−ジイソプロピルベンゼン、ターシャリ
ーアミルベンゼン、ノルマルアミルベンゼン、フェニル
シクロヘキサン、4−ターシャリーブチルトルエン、メ
チルベンゾエイト、ノルマルプロピルベンゾエイト、チ
オアニソール、インダンなどである。
As the organic solvent used in the complex solution for separating oxygen of the present invention, various solvents including a hydrophobic solvent and a hydrophilic solvent can be used. By using a hydrophobic solvent among these organic solvents, the operation of removing water contained in a raw material mixed gas such as raw material air can be omitted. Therefore, as the organic solvent used in the complex solution for oxygen separation of the present invention, an organic solvent having high hydrophobicity is preferable. Such an organic solvent may be appropriately selected from chain hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, and hydrophobic hydrocarbon compounds containing O, N and S. For example, C 5 to hexane, cyclohexane, etc.
Saturated hydrocarbon compound C 12, 1,2-dichlorobenzene, 1,2-dibromobenzene, 3,4-dichlorotoluene, 2,4-dichlorotoluene, 2,3-dichlorotoluene, 2,6-dichlorotoluene, 2-chloroparaxylene, 4-chloroparaxylene, 1-chloronaphthalene, 1,2,3,4-tetrahydronaphthalene, 1-methylnaphthalene, 2-ethylnaphthalene, 1,2,3-
Trimethylbenzene, 1,2,3,5-tetramethylbenzene, 1,4-diisopropylbenzene, tertiary amylbenzene, normal amylbenzene, phenylcyclohexane, 4-tertiarybutyltoluene, methylbenzoate, normal propylbenzoate, Thioanisole, indane and the like.

【0014】本発明の酸素分離用錯体溶液において、錯
体(A)の濃度は、0.1〜1mol/lの範囲内の濃
度とし、錯体溶液の粘性(流動性)、錯体溶液と処理気
体との接触性及び錯体溶液の搬送性などの点を考慮し
て、好ましくは0.1〜0.3mol/lとする。
In the complex solution for oxygen separation of the present invention, the concentration of the complex (A) is in the range of 0.1 to 1 mol / l, the viscosity (fluidity) of the complex solution, In consideration of the contact property of the complex solution and the transport property of the complex solution, the content is preferably 0.1 to 0.3 mol / l.

【0015】本発明に係る酸素分離用錯体溶液は、上記
式(A)で表されるコバルトシッフ塩基錯体と、溶媒と
からなり、酸素吸収時に酸素と結合した酸素結合錯体が
固相として析出する相分離が起こるようなものである。
The complex solution for oxygen separation according to the present invention comprises a cobalt Schiff base complex represented by the above formula (A) and a solvent, and an oxygen-bonded complex bonded to oxygen at the time of oxygen absorption precipitates as a solid phase. It is such that phase separation occurs.

【0016】軸配位子を含むコバルトシッフ塩基錯体は
酸素に対して活性であり、次式(1)のように酸素(O
2)と反応する。
A cobalt Schiff base complex containing an axial ligand is active toward oxygen, and is expressed by the following formula (1).
2 ) reacts with.

【0017】[0017]

【数1】 (Equation 1)

【0018】式中、L・Coは軸配位子を含むコバルト
シッフ塩基錯体を表す。アルファベットで示された
(s)は固体状態、(l)は液体状態、(g)は気体状
態を表す。極性の大きい溶媒を使用した場合は、酸素の
結合は相変化を起こさず液相を保ったまま錯体溶液中で
行われる。
In the formula, L · Co represents a cobalt Schiff base complex containing an axial ligand. (S) shown in the alphabet represents a solid state, (l) represents a liquid state, and (g) represents a gas state. When a highly polar solvent is used, oxygen binding is carried out in the complex solution while maintaining a liquid phase without causing a phase change.

【0019】相分離は次に述べる機構によって起こるも
のと考えられる。コバルトシッフ塩基錯体は酸素が結合
するとコバルト上の電荷密度が酸素分子の方に移動する
ことが知られている。この結果、双極子モーメントが発
生しCo-O2間の結合の極性が大きくなる。このような
酸素結合に伴う錯体の極性変化は、錯体の溶媒への溶解
度に大きな影響を与える。錯体溶液の溶媒の極性が小さ
い場合、酸素が結合した錯体の極性が大きいのでその溶
解度は酸素未結合の錯体より溶解度が小さくなる。
It is considered that the phase separation occurs by the following mechanism. It is known that the charge density on cobalt moves toward oxygen molecules when oxygen is bound in the cobalt Schiff base complex. As a result, a dipole moment is generated, and the polarity of the Co—O 2 bond increases. Such a change in polarity of the complex due to the oxygen bond greatly affects the solubility of the complex in a solvent. When the polarity of the solvent of the complex solution is small, the solubility of the complex bound to oxygen is lower than that of the complex not bound to oxygen because the polarity of the complex to which oxygen is bound is large.

【0020】錯体溶液が酸素を吸収した時の酸素結合錯
体の生成量はその錯体の酸素親和力と酸素分圧から定ま
る。この場合、酸素結合錯体の生成量が大きく、生成し
た酸素結合錯体の溶媒に対する溶解度が十分に小さく
て、かつ錯体溶液が酸素を吸収し生ずる酸素結合錯体の
生成量より生成した酸素結合錯体の溶媒に対する溶解度
が小さい時、生成した酸素結合錯体は溶媒中に溶解した
状態で存在できず、次式(2)に示すように固化沈澱す
ると考えられている。
The amount of oxygen-bound complex formed when the complex solution absorbs oxygen is determined by the oxygen affinity and oxygen partial pressure of the complex. In this case, the amount of the oxygen-bonded complex formed is large, the solubility of the generated oxygen-bonded complex in the solvent is sufficiently small, and the solvent of the oxygen-bonded complex generated from the amount of the oxygen-bonded complex generated by the complex solution absorbing oxygen is generated. It is considered that when the solubility in is small, the oxygen-bonded complex formed cannot exist in the state of being dissolved in the solvent, but solidifies and precipitates as shown in the following formula (2).

【0021】[0021]

【数2】 (Equation 2)

【0022】なお、l, g は前記した如く液相、気相を
示し、s は固相を示す。
Here, l and g indicate a liquid phase and a gas phase as described above, and s indicates a solid phase.

【0023】このような相分離現象が起こる時、酸素結
合錯体はもはや溶液中に溶解できずに沈澱するため、上
記式(2)の反応は固化沈澱する方向に平衡が移動す
る。この結果、固化沈澱により減少した溶液中の酸素結
合錯体の濃度を補おうと、酸素と未配位の酸素錯体が酸
素と結合して酸素結合錯体を生成する方向に反応が進
む。酸素結合錯体が溶液中に生成すれば、再び固化沈澱
が起こるという機構で、酸素と未配位の酸素錯体が消費
され、溶液中にはほぼ100%酸素結合錯体で占められ
た相分離溶液となると考えられている。
When such a phase separation phenomenon occurs, the oxygen-bonded complex no longer dissolves in the solution but precipitates, so that the reaction of the above formula (2) shifts the equilibrium in the direction of solidification and precipitation. As a result, in order to compensate for the concentration of the oxygen-bound complex in the solution that has been reduced by the solidification precipitation, the reaction proceeds in a direction in which the oxygen and the uncoordinated oxygen complex combine with oxygen to form the oxygen-bound complex. When the oxygen-bonded complex is formed in the solution, solidification and precipitation occur again, and oxygen and the uncoordinated oxygen complex are consumed. In the solution, almost 100% of the phase-separated solution is occupied by the oxygen-bonded complex. Is believed to be.

【0024】一方、相分離溶液の温度を上げていくと、
酸素結合錯体の溶媒に対する溶解度が上がるため、酸素
結合錯体が溶液中に溶解しはじめる。十分に溶液温度が
上がると完全に固化沈澱が溶液から消滅する。そのと
き、上記説明とは逆に、温度を上げると酸素結合錯体の
溶解量が減少し酸素を放出する方向に平衡が移動する。
その結果、相分離解消と共に酸素が発生し、酸素が未配
位の酸素錯体を再び溶液中に得ることができるのであ
る。
On the other hand, when the temperature of the phase separation solution is increased,
Since the solubility of the oxygen-bound complex in the solvent increases, the oxygen-bound complex starts to dissolve in the solution. When the solution temperature rises sufficiently, the solidified precipitate completely disappears from the solution. At that time, contrary to the above description, when the temperature is increased, the dissolved amount of the oxygen-bonded complex decreases, and the equilibrium shifts in the direction of releasing oxygen.
As a result, oxygen is generated together with the elimination of phase separation, and an oxygen complex in which oxygen is not coordinated can be obtained again in the solution.

【0025】酸素結合錯体の溶媒への溶解度と、溶液中
での酸素結合錯体の平衡生成濃度が同じときの錯体溶液
の温度を相分離温度と定義する。前記相分離温度より低
い温度で相分離が起こると、上記説明した反応機構によ
り溶液は、ほぼ100%酸素結合錯体で占められるた
め、大量の酸素を吸収することができる。次に、錯体溶
液の温度が相分離温度を超えると、相分離が解消され均
一溶液となる。そのためには、錯体溶液の酸素結合錯体
濃度が、均一溶液での溶解度にもどることが必要であ
る。これは、固化していた酸素結合錯体が溶解する方向
に平衡が移動し、次にその溶解した酸素結合錯体から酸
素が離脱することにより、酸素と未配位の酸素錯体にも
どる反応が起こることで解決する。そのために、溶液か
ら酸素が一気に脱離する。このように相分離温度近傍の
小さい温度差で酸素分離が可能となる。また、相分離が
起こる錯体溶液では、溶解度以上の過剰の固相状態にあ
る酸素未結合錯体も、順次溶媒に溶解して酸素と反応す
ることができる。これは、溶媒に溶解している錯体Co
(l)が酸素と反応して消費されると、溶液中の酸素未
結合錯体Co(s)が溶けて、溶媒に溶けた酸素未結合
錯体になり、酸素O2と反応し、これを化学反応式で表
すと下記式(3)式となる。そして、これが繰り返され
るからである。そして、これが繰り返されるから過剰の
固相状態にある酸素未結合錯体が順次溶媒に溶解して酸
素と反応することができる。
The temperature of the complex solution when the solubility of the oxygen-bonded complex in the solvent and the equilibrium production concentration of the oxygen-bonded complex in the solution are the same is defined as the phase separation temperature. When the phase separation occurs at a temperature lower than the phase separation temperature, the solution described above can absorb a large amount of oxygen because the solution is occupied by almost 100% of the oxygen-bonded complex. Next, when the temperature of the complex solution exceeds the phase separation temperature, the phase separation is eliminated and a homogeneous solution is obtained. For that purpose, it is necessary that the concentration of the oxygen-bonded complex in the complex solution returns to the solubility in the homogeneous solution. This is because the equilibrium shifts in the direction in which the solidified oxygen-bonded complex dissolves, and then oxygen is released from the dissolved oxygen-bonded complex, causing a reaction to return to oxygen and the uncoordinated oxygen complex. To solve. Therefore, oxygen is released from the solution at once. Thus, oxygen separation can be performed with a small temperature difference near the phase separation temperature. Further, in a complex solution in which phase separation occurs, an unbound oxygen-bound complex in an excess solid phase more than the solubility can be sequentially dissolved in a solvent and reacted with oxygen. This is due to the complex Co dissolved in the solvent.
When (l) is consumed by reacting with oxygen, the oxygen-unbound complex Co (s) in the solution dissolves to form an oxygen-unbound complex dissolved in the solvent and reacts with oxygen O 2 , which is chemically converted. When represented by a reaction formula, the following formula (3) is obtained. This is because this is repeated. Then, since this is repeated, the excess oxygen-unbound complex in the solid phase state can be sequentially dissolved in the solvent and reacted with oxygen.

【0026】[0026]

【数3】 (Equation 3)

【0027】それ故、相分離が起こる錯体溶液では、上
記式(3)の反応が起こるため、溶解度以上の錯体を加
えて酸素吸収液とすることができる。従って吸収塔から
放散塔への酸素運搬量を所望の量に増加させることがで
きる。更に溶解度に関する溶媒の条件が緩和されて、疎
水性の溶媒を採用することができる。
Therefore, in a complex solution in which phase separation occurs, the reaction of the above formula (3) occurs, and thus a complex having solubility or higher can be added to make an oxygen absorbing solution. Therefore, the amount of oxygen transported from the absorption tower to the stripping tower can be increased to a desired amount. Further, the conditions of the solvent regarding the solubility are relaxed, so that a hydrophobic solvent can be employed.

【0028】本発明は、上記した相分離を利用して酸素
を効率よく分離採取するものであり、相分離の条件を満
足させるためには、酸素結合錯体の溶解度が小さく、真
の酸素親和力が大きくなるような錯体と軸配位子及び溶
媒の組み合わせを選ぶ必要がある。本発明に係るコバル
トシッフ塩基錯体としては、式(A)で表される中心金
属がコバルトであるサリチルアルデヒド系シッフ塩基錯
体である。
According to the present invention, oxygen is efficiently separated and collected by utilizing the above-described phase separation. In order to satisfy the conditions for phase separation, the solubility of the oxygen-bonded complex is low and the true oxygen affinity is low. It is necessary to select a combination of the complex, the axial ligand, and the solvent that increases the size. The cobalt Schiff base complex according to the present invention is a salicylaldehyde-based Schiff base complex in which the central metal represented by the formula (A) is cobalt.

【0029】酸素結合錯体には、錯体1分子に酸素1分
子が結合した一量体と、錯体2分子に酸素が1分子結合
した二量体の二種類がある。一量体は、可逆的に酸素を
結合又は脱離できるが、二量体は可逆的に酸素を結合又
は脱離できない。そこで錯体の二量化を防ぐため、錯体
が互いに接近できないようにシッフ塩基に立体障害基を
付与することがある。本発明に係るコバルトシッフ塩基
錯体では、R5,R6,R7,R8をメチル基とするの
が効果的である。以後、ジアミン部に4つのメチル基が
付与されたテトラメチルエチレンジアミンをTmenと
表記する。
There are two types of oxygen-bonded complexes: a monomer in which one molecule of oxygen is bonded to one molecule of the complex, and a dimer in which one molecule of oxygen is bonded to two molecules of the complex. Monomers can reversibly bind or release oxygen, while dimers cannot reversibly bind or release oxygen. Therefore, in order to prevent dimerization of the complex, a steric hindrance group may be added to the Schiff base so that the complexes cannot approach each other. In the cobalt Schiff base complex according to the present invention, it is effective that R5, R6, R7 and R8 are methyl groups. Hereinafter, tetramethylethylenediamine in which four methyl groups are added to the diamine portion is referred to as Tmen.

【0030】本発明に係る酸素分離法は、上述した酸素
分離用錯体溶液に、空気または酸素を含む混合ガスを接
触させて、酸素分離用錯体溶液中のコバルトシッフ塩基
錯体に酸素を結合させる酸素吸着工程と、酸素結合錯体
を含む酸素分離用錯体溶液を加熱して酸素を脱着させる
酸素脱着工程とを備える。前記酸素吸着工程は−10〜
50℃の温度範囲で行い、前記酸素脱着工程は10〜8
0℃の温度範囲で行うことが好ましい。この温度範囲で
あれば、酸素分離用錯体溶液の酸素吸脱着が効率良く行
えるとともに、錯体の二量化が進行することがなく、長
期間安定して運転することができる。
In the oxygen separation method according to the present invention, an oxygen or oxygen-containing mixed gas is brought into contact with the above-described complex solution for oxygen separation to bond oxygen to the cobalt Schiff base complex in the complex solution for oxygen separation. The method includes an adsorption step and an oxygen desorption step of heating a complex solution for oxygen separation containing an oxygen-bonded complex to desorb oxygen. The oxygen adsorption step is -10 to
It is performed in a temperature range of 50 ° C., and the oxygen desorption step is 10 to 8
It is preferable to carry out in a temperature range of 0 ° C. In this temperature range, oxygen adsorption / desorption of the complex solution for oxygen separation can be performed efficiently, and dimerization of the complex does not progress, and stable operation can be performed for a long period of time.

【0031】上述した酸素分離用錯体溶液を用い、温度
変動方式によって酸素分離を行うことにより、従来の酸
素分離用錯体溶液を用いた酸素分離と比べて酸素の吸脱
着に必要な加熱・冷却エネルギーが低減され、低コスト
で酸素を製造することができるようになる。
By using the above-described complex solution for oxygen separation and performing oxygen separation by a temperature fluctuation method, the heating and cooling energy required for adsorbing and desorbing oxygen is required as compared with the conventional oxygen separation using the complex solution for oxygen separation. And oxygen can be produced at low cost.

【0032】この酸素分離法において、酸素吸着工程お
よび酸素脱着工程の圧力は特に限定されないが、通常は
100Torr以上、好ましくは大気圧程度の圧力下で実施
される。
In the oxygen separation method, the pressure in the oxygen adsorption step and the oxygen desorption step is not particularly limited, but is usually carried out at a pressure of 100 Torr or more, preferably about atmospheric pressure.

【0033】上述した本発明による酸素分離法は、酸素
分離用錯体溶液を収容した吸脱着槽に空気などの酸素を
含む原料ガスを供給し、酸素分離用錯体溶液に酸素を吸
着させ、次いで錯体溶液を加熱して酸素を脱着させ、酸
素を回収する回分式(バッチ式)、若しくは、吸着槽と
脱着槽に酸素分離用錯体溶液を循環させる構成とし、吸
着槽に空気などの酸素を含む原料ガスを供給し、酸素分
離用錯体溶液に酸素を吸着させ、脱着槽で錯体溶液を加
熱して酸素を脱着させ、酸素を回収する連続式のいずれ
の酸素分離装置を用いて実施しても良い。
In the above-described oxygen separation method according to the present invention, a source gas containing oxygen such as air is supplied to an adsorption / desorption tank containing a complex solution for oxygen separation, oxygen is adsorbed on the complex solution for oxygen separation, and then the complex is separated. Batch type (batch type) for heating the solution to desorb oxygen and recover oxygen, or circulating a complex solution for oxygen separation in the adsorption tank and desorption tank, and raw material containing oxygen such as air in the adsorption tank The gas may be supplied, oxygen may be adsorbed on the oxygen separation complex solution, the complex solution may be heated in a desorption tank to desorb oxygen, and oxygen may be recovered using any continuous oxygen separation device. .

【0034】[0034]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (使用錯体)この実施例において使用するコバルトシッ
フ塩基錯体(A)は、ジオール化合物を2−クロロメチ
ル−3−クロロ−プロペンと反応させジクロル誘導体を
得た後、2位にヒドロキシル基、3位に水素原子をもつ
サリチルアルデヒド誘導体と、塩基の存在下反応させて
得たエーテル化合物を熱分解してビスサリチルアルデヒ
ド誘導体を得、続いてTmen(2,3−ジアミノ−
2,3−ジメチルブタン)を反応させて得た新規シッフ
塩基をコバルトと錯体形成反応を行い合成した。合成し
た本発明に係る錯体は前記式(A)により表され、そし
て表1に示すがごとく、R1はパラフェニレン基、R2、
R3、R5は水素であり、R4、R6はメトキシ基である1
の錯体である。なお、以下の実施例は本発明の一例を例
示したに過ぎず、本発明は以下の実施例に限定されるも
のではない。
The present invention will be described below in detail with reference to examples. (Complex used) The cobalt Schiff base complex (A) used in this example is obtained by reacting a diol compound with 2-chloromethyl-3-chloro-propene to obtain a dichloro derivative, and then obtaining a hydroxyl group at the 2-position and a 3-position at the 2-position. Is reacted with a salicylaldehyde derivative having a hydrogen atom in the presence of a base to thermally decompose an ether compound to obtain a bissalicylaldehyde derivative, followed by Tmen (2,3-diamino-
2,3-Dimethylbutane) was synthesized by performing a complex formation reaction with cobalt. The synthesized complex according to the present invention is represented by the above formula (A), and as shown in Table 1, R1 is a paraphenylene group, R2,
R3 and R5 are hydrogen, and R4 and R6 are methoxy groups.
Is a complex of Note that the following embodiments are merely examples of the present invention, and the present invention is not limited to the following embodiments.

【0035】[0035]

【表1】 [Table 1]

【0036】[実施例1]:錯体溶液の相分離の確認 前記錯体1および溶媒から、所定濃度の錯体溶液15m
lをバイアル容器内に調製した。これを恒温槽に入れ、
バイアル容器の気相に酸素を低圧から次第に高圧となる
ように導入し、錯体溶液に酸素を吸収させた。酸素を吸
収して結合した錯体は固化して溶液中に析出して、この
酸素結合錯体が析出した時点を相分離開始時点とした。
具体的には、室温において所定量の錯体をバイアル容器
に入れて所定量の溶媒を加え、これを恒温槽に浸かるよ
うに固定する。恒温槽の温度は室温でも吸着温度でも良
い。次いでバイアル容器の気相部分を真空ポンプで排気
し、溶液から気泡が生成しなくなってから攪拌し均一溶
液とする。バイアル容器内の気相は、真空ポンプで排気
する以外に、窒素や希ガス等でパージしたり、真空排気
とパージを組み合わせてもよい。それによって錯体溶液
中の酸素を除去する。均一溶液からさらに完全に酸素を
除去するために、溶液を冷却固化真空排気したり、溶液
を攪拌させながら真空排気を行う。
Example 1 Confirmation of Phase Separation of Complex Solution A complex solution having a predetermined concentration of 15 m was prepared from the complex 1 and the solvent.
1 was prepared in a vial container. Put this in a thermostat,
Oxygen was introduced into the gas phase of the vial vessel from a low pressure to a gradually increasing pressure, and oxygen was absorbed in the complex solution. The complex that absorbed and bound oxygen was solidified and precipitated in the solution, and the time at which the oxygen-bound complex precipitated was defined as the phase separation start time.
Specifically, a predetermined amount of the complex is placed in a vial container at room temperature, a predetermined amount of a solvent is added, and the complex is fixed so as to be immersed in a thermostat. The temperature of the thermostat may be room temperature or adsorption temperature. Next, the gaseous phase portion of the vial container is evacuated by a vacuum pump, and stirred after a bubble is no longer generated from the solution to obtain a uniform solution. The gas phase in the vial container may be purged with nitrogen, a rare gas, or the like, or may be combined with vacuum exhaust and purge, instead of being evacuated with a vacuum pump. Thereby, oxygen in the complex solution is removed. In order to more completely remove oxygen from the homogeneous solution, the solution is cooled, solidified and evacuated, or evacuated while stirring the solution.

【0037】溶液中の酸素を完全に除去した後、恒温槽
温度を所定の吸収温度に設定して、酸素を吸収させ、相
分離を行った。相分離が生じると、溶液に沈澱が生じて
懸濁溶液となり、溶液の色は懸濁するにつれて黒みを帯
びてくる。圧力条件により相分離の有無を確認した。そ
の結果を表2に示す。なお、表2中、溶媒としてo−D
CB、2−Etnp、Indaneとあるのは、それぞ
れo−ジクロロベンゼン、2−エチルナフタレン、イン
ダンである。前記溶媒のうち、o−ジクロロベンゼンは
極性溶媒であり、2−エチルナフタレンとインダンは非
極性溶媒である。また、実験後温度を低下させて室温に
到達した際には均一溶液に戻ることから、相分離は温度
によっても影響されることを確認した。
After the oxygen in the solution was completely removed, the temperature of the thermostat was set to a predetermined absorption temperature, oxygen was absorbed, and phase separation was performed. When phase separation occurs, the solution precipitates and becomes a suspended solution, and the color of the solution becomes darker as it is suspended. The presence or absence of phase separation was confirmed by the pressure condition. Table 2 shows the results. In Table 2, o-D was used as the solvent.
CB, 2-Etnp, and Indane are o-dichlorobenzene, 2-ethylnaphthalene, and indane, respectively. Among the above solvents, o-dichlorobenzene is a polar solvent, and 2-ethylnaphthalene and indane are nonpolar solvents. Further, when the temperature was lowered after the experiment and reached room temperature, the solution returned to a homogeneous solution. Thus, it was confirmed that the phase separation was also affected by the temperature.

【0038】[0038]

【表2】 [Table 2]

【0039】表2から明らかなように、前記錯体1を用
いて作製したそれぞれの錯体溶液は、酸素を吸収させる
ことにより、酸素と結合した錯体が固相として析出する
相分離を示すことがわかる。しかも、この相分離は、実
際の酸素分離条件(吸収温度や圧力)に適した範囲であ
ることから、これら錯体溶液を用いて酸素分離操作を行
う場合に、酸素結合錯体の相分離を生じさせて、酸素吸
脱着量の増大を図ることが可能であることがわかる。
As is apparent from Table 2, each of the complex solutions prepared using the above-mentioned complex 1 shows a phase separation in which the complex bonded to oxygen is precipitated as a solid phase by absorbing oxygen. . In addition, since this phase separation is in a range suitable for actual oxygen separation conditions (absorption temperature and pressure), when performing an oxygen separation operation using these complex solutions, phase separation of the oxygen-bonded complex occurs. Thus, it is understood that it is possible to increase the oxygen adsorption / desorption amount.

【0040】[実施例2]:酸素親和力の測定 恒温槽内を錯体が相分離する温度に保ち、バイアル容器
内に酸素を導入して相分離を生じさせた。そのときの吸
収された酸素量を求め、酸素吸収量(mol)とした。
この酸素吸収量を、錯体溶液調製で使用した全錯体の量
(mol)すなわち全コバルトイオン量で除した値を求
めた。この実施例2において、本出願人により出願され
た特開平7−165776号公報明細書中に記載されて
いる錯体のうちの2つを比較例1及び2とし、本発明に
係る錯体1と比較した。
Example 2 Measurement of Oxygen Affinity The temperature in the constant temperature bath was maintained at a temperature at which the complex phase-separated, and oxygen was introduced into the vial container to cause phase separation. The amount of oxygen absorbed at that time was determined and defined as the amount of oxygen absorbed (mol).
The value obtained by dividing the oxygen absorption amount by the amount (mol) of all the complexes used in the preparation of the complex solution, that is, the total amount of cobalt ions was determined. In Example 2, two of the complexes described in the specification of Japanese Patent Application Laid-Open No. 7-165776 filed by the present applicant were referred to as Comparative Examples 1 and 2, and were compared with the complex 1 according to the present invention. did.

【0041】比較例1のCo4,6DMeOsalTmenは、N,N′
-ビス(4,6-ジメトキシサリチリデン)1,1,2,2-
テトラメチルエチレンジアミノコバルト(II)である。
比較例2のCo4,6DtBusalTmenは、N,N′-ビス(4,6
-ジターシャリーブチルサリチリデン)1,1,2,2-テ
トラメチルエチレンジアミノコバルト(II)である。
Co4,6DMeOsalTmen of Comparative Example 1 was N, N '
-Bis (4,6-dimethoxysalicylidene) 1,1,2,2-
Tetramethylethylene diaminocobalt (II).
Co4,6DtBusalTmen of Comparative Example 2 was N, N'-bis (4,6
-Ditert-butylsalicylidene) 1,1,2,2-tetramethylethylenediaminocobalt (II).

【0042】また、表3において、溶媒のNMPはN−
メチルピロリドン、o−DCBはo−ジクロロベンゼン
を表す。また軸配位子のMeImはメチルイミダゾー
ル、DMAPは4−ジメチルアミノピリジンを表し、各
々軸配位子濃度1.5当量とした。
In Table 3, NMP of the solvent is N-
Methylpyrrolidone and o-DCB represent o-dichlorobenzene. In addition, MeIm of the axial ligand represents methylimidazole, and DMAP represents 4-dimethylaminopyridine, and the concentration of the axial ligand was 1.5 equivalent.

【0043】[0043]

【表3】 [Table 3]

【0044】表3に示す各錯体溶液に酸素を吸収させた
結果、本発明に係る錯体1の溶液は相分離を示したが、
比較例1,2の錯体溶液は酸素吸収後も相分離を示さな
い均一溶液であった。表3から明らかなように、本発明
に係る錯体1の溶液の酸素吸収量/全Co量の値は、均
一溶液である比較例1、2の錯体溶液よりも大きいこと
から、本発明に係る錯体1の溶液は、相分離することに
より酸素親和力が向上することがわかる。また、本発明
に係る錯体1の溶液は、疎水性溶媒の使用が可能である
ことが確認された。
As a result of absorbing oxygen into each of the complex solutions shown in Table 3, the solution of Complex 1 according to the present invention showed phase separation.
The complex solutions of Comparative Examples 1 and 2 were homogeneous solutions showing no phase separation even after oxygen absorption. As is clear from Table 3, the value of the amount of oxygen absorbed / the total amount of Co in the solution of the complex 1 according to the present invention is larger than that of the complex solutions of Comparative Examples 1 and 2, which are homogeneous solutions. It can be seen that the solution of complex 1 has an increased oxygen affinity due to phase separation. In addition, it was confirmed that a solution of the complex 1 according to the present invention can use a hydrophobic solvent.

【0045】[実施例3]:錯体溶液の酸素吸脱着可逆
性の確認 実施例2において相分離が生じた状態に到達した後、そ
のままの状態で恒温槽の温度を40℃に設定し、酸素の
脱着を行わせた。このとき脱着した酸素量を測定し、酸
素脱着量とした。本発明に係る錯体1の溶液について、
実施例2で求めた酸素吸収量と、上述のように求めた酸
素脱着量、および酸素脱着量/酸素吸収量を表4にまと
めて示す。
Example 3 Confirmation of Reversibility of Oxygen Adsorption and Desorption of Complex Solution After reaching the state in which phase separation occurred in Example 2, the temperature of the thermostat was set to 40 ° C., Was desorbed. At this time, the amount of desorbed oxygen was measured and defined as the amount of desorbed oxygen. About the solution of the complex 1 according to the present invention,
Table 4 summarizes the oxygen absorption amount obtained in Example 2, the oxygen desorption amount obtained as described above, and the oxygen desorption amount / oxygen absorption amount.

【0046】[0046]

【表4】 [Table 4]

【0047】表4に示す通り、本発明に係る錯体1の溶
液は、酸素脱着量/酸素吸収量の割合がほぼ1を示すこ
とから、これらの錯体溶液では酸素吸脱着可逆性がある
ことがわかる。
As shown in Table 4, since the ratio of the amount of oxygen desorbed to the amount of oxygen absorbed is almost 1 in the solution of complex 1 according to the present invention, these complex solutions may have reversibility of oxygen absorption and desorption. Recognize.

【0048】[実施例4] 使用溶媒の安全性の比較 表5に各種溶媒の毒性データを示す。[Example 4] Comparison of safety of used solvents Table 5 shows toxicity data of various solvents.

【0049】[0049]

【表5】 [Table 5]

【0050】表5に示す各種溶媒のうち、特にn-ヘキ
サンやシクロヘキサンは低毒性であり、本発明に係る錯
体1はこれら低毒性の溶媒に溶解させて使用することが
可能であることから、本発明に係る錯体1をこれら溶媒
に溶かして得られる錯体溶液は、取扱時の安全性を向上
させることができる。
Among the various solvents shown in Table 5, n-hexane and cyclohexane are particularly low-toxic, and the complex 1 according to the present invention can be used by dissolving in these low-toxic solvents. The complex solution obtained by dissolving the complex 1 according to the present invention in these solvents can improve the safety during handling.

【0051】また、表6には、比較例1、2の錯体にお
いて好適に使用される軸配位子の毒性値を示す。
Table 6 shows the toxicity values of the axial ligands suitably used in the complexes of Comparative Examples 1 and 2.

【0052】[0052]

【表6】 [Table 6]

【0053】従来の錯体は、酸素分離用錯体溶液を調整
する際に、表6に示すようなLD50値が小さい軸配位
子を必須としたが、本発明に係る錯体は、このような軸
配位子の使用を省くことができるので、本発明に係る錯
体溶液は、取扱時の安全性を向上させることができる。
The conventional complex required an axial ligand having a small LD50 value as shown in Table 6 when preparing a complex solution for oxygen separation, but the complex according to the present invention requires such an axial ligand. Since the use of the ligand can be omitted, the complex solution according to the present invention can improve the handling safety.

【0054】[0054]

【発明の効果】以上説明したように、本発明に係る酸素
分離用錯体溶液は、式(A)に示すコバルトシッフ塩基
錯体を含むものなので、酸素の吸脱着性能が優れてお
り、溶媒に対する溶解度が高く、かつ安定性も高い、と
いう優れた特性を有している。また、本発明に係る酸素
分離用錯体溶液は、安全で安価な疎水性溶媒を使用可能
であり、軸配位子の添加が不要であることから、取扱い
が容易となり、かつ原料ガス中の水分を除去する前処理
設備が不要となる。また本発明に係るコバルトシッフ塩
基錯体は、酸素と結合し固相として析出するので、錯体
の立体障害および相分離により二量化が防止できるとと
もに、酸素発生量が増大できる。
As described above, since the complex solution for oxygen separation according to the present invention contains the cobalt Schiff base complex represented by the formula (A), it has excellent oxygen adsorption / desorption performance and solubility in a solvent. And high stability. In addition, the complex solution for oxygen separation according to the present invention can use a safe and inexpensive hydrophobic solvent and does not require the addition of a shaft ligand, so that it is easy to handle, and the water content in the raw material gas is reduced. No pre-treatment equipment is required to remove the water. Further, since the cobalt Schiff base complex according to the present invention binds to oxygen and precipitates as a solid phase, dimerization due to steric hindrance and phase separation of the complex can be prevented, and the amount of generated oxygen can be increased.

【0055】さらに本発明に係る酸素分離用錯体溶液
は、酸素脱着時の温度差を小さくして酸素分離を行うこ
とができるので、酸素吸脱着時の冷却及び加熱に要する
熱エネルギーを削減することができる。また、本発明に
係る酸素分離法は、上記の酸素分離用錯体溶液を用い、
温度変動方式により空気等の酸素含有ガスから酸素を分
離することにより、高効率で酸素を分離することができ
る。
Furthermore, the complex solution for oxygen separation according to the present invention can perform oxygen separation by reducing the temperature difference at the time of oxygen desorption, so that the heat energy required for cooling and heating at the time of oxygen absorption and desorption can be reduced. Can be. Further, the oxygen separation method according to the present invention uses the above-described complex solution for oxygen separation,
By separating oxygen from an oxygen-containing gas such as air by a temperature fluctuation method, oxygen can be separated with high efficiency.

───────────────────────────────────────────────────── フロントページの続き (74)上記1名の代理人 弁理士 志賀 正武 (外2名 ) (72)発明者 平谷 和久 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 高橋 利和 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 春日 和行 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 中辻 利一 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 (72)発明者 仲山 一郎 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 (72)発明者 岡本 歩 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 (72)発明者 伊東 延義 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 (72)発明者 市田 泰三 大阪府大阪市西区靱本町2丁目4番11号 大陽東洋酸素株式会社内 (72)発明者 内野 誠 大阪府大阪市西区靱本町2丁目4番11号 大陽東洋酸素株式会社内 (72)発明者 足立 貴義 大阪府大阪市西区靱本町2丁目4番11号 大陽東洋酸素株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (74) One of the above agents, Attorney Masatake Shiga (2 outside) (72) Inventor Kazuhisa Hiratani 1-1, Higashi, Tsukuba-shi, Ibaraki Institute of Industrial Science and Technology ( 72) Inventor Toshikazu Takahashi, 1-1, Higashi, Tsukuba-shi, Ibaraki Institute of Industrial Science and Technology (72) Inventor, Kazuyuki Kasuga, 1-1, Higashi, 1-1, Tsukuba-shi, Ibaraki Institute of Industrial Technology (72) ) Inventor Riichi Nakatsuji 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo, Japan Oxygen Co., Ltd. (72) Inventor Ichiro Nakayama 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo, Japan 72) Inventor Ayumu Okamoto 1-16-7 Nishishinbashi, Minato-ku, Tokyo Within Nihon Oxygen Co., Ltd. (72) Inventor Nobuyoshi Ito 1-16-7 Nishishinbashi, Minato-ku, Tokyo In Japan Oxygen Co., Ltd. (72) Inventor Taizo Ichida 2-4-11 Tsutohoncho, Nishi-ku, Osaka City, Osaka Prefecture In Taiyo Toyo Oxygen Co., Ltd. (72) Inventor Makoto Uchino 2-chome, Nishiku-ku, Osaka City, Osaka Prefecture 4-11 No. 11 Taiyo Toyo Oxygen Co., Ltd. (72) Inventor Takayoshi Adachi 2-4-11 Tsutohoncho, Nishi-ku, Osaka City Osaka Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 式(A) 【化1】 (式中R1は、置換または未置換フェニレン基、置換ま
たは未置換ピリジレン基、置換または未置換アルキレン
基からなる群より選択される1つであり、R2〜R6は、
水素、置換または未置換フェニル基、置換または未置換
アルキル基、ハロゲン、置換または未置換アルコキシ基
からなる群より選択される1つであり、Meはメチル基
を表す)で示されるコバルトシッフ塩基錯体を有機溶媒
に溶かしてなり、 酸素の吸着によって錯体が酸素と結合し固相として析出
する相分離を生じることを特徴とする酸素分離用錯体溶
液。
1. A compound of the formula (A) (Wherein R 1 is one selected from the group consisting of a substituted or unsubstituted phenylene group, a substituted or unsubstituted pyridylene group, a substituted or unsubstituted alkylene group, and R 2 to R 6 are
Which is one selected from the group consisting of hydrogen, substituted or unsubstituted phenyl group, substituted or unsubstituted alkyl group, halogen, substituted or unsubstituted alkoxy group, and Me represents a methyl group. Is dissolved in an organic solvent, and the complex is combined with oxygen by adsorption of oxygen to cause phase separation to precipitate as a solid phase.
【請求項2】 前記有機溶媒が、疎水性溶媒であること
を特徴とする請求項1記載の酸素分離用錯体溶液。
2. The complex solution for oxygen separation according to claim 1, wherein the organic solvent is a hydrophobic solvent.
【請求項3】 前記コバルトシッフ塩基錯体の濃度を
0.1〜1mol/lとしたことを特徴とする請求項1
または2記載の酸素分離用錯体溶液。
3. The concentration of the cobalt Schiff base complex is 0.1 to 1 mol / l.
Or the complex solution for oxygen separation according to 2.
【請求項4】 請求項1から3のいずれか1項に記載の
酸素分離用錯体溶液に、空気または酸素を含む混合ガス
を接触させて、酸素と結合した前記錯体を固相として析
出させる酸素吸着工程と、析出した酸素結合錯体を加熱
して酸素を脱着させる酸素脱着工程とを備えた酸素分離
法。
4. An oxygen in which air or a mixed gas containing oxygen is brought into contact with the complex solution for oxygen separation according to any one of claims 1 to 3 to precipitate the complex bound with oxygen as a solid phase. An oxygen separation method comprising an adsorption step and an oxygen desorption step of heating a deposited oxygen-bonded complex to desorb oxygen.
【請求項5】 前記酸素吸着工程を−10〜50℃の温
度範囲で行い、前記酸素脱着工程を10〜80℃の温度
範囲で行うことを特徴とする請求項4記載の酸素分離
法。
5. The oxygen separation method according to claim 4, wherein the oxygen adsorption step is performed in a temperature range of −10 to 50 ° C., and the oxygen desorption step is performed in a temperature range of 10 to 80 ° C.
JP7311318A 1995-11-29 1995-11-29 Complex solution for oxygen separation and oxygen separation method Expired - Lifetime JP2703875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7311318A JP2703875B2 (en) 1995-11-29 1995-11-29 Complex solution for oxygen separation and oxygen separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7311318A JP2703875B2 (en) 1995-11-29 1995-11-29 Complex solution for oxygen separation and oxygen separation method

Publications (2)

Publication Number Publication Date
JPH09151195A true JPH09151195A (en) 1997-06-10
JP2703875B2 JP2703875B2 (en) 1998-01-26

Family

ID=18015698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7311318A Expired - Lifetime JP2703875B2 (en) 1995-11-29 1995-11-29 Complex solution for oxygen separation and oxygen separation method

Country Status (1)

Country Link
JP (1) JP2703875B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013168819A1 (en) * 2012-05-11 2016-01-07 三菱瓦斯化学株式会社 Oxygen absorbent composition
WO2017130833A1 (en) * 2016-01-27 2017-08-03 シャープ株式会社 Liquid having oxygen absorbing ability, method for producing same, and complex solution containing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013168819A1 (en) * 2012-05-11 2016-01-07 三菱瓦斯化学株式会社 Oxygen absorbent composition
US9771203B2 (en) 2012-05-11 2017-09-26 Mitsubishi Gas Chemical Company, Inc. Oxygen absorbing agent composition
WO2017130833A1 (en) * 2016-01-27 2017-08-03 シャープ株式会社 Liquid having oxygen absorbing ability, method for producing same, and complex solution containing same
CN108602009A (en) * 2016-01-27 2018-09-28 夏普株式会社 Liquid, preparation method with oxygen uptake ability and the composite solution containing the liquid
JPWO2017130833A1 (en) * 2016-01-27 2018-11-15 シャープ株式会社 Liquid having oxygen absorbing ability, method for producing the same, and complex solution containing the same

Also Published As

Publication number Publication date
JP2703875B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
JP3411316B2 (en) Nitrogen adsorption and desorption composition and method for separating nitrogen
US6491740B1 (en) Metallo-organic polymers for gas separation and purification
US9393548B2 (en) Rapid and enhanced activation of microporous coordination polymers by flowing supercritical CO2
US6436171B1 (en) Oxygen-selective adsorbents
JP5298292B2 (en) A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
WO2010042948A2 (en) Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration
WO2018088822A1 (en) Olefin selective adsorbent using porous body having oxidation-reduction activity, and method for separating olefin by using same
JP2703875B2 (en) Complex solution for oxygen separation and oxygen separation method
WO2019058276A1 (en) Chromium-based metal-organic frameworks for water adsorption-related applications and gas storage
KR101967963B1 (en) Covalent organic framework for adsorbing so2 gas and method for preparing the same
CN117384322A (en) Absorbent for recycling scandium from acid solution, preparation method and application
JP2752342B2 (en) Complex solution for oxygen separation and oxygen separation method
KR20180051880A (en) Absorbent for highly selective separation of carbon monoxide and preparation method thereof
WO2006132049A1 (en) Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof
JP2798905B2 (en) Cobalt Schiff base complex, complex solution for oxygen separation, and oxygen separation method
JPH07165776A (en) Cobalt schiff base complex, complex solution for separating oxygen and method for separating oxygen
JP2703874B2 (en) Cobalt Schiff base complex and complex solution for oxygen separation and oxygen separation method
JP3000369B2 (en) Method for regenerating oxygen absorbing complex and method for separating oxygen using oxygen absorbing complex solution
WO2021043491A1 (en) Gas storage material and gas storage system
CN114682224B (en) Chlorine-containing benzene organic waste gas adsorbent and preparation method and application thereof
CN114904356B (en) Method for separating nitrogen and oxygen
JPH0222700B2 (en)
EP0544272A1 (en) Solid state cyanocobaltate complexes
JPS62113710A (en) Production of adsorbent for separation and recovery of co
WO2021043492A1 (en) Gas storage material and gas storage system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970902

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term