JPH09150796A - Aircraft wheel device - Google Patents

Aircraft wheel device

Info

Publication number
JPH09150796A
JPH09150796A JP31233595A JP31233595A JPH09150796A JP H09150796 A JPH09150796 A JP H09150796A JP 31233595 A JP31233595 A JP 31233595A JP 31233595 A JP31233595 A JP 31233595A JP H09150796 A JPH09150796 A JP H09150796A
Authority
JP
Japan
Prior art keywords
signal
airspeed
wheel
speed
runway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31233595A
Other languages
Japanese (ja)
Inventor
Ryoji Yokoyama
良治 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31233595A priority Critical patent/JPH09150796A/en
Publication of JPH09150796A publication Critical patent/JPH09150796A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease abrasion of a tire and prevent damage by providing an airspeed converting means for receiving an airspeed signal or a calculated optimum touchground speed signal, and outputting the airspeed signal on a runway, and a wheel rotating means for receiving the output of the airspeed converting means, and driving wheels to the number of revolution corresponding to the input. SOLUTION: When the airspeed is used, a pilot selects the (b) terminal side of a relay 11 by a switching unit. An IAS signal from an airspeed sensor 4, an atmospheric density signal from an atmospheric density sensor 5, a wind data signal from an ACARS6, and a nose azimuth signal from a horizontal azimuth sensor 7 are input to an airspeed converting device 8, and the airspeed signal on a runway is calculated and output. This signal is sent to a wheel rotating device 12. The wheel rotating device 12 receives the airspeed signal, and drives wheels so that the peripheral speed of the wheel may be close to the airspeed. The number of revolution is displayed on a display 13. Abrasions or damage of a wheel tire is, therefore, prevented when an aircraft lands on the runway.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、航空機着陸時の車
輪タイヤの安全性の向上を図った航空機車輪装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aircraft wheel device that improves the safety of wheel tires when landing on an aircraft.

【0002】[0002]

【従来の技術】着陸時に予め車輪を回転する従来装置に
おいて、タイヤの摩耗の軽減、破損の防止等の効果を最
大にするための回転速度を求める装置はなかった。
2. Description of the Related Art There has been no conventional device for rotating wheels in advance during landing, which requires a rotational speed for maximizing the effects of reducing tire wear and preventing damage.

【0003】[0003]

【発明が解決しようとする課題】従来の航空機車輪装置
では、タイヤの摩耗の軽減、破損の防止等において、十
分な効果が発揮できていないという問題点があった。
However, the conventional aircraft wheel device has a problem in that it is not sufficiently effective in reducing tire wear and preventing damage.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention employs the following means to solve the above-mentioned problems.

【0005】すなわち、航空機車輪装置として、対気速
度信号または計算最適接地速度信号を受け滑走路上の対
地速度信号を演算出力する対地速度変換手段と、同対地
速度変換手段の出力を受け入力に対応した回転数に駆動
する車輪回転手段とを設ける。
That is, as an aircraft wheel device, a ground speed converting means for receiving an air speed signal or a calculated optimum ground speed signal and calculating and outputting a ground speed signal on a runway, and an output for receiving the ground speed converting means are compatible with the input. Wheel rotation means for driving at the specified rotation speed.

【0006】以上において、対地速度変換手段は対気速
度信号または計算最適接地速度信号を受け滑走路上の対
地速度信号を出力する。車輪回転手段は対地速度信号を
受け車輪の周速度が対地速度付近になるような回転数に
車輪を駆動する。
In the above, the ground speed converting means receives the air speed signal or the calculated optimum ground speed signal and outputs the ground speed signal on the runway. The wheel rotating means receives the ground speed signal and drives the wheel at a rotation speed such that the peripheral speed of the wheel becomes close to the ground speed.

【0007】このようにして、航空機が滑走路に着陸時
の車輪タイヤの摩耗軽減、破損防止等の安全性が向上す
る。
In this way, the safety of wheel tires such as wear reduction and damage prevention when the aircraft lands on the runway is improved.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(1) 本発明の実施の第1形態を図1により説明す
る。IRS(Inertial Reference System )1の出力は
加算器9を経てリレー11のa端子に送られる。リレー
11の出力は車輪回転装置12を経て表示器13へ送ら
れる。
(1) A first embodiment of the present invention will be described with reference to FIG. The output of the IRS (Inertial Reference System) 1 is sent to the a terminal of the relay 11 via the adder 9. The output of the relay 11 is sent to the display 13 via the wheel rotating device 12.

【0009】対気速度センサ4、大気密度センサ5、A
CARS(空気データリンクシステム)6、および水平
方位センサ7の出力は対地速度変換装置8、加算器10
を順次経てリレー11のb端子へ送られる。また各加算
器9,10にはオフセット入力器3の出力が入力されて
いる。さらに切換え器2の出力はリレー11へ送られ
る。
Airspeed sensor 4, atmospheric density sensor 5, A
The outputs of the CARS (air data link system) 6 and the horizontal direction sensor 7 are the ground speed conversion device 8 and the adder 10.
Is sequentially sent to the b terminal of the relay 11. The output of the offset input device 3 is input to each of the adders 9 and 10. Further, the output of the switch 2 is sent to the relay 11.

【0010】以上において、例えば対気速度を使う場
合、パイロットは切換え器2によりリレー11のb端子
側を選ぶ。すると、対地速度変換装置8は対気速度セン
サ4からIAS信号、大気密度センサ5から大気密度信
号、ACARS6から風データ信号、および水平方位セ
ンサ7から機首方位信号を入力し、滑走路上の対地速度
信号を演算出力する。この信号は車輪回転装置12へ送
られる。車輪回転装置12は対地速度信号を受け、車輪
の周速度が対地速度付近になるような回転数に車輪を駆
動する。また表示器13に回転数を表示する。
In the above, for example, when using the airspeed, the pilot selects the b terminal side of the relay 11 by the switch 2. Then, the ground speed conversion device 8 inputs the IAS signal from the air speed sensor 4, the air density signal from the air density sensor 5, the wind data signal from the ACARS 6, and the heading signal from the horizontal heading sensor 7, and sends them to the ground on the runway. Calculates and outputs the speed signal. This signal is sent to the wheel rotating device 12. The wheel rotation device 12 receives the ground speed signal and drives the wheel at a rotation speed such that the peripheral speed of the wheel is close to the ground speed. Further, the number of rotations is displayed on the display unit 13.

【0011】このようにして、航空機が滑走路に着陸時
の車輪タイヤの摩耗や破損等の安全性が向上する。
In this way, the safety of wheel tires such as wear and damage when the aircraft lands on the runway is improved.

【0012】パイロットがIRS1からの信号を使う場
合は、同様にしてリレー11のa端子側を選ぶ。すると
IRS1からの進行方向の対地速度信号が車輪回転装置
12へ送られる。以下同様に作用する。
When the pilot uses the signal from the IRS1, the a terminal side of the relay 11 is similarly selected. Then, the ground speed signal in the traveling direction from the IRS 1 is sent to the wheel rotating device 12. The same applies hereinafter.

【0013】なお、パイロットは必要に応じて、オフセ
ット入力器3からオフセット速度信号を出力し加算器9
又は10で加算してもよい。 (2) 本発明の実施の第2形態を図2により説明す
る。パイロット入力器17の出力は直接リレー11aの
b端子に、またTAS変換装置14を経てa端子に送ら
れる。リレー11aの出力は直接リレー11bのb端子
に、また対地速度変換装置15を経てa端子に送られ
る。リレー11bの出力はリレー11cのa端子に送ら
れる。
The pilot outputs the offset speed signal from the offset input unit 3 as necessary, and the adder 9 outputs the offset velocity signal.
Alternatively, 10 may be added. (2) A second embodiment of the present invention will be described with reference to FIG. The output of the pilot input device 17 is sent directly to the b terminal of the relay 11a and the a terminal via the TAS converter 14. The output of the relay 11a is sent directly to the b terminal of the relay 11b, and also to the a terminal via the ground speed conversion device 15. The output of the relay 11b is sent to the a terminal of the relay 11c.

【0014】オフセット入力器3の出力は加算器9を経
てリレー11cのb端子へ送られる。リレー11cの出
力は一次フィルタ19、車輪回転装置12を順次経て表
示器13へ送られる。さらに切り換え器2の出力は各リ
レー11a〜11cに送られる。
The output of the offset input device 3 is sent to the b terminal of the relay 11c via the adder 9. The output of the relay 11c is sent to the display 13 through the primary filter 19 and the wheel rotation device 12 in order. Further, the output of the switch 2 is sent to each of the relays 11a to 11c.

【0015】最適接地速度計算装置16は接地時のフラ
ップ、スラットの状態信号20sと機体重量信号21s
を受け、出力を対地速度変換装置8と表示器18へ送
る。対地速度変換装置8の出力は加算器9へ送られる。
ACARS6の信号および滑走路データ信号22sは対
地速度変換装置8と15へそれぞれ送られる。
The optimum ground contact speed calculation device 16 has flaps and slat state signals 20s and airframe weight signals 21s during grounding.
In response, the output is sent to the ground speed conversion device 8 and the display 18. The output of the ground speed converter 8 is sent to the adder 9.
The ACARS 6 signal and the runway data signal 22s are sent to ground speed converters 8 and 15, respectively.

【0016】以上において、例えば、計算最適接地速度
を使う場合、パイロットは切り換え器2の操作によりリ
レー11cのb端子側を選ぶ。すると、最適接地速度計
算装置16は接地時のフラップ、スラットの状態信号2
0sと機体重量信号21sを入力し、航空機の最適接地
速度、すなわち機体を支えるのに必要な最低速度を演算
し、計算最適接地速度信号16sを出力する。
In the above, for example, when the calculated optimum ground speed is used, the pilot selects the b terminal side of the relay 11c by operating the switching device 2. Then, the optimum ground contact speed calculation device 16 causes the flap and slat state signals 2 at the time of ground contact.
The optimum ground contact speed of the aircraft, that is, the minimum speed required to support the fuselage is calculated by inputting 0s and the airframe weight signal 21s, and the calculated optimum ground contact speed signal 16s is output.

【0017】対地速度変換装置8はこの計算最適接地速
度信号16s、滑走路データ(高度、方位等)信号22
s、およびACARS6からの標準大気密度信号や風デ
ータ信号を受け、航空機の滑走路上での対地速度信号を
演算出力する。この信号は1次フィルタ19により設定
の時定数でなだらかに変化し車輪回転装置12へ送られ
る。以下前記と同様に作用する。
The ground speed converter 8 calculates the optimum ground contact speed signal 16s and the runway data (altitude, direction, etc.) signal 22.
s and the standard atmospheric density signal and the wind data signal from ACARS6, and outputs the ground speed signal on the runway of the aircraft. This signal is gently changed by the primary filter 19 with a set time constant and sent to the wheel rotating device 12. Thereafter, the same operation as described above is performed.

【0018】この場合、前記第1形態と異なり、1次フ
ィルタ19の出力がなだらかに変化するため、回転装置
12の回転速度の出力容量を小さくすることができる。
又、通常の場合、実際の接地速度と最適接地速度はほぼ
等しいので、車輪にかかる負荷も第1形態の場合とほぼ
同等の効果がある。
In this case, unlike the first embodiment, since the output of the primary filter 19 changes gently, the output capacity of the rotation speed of the rotating device 12 can be reduced.
Further, in the normal case, the actual ground contact speed and the optimum ground contact speed are substantially equal to each other, so that the load applied to the wheels also has substantially the same effect as in the case of the first embodiment.

【0019】なお前記と同様オフセット入力器3からの
入力も可能である。
Input from the offset input device 3 is also possible in the same manner as described above.

【0020】パイロットがパイロット入力を選ぶ場合、
前記と同様にして、リレー11cのa端子側が選ばれ
る。次にパイロット入力をそのまま使用する場合、前記
と同様にしてリレー11a,11bのb端子側が選ばれ
る。そしてパイロット入力器17からパイロットは予測
の対地速度を入力する。この信号は1次フィルタ19を
経て車輪回転装置12へ送られる。以下前記と同様であ
る。
When the pilot chooses the pilot input,
Similarly to the above, the terminal a side of the relay 11c is selected. Next, when the pilot input is used as it is, the b terminal side of the relays 11a and 11b is selected in the same manner as described above. Then, the pilot inputs the predicted ground speed from the pilot input device 17. This signal is sent to the wheel rotating device 12 via the primary filter 19. The same applies to the following.

【0021】また他の選択として、リレー11a,11
bのa端子側を選び、パイロットがパイロット入力器1
7からIAS(指示対地速度)相当の信号を入力する
と、TAS変換装置14はこの信号から真対気速度信号
を演算出力する。次に対地速度変換装置15はこの信
号、滑走路データ信号22s、およびACARS6から
の標準大気密度信号、風データ信号を受け航空機の滑走
路上の対地速度信号を演算出力する。以下前記と同様に
作用する。さらに他の選択として、リレー11aのb端
子側と11bのa端子側を選び、パイロットがTAS
(真対気速度)相当の信号入力してもよい。
As another option, the relays 11a, 11
Select the a terminal side of b, and the pilot is the pilot input device 1
When a signal corresponding to IAS (instructed ground speed) is input from 7, the TAS converter 14 calculates and outputs a true airspeed signal from this signal. Next, the ground speed converter 15 receives this signal, the runway data signal 22s, the standard atmospheric density signal and the wind data signal from the ACARS 6, and outputs the ground speed signal on the runway of the aircraft. Thereafter, the same operation as described above is performed. As another selection, the b terminal side of the relay 11a and the a terminal side of 11b are selected, and the pilot is TAS.
A signal corresponding to (true airspeed) may be input.

【0022】[0022]

【発明の効果】以上に説明したように本発明によれば、
着陸時、車輪タイヤが予め航空機の接地速度に近い周速
で駆動されているため、着陸時のタイヤ摩耗や破損等に
対する安全性が大幅に向上する。
According to the present invention as described above,
At the time of landing, the wheel tires are driven at a peripheral speed close to the ground contact speed of the aircraft in advance, so the safety against tire wear and damage during landing is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態の構成ブロック図であ
る。
FIG. 1 is a configuration block diagram of a first embodiment of the present invention.

【図2】本発明の実施の第2形態の構成ブロック図であ
る。
FIG. 2 is a configuration block diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 IRS 2 切換え器 3 オフセット器 4 対気速度センサ 5 大気密度センサ 6 ACARS 7 水平方位センサ 8 対地速度変換装置 9,10 加算器 11,11a〜11c リレー 12 車輪回転装置 13,18 表示器 14 TAS変換装置 15 対地速度変換装置 16 最適接地速度計算装置 17 パイロット入力器 19 1次フィルタ 1 IRS 2 Switcher 3 Offset device 4 Airspeed sensor 5 Atmospheric density sensor 6 ACARS 7 Horizontal direction sensor 8 Ground speed conversion device 9,10 Adder 11, 11a-11c Relay 12 Wheel rotation device 13, 18 Indicator 14 TAS Conversion device 15 Ground speed conversion device 16 Optimal ground speed calculation device 17 Pilot input device 19 Primary filter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 対気速度信号または計算最適接地速度信
号を受け滑走路上の対地速度信号を演算出力する対地速
度変換手段と、同対地速度変換手段の出力を受け入力に
対応した回転数に駆動する車輪回転手段とを備えてなる
ことを特徴とする航空機車輪装置。
1. A ground speed converting means for receiving an air speed signal or a calculated optimum ground speed signal and calculating and outputting a ground speed signal on a runway, and an output of the ground speed converting means for driving at a rotation speed corresponding to an input. An aircraft wheel device, comprising:
JP31233595A 1995-11-30 1995-11-30 Aircraft wheel device Withdrawn JPH09150796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31233595A JPH09150796A (en) 1995-11-30 1995-11-30 Aircraft wheel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31233595A JPH09150796A (en) 1995-11-30 1995-11-30 Aircraft wheel device

Publications (1)

Publication Number Publication Date
JPH09150796A true JPH09150796A (en) 1997-06-10

Family

ID=18028010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31233595A Withdrawn JPH09150796A (en) 1995-11-30 1995-11-30 Aircraft wheel device

Country Status (1)

Country Link
JP (1) JPH09150796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023629A (en) * 2007-07-24 2009-02-05 Japan Aerospace Exploration Agency Stol aircraft
JP2009023628A (en) * 2007-07-24 2009-02-05 Japan Aerospace Exploration Agency Stol aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023629A (en) * 2007-07-24 2009-02-05 Japan Aerospace Exploration Agency Stol aircraft
JP2009023628A (en) * 2007-07-24 2009-02-05 Japan Aerospace Exploration Agency Stol aircraft

Similar Documents

Publication Publication Date Title
US7975960B2 (en) Nosewheel control apparatus
CN104204983B (en) Automatic pilot and its method
EP0438816A1 (en) Aircraft automatic landing system with engine out provisions
US9296490B2 (en) Aircraft operating and position information display system and method
CN111874256A (en) Fault emergency processing method and device for solar unmanned aerial vehicle
EP3514782A1 (en) Methods system for real-time assessment and assistance of reduced engine taxi operations for an aircraft
JPH09150796A (en) Aircraft wheel device
WO2019135791A9 (en) Vertical takeoff and landing transportation system
JP2955699B2 (en) Remote flight control system for unmanned helicopter.
WO2020127702A1 (en) Acquisition and analysis device intended for integration into a pre-existing aircraft
ES2359325A1 (en) System for controlling the operation of a convertible aircraft with helicopter, autogyro and plane modes
WO2021140804A1 (en) Electric variable pitch actuator device and method of controlling electric variable pitch actuator device
CA3133744A1 (en) Aircraft degraded operation ceiling increase using electric power boost
US6775599B2 (en) Multi-function reaction wheel assemblies for controlling spacecraft attitude
EP0721414B1 (en) Variable priority cockpit warning and display system
CN113260563B (en) Replacement piloting system for integration in an existing aircraft
JPH08133189A (en) Wheel steering system for aircraft
JP2942568B2 (en) Orbit conversion propulsion device
GB2330561A (en) Rotating undercarriage wheels prior to landing
JP2593523B2 (en) Passenger information display
RU97112580A (en) METHOD FOR OPERATING AN OPERATING CHAIR
Love Enabling Local Aerial Mobility (LAM): Design of an Ultralight Solar Distributed-Electric-Propulsion Short-Takeoff-and-Landing (STOL) Aircraft Recumbent-Electric-Bike Hybrid
Kucukcifci The full metamorphosis of lambda-fold K-4-designs into lambda-fold 3-star systems
Nakhaba Multi-rotor (24-Rotor) Tiltrotor Discplane, as Version of a Circular Wing (Flying Saucer)
Tomita A helicopter transportation system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204