JP2009023629A - Stol aircraft - Google Patents

Stol aircraft Download PDF

Info

Publication number
JP2009023629A
JP2009023629A JP2007191773A JP2007191773A JP2009023629A JP 2009023629 A JP2009023629 A JP 2009023629A JP 2007191773 A JP2007191773 A JP 2007191773A JP 2007191773 A JP2007191773 A JP 2007191773A JP 2009023629 A JP2009023629 A JP 2009023629A
Authority
JP
Japan
Prior art keywords
aircraft
landing
short
pitch
take
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007191773A
Other languages
Japanese (ja)
Other versions
JP5004224B2 (en
Inventor
Chu Kobayashi
宙 小林
Hiroshi Nishizawa
啓 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2007191773A priority Critical patent/JP5004224B2/en
Publication of JP2009023629A publication Critical patent/JP2009023629A/en
Application granted granted Critical
Publication of JP5004224B2 publication Critical patent/JP5004224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a short take-off and landing (STOL) aircraft capable of takeoff running in a short distance using a combination of the propulsion of drive wheels and the propulsion of a propulsion unit, and of landing running in a short distance using a driving force of the drive wheels. <P>SOLUTION: To overcome the above problem, the present invention applies drive wheels driven by motors of electric vehicles improved in performance dramatically in recent years to aircraft landing gears, and uses drive wheel thrust for taxiing and the combination of propeller thrust and drive wheel thrust for takeoff running, thereby solving a problem of reducing a takeoff run distance. Although an airframe may unfavorably pitch up due to drive wheel thrust in such cases, the present invention dynamically controls the drive wheel torque within a range in which the above pitch-up movement does not occur, thereby avoiding the pitch-up movement and a resulting contact of a tail portion of the airframe with the ground. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、短距離離着陸航空機、特に駆動輪の推進力と推進装置の推進力を併用し短距離で離陸滑走すると共に駆動輪の制動力を利用して短距離で着陸滑走することが可能な短距離離着陸航空機に関する。   The present invention is capable of taking off and landing at a short distance by using both a propulsion force of a driving wheel and a propulsion force of a propulsion device, and taking a landing at a short distance by using a braking force of the driving wheel. It relates to short-range take-off and landing aircraft.

日本の主要空港のほとんどは僻地あるいは沖合にあるため、空港への移動時間が大幅にかかり、国内航空交通では、結果的に鉄道や自動車や船に対する移動速度の優位性が無くなってしまうことも珍しくない。上記アクセスに不便な空港は旅客離れを誘発し、便数の減少のみならず路線の廃止にまで至る場合が近年少なくない。また、低頻度の海上交通手段しか持たない離島においては、島民の生活の足や観光客誘致の手段として航空輸送への要求が高くても、環境に与える影響が懸念されるため空港の建設は一般的に容易ではない。その一方で、首都圏への旅客需要は年々高まり、首都圏の航空便発着枠は慢性的に不足している。
このような現在の日本の航空輸送に存在する問題点を解決するには、市街地の近くや離島にも空港を新設することが理想的な解決策であるが、これらの場所に長大な滑走路用地を確保するのは建設コストや環境負荷の点からも甚だ困難であるため、短い滑走路を持つ小規模空港の建設がひとつの解決策となる。しかし、短距離で離着陸することができる航空機は、通常、エンジンのパワーを増大することと高揚力を発生するための特別な空力デバイスを主翼に装備することによりその目的を達成しているが、この手法は重量増加や空気抵抗の増加も伴うため巡航性能を犠牲にしがちであるという短所がある。さらに、短距離離着陸機としての特別な全機的開発が必要であるため、現在日常的に運航されている通常の航空機との互換性を開発・設計プロセスに持たせることも難しく、歴史的に見ても短距離離着陸機は普及してはいない。
市街地近くの空港が近隣住民に受け入れられるためには、短距離離着陸性能だけでなく、さらに離着陸時における低排出ガス及び低騒音性能も強く要求される。
しかし、現在の航空機は空港内でタキシング及び離陸滑走を行う場合にも、飛行中に用いるプロペラまたはジェットエンジン等の推進器をそのまま用いている。これらは通常、巡航速度において、最大効率が達成されるよう設計されており、タキシングや滑走時のように機速が低い場合、推進効率が低いので燃料消費量がかさむ上、騒音の原因にもなる。
これについてBoeing社から米国特許第3977631号に示すように、降着装置に電動モータを内蔵し、車輪を動力で駆動することにより、タキシングを静粛かつ高効率に行う手法が提案されている(例えば、特許文献1を参照。)。
わが国においても、降着装置の車輪を回転させるという手法は、様々な形で提案されている(例えば、特許文献2から6を参照。)。しかし、これらの特許文献に示されている機構は着陸接地時の衝撃を和らげる目的で接地直前に車輪を回転させる機構であるため、地上において機体全体を加速させるほどの出力はない。また、特許文献6の航空機の車輪は、タキシング時の推進器燃料を節約する目的で降着装置の車輪に駆動機構を持たせているが、やはり車輪に機体全体を離陸速度まで加速させるほどの駆動力を持たせるには駆動機構全体の重量が航空機には受け入れ難いほど大きくなる欠点がある。
近年は永久磁石の性能が向上し、特許文献7に示される小型高出力なインホイールモータ式電気自動車が開発されている。ここで用いられているインホイールモータは小型航空機の離陸滑走に必要な出力を備えていると同時に、インホイールであるため駆動機構の重量が小さい。これらを航空機の車輪にも適用することでわずかな重量増加でタキシングのみならず、離陸滑走時の推進力を補強できる可能性がある。
Most of Japan's major airports are remote or offshore, so it takes a long time to travel to the airport, and domestic air traffic rarely loses its advantage in speed over railways, cars and ships. Absent. In recent years, airports that are inconvenient to access often cause passengers to leave and not only the number of flights but also the abolition of routes. On remote islands that have only low-frequency means of sea transportation, even if demand for air transport is high as a means of attracting islanders' lives and attracting tourists, there are concerns about the impact on the environment. Generally not easy. On the other hand, passenger demand in the Tokyo metropolitan area is increasing year by year, and airline slots in the metropolitan area are chronically lacking.
In order to solve the problems that exist in the current air transportation in Japan, the ideal solution is to establish a new airport near the city and on the remote islands. Since it is very difficult to secure a site in terms of construction cost and environmental load, the construction of a small airport with a short runway is one solution. However, aircraft that can take off and land at short distances usually achieve their purpose by increasing the power of the engine and equipping the main wing with a special aerodynamic device to generate high lift, This method has a disadvantage in that it tends to sacrifice the cruise performance due to an increase in weight and an increase in air resistance. In addition, special development as a short-range take-off and landing aircraft is required, so it is difficult to have the development and design process compatible with ordinary aircraft that are currently operating on a daily basis. Even short-range take-off and landing aircraft are not widespread.
In order for an airport near the city to be accepted by neighboring residents, not only short-range take-off and landing performance, but also low emission and noise performance during take-off and landing are strongly required.
However, current aircraft use propellers such as propellers or jet engines used during flight as they are when taxiing and taking off and taking off in airports. These are usually designed to achieve maximum efficiency at cruising speed.If the speed is low, such as during taxiing or gliding, the propulsion efficiency is low, which increases fuel consumption and also causes noise. Become.
Regarding this, as shown in US Pat. No. 3,977,631 from Boeing, a method for quietly and highly efficiently performing taxiing by incorporating an electric motor in an landing gear and driving wheels with power has been proposed (for example, (See Patent Document 1).
Even in Japan, a method of rotating a landing gear wheel has been proposed in various forms (see, for example, Patent Documents 2 to 6). However, since the mechanism shown in these patent documents is a mechanism for rotating the wheel immediately before the landing for the purpose of reducing the impact at the time of landing and landing, there is not enough output to accelerate the entire body on the ground. In addition, the aircraft wheel of Patent Document 6 has a drive mechanism on the wheels of the landing gear for the purpose of saving the propellant fuel during taxiing, but the drive is also sufficient to accelerate the entire fuselage to the takeoff speed. In order to have a force, there is a drawback that the weight of the entire drive mechanism becomes unacceptably large for an aircraft.
In recent years, the performance of permanent magnets has improved, and a small and high-power in-wheel motor type electric vehicle shown in Patent Document 7 has been developed. The in-wheel motor used here has an output necessary for take-off of a small aircraft, and at the same time, since it is an in-wheel, the weight of the drive mechanism is small. By applying these to the wheels of an aircraft, it is possible to reinforce not only the taxing but also the propulsive force during take-off run with a slight increase in weight.

米国特許第3977631号U.S. Pat. No. 3,976,761 特開平09−095299号公報Japanese Patent Laid-Open No. 09-095299 特開平09−150796号公報Japanese Patent Laid-Open No. 09-150796 特開2004−058978号公報JP 2004-058978 A 特開2004−203223号公報JP 2004-203223 A 特開平05−193577号公報Japanese Patent Laid-Open No. 05-193577 特開2002−186119号公報JP 2002-186119 A

離陸滑走距離の長い航空機ほど、より長い滑走路が必要であり、空港の建設あるいは運用に伴う環境負荷は、より大きくなる。しかし、短い滑走路で済む短距離離着陸航空機を従来提案されてきたようなエンジンパワーの増加と空力デバイスの付加によって実現したとしても、上述した理由により市場で広く普及する航空機にはなり難い。
ところで、航空機の車輪にインホイールモータを内蔵させ、エンジンの推進力と車輪が発生する駆動推進力を併用することにより、離陸滑走時の推進力が補強され、短距離で離陸速度に達することが可能となる。
しかし、航空機の車輪に機体全体を加速させる駆動推進力を持たせると次のようなピッチアップの問題が生じる。つまり、航空機は自動車の場合と異なり機体の重心が高い位置にあることから、重心回りに発生するピッチアップモーメント(機首を上げようと作用するモーメント)が重力によるピッチダウンモーメントと同程度の大きさを持つ。そのため、車輪の駆動推進力が大きくなると、ピッチアップモーメントがピッチダウンモーメントより大きくなり、その結果、機体がピッチアップして機体の尾部が地面に接触するという問題が発生する。
そこで、本発明は、かかる従来技術の問題点に鑑みなされたものであって、その目的は既存航空機の機体形状やエンジンといった設計の根幹に関わる部分を変更しなくても、わずかなデバイスの付加だけで簡単に離着陸滑走距離を短縮できる手段を備えた短距離離陸航空機を提供することにある。
An aircraft with a longer take-off run distance requires a longer runway, and the environmental load associated with airport construction or operation is greater. However, even if a short take-off and landing aircraft that requires a short runway is realized by increasing engine power and adding an aerodynamic device as previously proposed, it is difficult to become an aircraft that is widely spread on the market for the reasons described above.
By the way, the in-wheel motor is built in the wheel of the aircraft, and the driving force generated by the engine and the driving force generated by the wheel are used together to reinforce the driving force during take-off and can take off at a short distance. It becomes possible.
However, when the driving force for accelerating the entire aircraft is given to the wheels of the aircraft, the following pitch-up problem occurs. In other words, unlike an automobile, an aircraft has a high center of gravity, so the pitch-up moment that occurs around the center of gravity (the moment that acts to raise the nose) is as large as the pitch-down moment due to gravity. Have Therefore, when the driving driving force of the wheel increases, the pitch-up moment becomes larger than the pitch-down moment, and as a result, there arises a problem that the aircraft pitches up and the aircraft tail comes into contact with the ground.
Therefore, the present invention has been made in view of the problems of the prior art, and its purpose is to add a few devices without changing the parts related to the design of the aircraft body shape and engine of the existing aircraft. It is an object of the present invention to provide a short-range take-off aircraft equipped with means that can easily reduce the take-off and landing run distance.

前記目的を達成するために請求項1に記載の短距離離着陸航空機は、機体重心から斜め後方かつ機軸に対し対称に配置され各々1又は複数の駆動輪を備えた左右主脚と、機体重心前方に配置され1又は複数の遊動輪を備えた前脚とを有する航空機であって、機体がピッチアップ運動を開始する予兆を検出するピッチアップ予検出手段と、該ピッチアップ予検出手段からの検出信号に基づいて前記駆動輪の推進力を制御する推進力可変手段とを備え、離陸滑走時において前記航空機の巡航時に使用される主推進装置の推進力と前記各駆動輪の推進力を併用して加速しながら離陸滑走することを特徴とする。
上記短距離離着陸航空機では、上記ピッチアップ予検出手段は、左右駆動輪の推進力に起因して発生するピッチアップモーメントによって機体がピッチアップ運動を開始する予兆を素早く検出して、その検出信号を推進力可変手段に送信する一方、その検出信号を受信した推進力可変手段は、機体がピッチアップ運動を起こさない範囲内に駆動輪の推進力を制御して機体のピッチアップ運動を抑制する。これにより、安定して駆動輪の推進力を機体の加速に寄与させることができる。その結果、駆動輪の推進力と主推進装置の推進力を併用することにより、機体を短距離で離陸速度まで加速させることが可能となる。
In order to achieve the above object, a short take-off and landing aircraft according to claim 1 is provided with left and right main landing gears each having one or a plurality of driving wheels arranged obliquely rearward and symmetrically with respect to the axle from the center of gravity of the aircraft, A pitch-up pre-detecting means for detecting a sign that the airframe starts a pitch-up movement, and a detection signal from the pitch-up pre-detecting means And a propulsive force varying means for controlling the propulsive force of the driving wheel based on the above, and using both the propulsive force of the main propulsion device used when cruising the aircraft during takeoff and the propulsive force of each driving wheel. It is characterized by taking off while accelerating.
In the short-range take-off and landing aircraft, the pitch-up pre-detection means quickly detects a sign that the aircraft starts pitch-up movement due to a pitch-up moment generated due to the propulsive force of the left and right drive wheels, and detects the detection signal. While transmitting to the propulsive force variable means, the propulsive force variable means that has received the detection signal controls the propulsive force of the drive wheels within a range in which the airframe does not cause the pitch-up motion, thereby suppressing the pitch-up motion of the airframe. Thereby, the driving force of the driving wheel can be stably contributed to the acceleration of the airframe. As a result, by using the driving force of the driving wheel and the driving force of the main propulsion device in combination, the airframe can be accelerated to the takeoff speed over a short distance.

請求項2に記載の短距離離着陸航空機では、前記ピッチアップ予検出手段は、機体の姿勢角、機体の角速度、機体の一部と地面との距離、または前脚に作用する地面からの荷重を基にして機体がピッチアップ運動を開始する予兆を検出することとした。
上記短距離離着陸航空機では、上記姿勢角、角速度、対地距離または荷重を利用することにより、上記機体がピッチアップ運動を開始する予兆を好適に検出することができる。
In the short take-off and landing aircraft according to claim 2, the pitch-up pre-detection means is based on the attitude angle of the aircraft, the angular velocity of the aircraft, the distance between a part of the aircraft and the ground, or the load from the ground acting on the front legs. Thus, it was decided to detect a sign that the aircraft would start pitching up.
In the short-range take-off and landing aircraft, by using the attitude angle, the angular velocity, the ground distance, or the load, it is possible to suitably detect a sign that the aircraft starts a pitch-up motion.

請求項3に記載の短距離離着陸航空機では、前記駆動輪は電動モータによって駆動されることとした。
上記短距離離着陸航空機では、駆動輪の駆動手段として電動モータを採用することにより左右駆動輪のトルクを容易に制御することが可能となる。更に、電動モータが車輪内に収納されたインホイールモータの場合は、ロータの回転軸と車輪の回転軸が直結し、これにより動力伝達に係る機構・部品が大幅に省略され機体は軽量化されることになる。従って、駆動輪の推進力と、主推進装置の推進力とを併用することにより、機体を短距離で離陸速度までより効率良く加速させることが可能となる。また、機体の軽量化は、燃料消費率の向上の他、後述する着陸距離の短縮に対しても大きく寄与することになる。
In the short-range take-off and landing aircraft according to claim 3, the driving wheel is driven by an electric motor.
In the short-range take-off and landing aircraft, it is possible to easily control the torque of the left and right drive wheels by adopting an electric motor as the drive means of the drive wheels. Furthermore, in the case of an in-wheel motor in which the electric motor is housed in a wheel, the rotor's rotating shaft and the wheel's rotating shaft are directly connected, which greatly reduces the mechanism and parts related to power transmission and reduces the weight of the fuselage. Will be. Therefore, by using the driving force of the driving wheel and the driving force of the main propulsion device in combination, the airframe can be accelerated more efficiently to the take-off speed over a short distance. In addition, the weight reduction of the fuselage greatly contributes to the improvement of the fuel consumption rate and the shortening of the landing distance described later.

請求項4に記載の短距離離着陸航空機では、前記推進力可変手段は着陸滑走時においては前記電動モータに制動トルクを発生させることとした。
上記短距離離着陸航空機では、電動モータに制動トルクを発生させることにより、着陸時において主推進装置のリバーススラストと、電動モータの制動トルクに比例した駆動輪の制動力とを併用することが可能となり、その結果、着陸滑走距離を短縮するようになる。
In the short take-off and landing aircraft according to claim 4, the propulsive force varying means generates a braking torque in the electric motor during the landing run.
In the short-range take-off and landing aircraft, by generating a braking torque in the electric motor, it becomes possible to use both the reverse thrust of the main propulsion device and the braking force of the driving wheel proportional to the braking torque of the electric motor at the time of landing. As a result, the landing run distance is shortened.

請求項5に記載の短距離離着陸航空機では、前記航空機の主推進装置を駆動する原動機は内燃機関を備えることとした。
上記短距離離着陸航空機では、原動機として内燃機関を備えた航空機の離陸滑走距離および着陸滑走距離を短縮し、更に自力でタキシングをすることができるようになる。
In the short-range take-off and landing aircraft according to claim 5, the prime mover driving the main propulsion device of the aircraft includes an internal combustion engine.
In the above short-range take-off and landing aircraft, the take-off run distance and landing run distance of an aircraft equipped with an internal combustion engine as a prime mover can be shortened, and further, taxiing can be performed by oneself.

請求項6に記載の短距離離着陸航空機では、前記航空機の主推進装置を駆動する原動機は電動モータであることとした。
上記短距離離着陸航空機では、原動機として電動モータを備えた航空機の離陸滑走距離および着陸滑走距離を短縮し、更に自力でタキシングをすることができるようになる。
In the short-range take-off and landing aircraft according to claim 6, the prime mover that drives the main propulsion device of the aircraft is an electric motor.
In the above short-range take-off and landing aircraft, the take-off running distance and landing run distance of an aircraft equipped with an electric motor as a prime mover can be shortened, and further, taxiing can be performed by oneself.

本発明の短距離離着陸航空機によれば、以下に記す効果が期待される。
(1)航空機の離着陸滑走距離が短縮されることで利用可能な滑走路の数が増え、さらに空港の規模が小規模で済むため、従来建設が難しかった市街地付近などにも空港の新設が可能となり、旅客の利便性が大幅に向上する。
(2)航空機単体で自在なタキシングが可能となることで牽引車やそのための人員コストも削減でき、タキシングの際に発生する空港騒音や過剰な燃料消費を低減することができる。
According to the short-range take-off and landing aircraft of the present invention, the following effects are expected.
(1) The number of runways that can be used is increased by reducing the take-off and landing run distance of the aircraft, and the size of the airport can be reduced, so it is possible to establish new airports near urban areas where construction was difficult in the past. As a result, passenger convenience is greatly improved.
(2) Since the taxi can be freely controlled by a single aircraft, it is possible to reduce the cost of the tow vehicle and the personnel for that purpose, and it is possible to reduce airport noise and excessive fuel consumption generated during taxiing.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、本発明に係る短距離離着陸航空機100を示す説明図である。なお、図1の(a)は平面図であり、同(b)は側面図である。
この短距離離着陸機100は、胴体1のノーズ部下部に配設され操舵輪12を有する前脚11と、左右主翼2,3下部に配設され左右駆動輪22,32を有する左右主脚21,31とを備える。なお、後述するように、左右駆動輪22,32にはインホイールブラシレスモータが内蔵され、これら左右駆動輪22,32はそのモータによって直接駆動され、機体を前方に押し出す駆動推進力を発生する。これにより、機体は左右エンジン24,34の推進力と、これら左右駆動輪22,32の推進力を併用して離陸滑走するようになり、主エンジンの推進力のみで離陸滑走する従来の航空機に比べ短距離で離陸することができるようになる。また、後述するように前脚11は、ピッチアップ予検出手段としてのリニアポテンションメータ14を備える。つまり、リニアポテンションメータ14は、左右駆動輪22,32の推進力に起因して発生するピッチアップモーメントによって尾部が下がる予兆を素早く検出して、その検出信号を左右駆動輪22,32のトルク制御装置に送信する。他方、その検出信号を受信したトルク制御装置は機体がピッチアップ運動を起こさない範囲内に左右駆動輪22,32の推進力を制御することにより、尾部の地面との接触を防止すると共に左右駆動輪22,32の推進力を安定して機体の加速に使用し、離陸距離の短縮に大きく寄与するようになる。
FIG. 1 is an explanatory view showing a short-range take-off and landing aircraft 100 according to the present invention. 1A is a plan view, and FIG. 1B is a side view.
This short-range take-off and landing aircraft 100 includes a front leg 11 having a steering wheel 12 disposed below a nose portion of the fuselage 1 and left and right main legs 21 having left and right driving wheels 22 and 32 disposed below the left and right main wings 2 and 3. 31. As will be described later, in-wheel brushless motors are built in the left and right drive wheels 22 and 32, and these left and right drive wheels 22 and 32 are directly driven by the motors to generate a driving propulsion force that pushes the airframe forward. As a result, the aircraft will take off and run using the propulsive force of the left and right engines 24 and 34 and the propulsive force of the left and right drive wheels 22 and 32, and the aircraft will take off with only the propulsive force of the main engine. Compared to take a short distance. Further, as will be described later, the front leg 11 includes a linear potentiometer 14 as a pitch-up pre-detection means. That is, the linear potentiometer 14 quickly detects a sign that the tail portion is lowered by the pitch-up moment generated due to the propulsive force of the left and right drive wheels 22 and 32, and uses the detected signal as the torque of the left and right drive wheels 22 and 32. Send to control device. On the other hand, the torque control device that has received the detection signal controls the propulsive force of the left and right drive wheels 22 and 32 within a range in which the airframe does not cause pitch-up motion, thereby preventing the tail from contacting the ground and driving left and right. The propulsive force of the wheels 22 and 32 is stably used for accelerating the aircraft, and greatly contributes to shortening the takeoff distance.

つまり、この短距離離着陸航空機100は、機体のピッチアップの予兆を機体前脚に作用する荷重により検出し、この荷重は前脚のダンパー変位としてリニアポテンションメータ14により計測され、荷重がある閾値を下回ったときに機体がピッチアップを起こしかけたと判断し、駆動輪のトルクを制御することで駆動輪推力をピッチアップ運動を起こさない範囲に制御する。   That is, this short take-off and landing aircraft 100 detects a sign of the aircraft pitch-up by a load acting on the front nose of the aircraft, and this load is measured by the linear potentiometer 14 as a damper displacement of the front nose, and the load falls below a certain threshold. It is determined that the aircraft has started to pitch up, and the driving wheel thrust is controlled within a range that does not cause pitch-up motion by controlling the torque of the driving wheel.

胴体1には重心XGより前方に配置された前脚11が配設され、また前脚11には駆動力を発生させない操舵機能を有する操舵輪12が備わる。なお、前脚11には、ダンパー13(図2を参照。)の変位を検出するリニアポテンションメータ14が備わる。操舵輪12は地面から垂直荷重Nfを受け、ダンパー13の変位信号Snはその垂直荷重Nfに比例する。従って、操舵輪12が地面から離れる直前(機体がピッチアップ運動を開始する直前)の変位信号Snの閾値εを予め取得しておくことにより、機体が加速している間、変位信号Snをリアルタイムに取り込みながら変位信号Snがその閾値ε以下か否かをチェックすることにより、機体がピッチアップ運動を開始する予兆を検出することが可能となる。 Leg 11 before being placed in front of the center of gravity X G is disposed on the body 1, also a steering wheel 12 having a steering function that does not generate a driving force is provided on the front legs 11. The front leg 11 is provided with a linear potentiometer 14 for detecting the displacement of the damper 13 (see FIG. 2). The steered wheel 12 receives a vertical load Nf from the ground, and the displacement signal Sn of the damper 13 is proportional to the vertical load Nf. Therefore, by acquiring in advance the threshold value ε of the displacement signal Sn immediately before the steered wheel 12 leaves the ground (immediately before the aircraft starts pitch-up movement), the displacement signal Sn is obtained in real time while the aircraft is accelerating. By checking whether or not the displacement signal Sn is equal to or less than the threshold value ε while being taken in, it is possible to detect a sign that the aircraft will start pitching up.

左右主翼2,3には重心XGより斜め後方に左右主脚21,31が各々備わり、また、巡航時または滑走時に推進力を発生させる左右エンジン24,34が各々備わる。更に、左右主脚21,31には離陸滑走時の駆動推進力を発生させる左右駆動輪22,32が各々備わる。従って、離陸滑走時には左右エンジン24,34の推進力に左右駆動輪22,32の推進力が加わり、従来よりも短い滑走距離で離陸速度に達することが可能となる。 Diagonally behind the center of gravity X G in the left and right wing 2,3 equipped with left and right main legs 21 and 31 respectively, also provided right engine 24, 34 for generating a propulsive force during cruising or during skid respectively. Further, the left and right main legs 21 and 31 are provided with left and right drive wheels 22 and 32, respectively, for generating a driving propulsion force during takeoff. Therefore, at the time of takeoff run, the propulsive force of the left and right drive wheels 22 and 32 is added to the propulsive force of the left and right engines 24 and 34, and the takeoff speed can be reached with a shorter run distance than before.

左右駆動輪22,32の各車輪(ホイール)にはインホイールブラシレスモータが内蔵されている。ここで、インホイールモータを用いることにより、動力伝達機構に使用される部品を省略することができ、その結果、部品点数を大幅に削減することができると共に、モータの後述する電流制御(トルク制御)により左右駆動輪22,32のトルクを容易に制御することができるようになる。これにより、機体がピッチアップ運動を起こさない範囲内に左右駆動輪22,32の推進力を制御することが可能となり、尾部の地面との接触を防止すると共に左右駆動輪22,32の推進力を安定して機体の加速に使用し、離陸距離の短縮に大きく寄与するようになる。また、ブラシレスモータを用いることにより、後述するように各相に直流電圧を印加する或いは各相の端子を短絡させることにより、モータに制動トルクを発生させ機体に制動をかけることができ、その結果、着陸滑走距離が短縮されると共に、メンテナンスが不要となり、運用コストを軽減することができるようになる。なお、左右駆動輪22,32を駆動するモータとしては、各駆動輪のトルク制御の容易さだけでなく上述した部品点数の削減およびメンテナンスフリーまでを考慮するならば、インホイールタイプが望ましいが、各駆動輪のトルク制御の容易さのみを考慮するならばギヤあるいはプーリ等の動力伝達機構を介したアウトホイールタイプでも良い。   An in-wheel brushless motor is built in each wheel of the left and right drive wheels 22 and 32. Here, by using the in-wheel motor, the parts used in the power transmission mechanism can be omitted, and as a result, the number of parts can be greatly reduced, and current control (torque control) described later of the motor can be achieved. ), The torque of the left and right drive wheels 22 and 32 can be easily controlled. As a result, the propulsive force of the left and right drive wheels 22 and 32 can be controlled within a range in which the aircraft does not cause a pitch-up movement, and the propulsive force of the left and right drive wheels 22 and 32 is prevented while preventing the tail from contacting the ground. Will be used stably to accelerate the aircraft and will greatly contribute to shortening the takeoff distance. In addition, by using a brushless motor, as described later, by applying a DC voltage to each phase or by short-circuiting the terminals of each phase, it is possible to generate braking torque in the motor and brake the machine body, and as a result The landing run distance is shortened, maintenance is not required, and the operation cost can be reduced. The motor for driving the left and right drive wheels 22 and 32 is preferably an in-wheel type in consideration of not only the ease of torque control of each drive wheel but also the reduction in the number of parts and maintenance-freeness described above. If only the ease of torque control of each drive wheel is considered, an out-wheel type via a power transmission mechanism such as a gear or a pulley may be used.

図2は、本発明のトルク制御システム200を示す構成説明図である。
このトルク制御システム200は、ダンパー13の変位を検出するリニアポテンションメータ14と、推進器(左右エンジン24,34)の出力を調整するスロットル15と、スロットル操作量Thおよびリニアポテンションメータ14の変位信号Snの入力を受けて、左右モータ23,33に給電する電流Imを決定するトルク制御装置16と、トルク制御装置16に電力を供給する電源17と、充電回路18とから構成されている。
FIG. 2 is an explanatory diagram showing the configuration of the torque control system 200 of the present invention.
This torque control system 200 includes a linear potentiometer 14 that detects the displacement of the damper 13, a throttle 15 that adjusts the output of the propulsion device (left and right engines 24, 34), a throttle operation amount Th, and a linear potentiometer 14. The torque control device 16 that receives the displacement signal Sn and determines the current Im to be fed to the left and right motors 23, 33, a power supply 17 that supplies power to the torque control device 16, and a charging circuit 18. .

リニアポテンションメータ14は、前脚11に作用する垂直荷重Nfに比例した変位信号Snを出力する。そして、トルク制御装置16はその変位信号を基に機体のピッチアップ運動の予兆を検出する。   The linear potentiometer 14 outputs a displacement signal Sn proportional to the vertical load Nf acting on the front leg 11. The torque control device 16 detects a sign of the pitch-up motion of the airframe based on the displacement signal.

トルク制御装置16は、上記操作量Thおよび変位信号Snの入力を受けて、図3に示すシーケンスにより左右駆動輪22,32を駆動するインホイールブラシレスモータである左右モータ23,33に電源17から各々に与える電流Imを制御することで、その電流に比例する左右駆動輪22,32のトルク、さらにはこれらに比例する駆動推進力Fwを制御する。   The torque control device 16 receives the operation amount Th and the displacement signal Sn and receives power from the left and right motors 23 and 33 which are in-wheel brushless motors for driving the left and right drive wheels 22 and 32 according to the sequence shown in FIG. By controlling the current Im applied to each, the torque of the left and right drive wheels 22 and 32 proportional to the current, and further the drive propulsive force Fw proportional to these are controlled.

図3は、トルク制御装置16による左右モータ23,33のトルク制御シーケンスの例を示すフロー図である。
駆動推進力Fwが増すにつれて垂直荷重Nfおよび変位信号Snは減少するが、このフロー図では駆動推進力Fwが増加した結果、変位信号Snが閾値ε以下となったときを機体のピッチアップ運動の開始と判断し、その時のモータに供給される電流を電流の最大値とする。また、このフロー図は、以降の供給電流をこれ以下に制御するループによって機体がピッチアップ運動を起こさない範囲内に駆動推進力Fwを制御することを目的としている。以下、このフロー図について詳細に説明する。
FIG. 3 is a flowchart showing an example of a torque control sequence of the left and right motors 23 and 33 by the torque control device 16.
As the driving thrust Fw increases, the vertical load Nf and the displacement signal Sn decrease.However, in this flow chart, when the driving thrust Fw increases, the displacement signal Sn falls below the threshold value ε. The start is determined, and the current supplied to the motor at that time is set as the maximum value of the current. In addition, this flowchart is intended to control the driving propulsion force Fw within a range in which the airframe does not cause a pitch-up motion by a loop that controls the supply current thereafter. Hereinafter, this flowchart will be described in detail.

ステップS1では、機体が加速開始後、トルク制御装置16はスロットル操作量ThにゲインCthを乗じた値を供給電流Imとし、左右モータ23,33に入力する。 In step S 1, after the airframe starts to accelerate, the torque control device 16 sets a value obtained by multiplying the throttle operation amount Th by the gain C th as the supply current Im, and inputs it to the left and right motors 23 and 33.

次いで、ステップS2では、リニアポテンションメータ14からの変位信号Snを受信して、予め設定した閾値εとの大小をチェックする。すなわち、変位信号Snが閾値εより大きい間は、ステップS1に戻り、スロットル操作量ThにゲインCthを乗じて算出された供給電流Imを、左右モータ23,33に入力し続ける。一方、駆動推進力Fwが増加して変位信号Snが閾値εを下回った時は、ステップS3に進み、その時のスロットル操作量Thの値をThrefとし、その時の供給電流Imの値をImmaxとする。 Next, in step S2, the displacement signal Sn from the linear potentiometer 14 is received, and the magnitude with respect to the preset threshold value ε is checked. That is, between the displacement signal Sn is larger than the threshold value ε, the process returns to step S1, the supply current Im calculated by multiplying the gain C th to the throttle operation amount Th, continue to enter the left and right motors 23 and 33. On the other hand, when the driving propulsive force Fw increases and the displacement signal Sn falls below the threshold ε, the process proceeds to step S3, where the value of the throttle operation amount Th is Th ref and the value of the supply current Im at that time is Im max. And

ステップS4では、スロットル操作量ThとThrefとの大小をチェックする。すなわち、Th≧Threfの場合には、ステップS5に進み、供給電流Im=Immaxとし、他方、Th<Threfの場合には再度、ステップS1に戻りスロットル操作量ThにゲインCthを乗じて得られる値を供給電流Imとして左右モータ23,33に入力する。 In step S4, the magnitude of the throttle operation amount Th and Th ref is checked. That is, if Th ≧ Th ref , the process proceeds to step S5, and the supply current Im = Im max is set. On the other hand, if Th <Th ref , the process returns to step S1 and the throttle operation amount Th is multiplied by the gain C th . The value obtained in this way is input to the left and right motors 23 and 33 as the supply current Im.

さらに、トルク制御装置16は、上記算出された供給電流Imに応じて左右モータ23,33に印加されるパルス電圧のデューティ比を調節することで実際にモータに供給される電流を制御する。このように電源17から左右モータ23,33に供給される電流の最大値を制御することで駆動輪のトルク、ひいては駆動推進力Fwを機体がピッチアップ運動を起こさない範囲内に制御しながら機体を離陸速度まで短距離で加速することが可能となる。   Further, the torque control device 16 controls the current actually supplied to the motor by adjusting the duty ratio of the pulse voltage applied to the left and right motors 23 and 33 in accordance with the calculated supply current Im. By controlling the maximum value of the current supplied from the power supply 17 to the left and right motors 23 and 33 in this way, the aircraft is controlled while controlling the torque of the drive wheels, and thus the drive propulsion force Fw, within a range in which the aircraft does not cause pitch-up motion. Can be accelerated over a short distance to takeoff speed.

他方、機体が着陸する際には上記左右モータ23,33のコイルの各相に直流電圧を印加する或いは各相の端子を短絡させることで、左右モータ23,33に制動トルクを発生させ機体に制動をかけることが可能となる。あるいは、大きな制動力が必要でない場合は充電回路18により、左右モータ23,33に発生した回転エネルギを回生し電源17を充電する。   On the other hand, when the airframe lands, a DC torque is applied to each phase of the coils of the left and right motors 23 and 33 or a terminal of each phase is short-circuited to generate a braking torque in the left and right motors 23 and 33. It is possible to apply braking. Alternatively, when a large braking force is not required, the charging circuit 18 regenerates the rotational energy generated in the left and right motors 23 and 33 to charge the power source 17.

また、上記実施例では前脚に作用する荷重をピッチアップ運動の予兆として検出する場合について説明したが、他にもジャイロなどを用いて機体の角速度を検出する方法、あるいは加速度センサや傾斜計を用いることで機体の姿勢角を検出する方法なども考えられる。また、前脚に作用する荷重を検出する方法もダンパー変位だけではなく、ロードセルなどを用いる方法も考えられる。左右モータ23,33のトルク制御手法(シーケンス)についても、対気速度から主翼に発生するピッチモーメントを推定し、制御則に組み込むことでより精度の高い制御を行う方法も考えられる。   In the above embodiment, the case where the load acting on the front leg is detected as a sign of the pitch-up motion has been described. However, a method of detecting the angular velocity of the aircraft using a gyroscope or the like, or using an acceleration sensor or an inclinometer Thus, a method of detecting the attitude angle of the aircraft can be considered. Further, as a method for detecting the load acting on the front leg, not only the damper displacement but also a method using a load cell or the like can be considered. As for the torque control method (sequence) of the left and right motors 23 and 33, a method of performing more accurate control by estimating the pitch moment generated in the main wing from the airspeed and incorporating it in the control law is also conceivable.

さらに本発明は推進器用原動機がエンジンの場合だけでなく、図4に示すように原動機が電動モータの場合にも同様に適用することが可能である。   Furthermore, the present invention can be applied not only when the prime mover prime mover is an engine but also when the prime mover is an electric motor as shown in FIG.

ここで、本発明をCessna社Skyhawk172に適用した場合の、離陸滑走距離(機体が失速速度の1.2倍に達するまでの距離)の短縮効果を定量的に検討した結果を図5に示す。ここでは電気自動車に用いられている規模のインホイールモータ(重量26kg、最大トルク46.73Nm)を2個用いた。図5に示されるように、本発明により離陸滑走距離が既存機に比べ約40%低減されることが見込まれる数値解析結果が得られた。   Here, FIG. 5 shows the result of quantitatively examining the effect of shortening the take-off run distance (the distance until the aircraft reaches 1.2 times the stall speed) when the present invention is applied to the Cessna Skyhawk172. Here, two in-wheel motors (weight 26 kg, maximum torque 46.73 Nm) of the scale used for electric vehicles were used. As shown in FIG. 5, a numerical analysis result is obtained in which the take-off run distance is expected to be reduced by about 40% as compared with the existing aircraft.

本発明の短距離離着陸機は、さまざまな形態の航空機の離着陸装置に適用可能であるが、今後需要の伸びが予想される小型航空機に好適に適用することが出来る。特に国土が小さく山がちなわが国では、この技術により現在利用数の低迷する地方空港の活性化、首都圏空港の滑走路の効率的な運用が可能となる。   The short-range take-off and landing aircraft of the present invention can be applied to various types of aircraft take-off and landing devices, but can be suitably applied to small aircraft for which demand growth is expected in the future. Especially in Japan, where the land is small and mountainous, this technology enables the activation of local airports that are currently sluggish and the efficient operation of runways at metropolitan airports.

本発明の短距離離着陸航空機を示す説明図である。It is explanatory drawing which shows the short distance take-off and landing aircraft of this invention. 本発明のトルク制御システムを示す構成説明図である。It is composition explanatory drawing which shows the torque control system of this invention. トルク制御装置による左右モータのトルク制御シーケンスの例を示すフロー図である。It is a flowchart which shows the example of the torque control sequence of the left-right motor by a torque control apparatus. 本発明の他のトルク制御システムを示す構成説明図である。It is composition explanatory drawing which shows the other torque control system of this invention. 本発明による離陸滑走距離の短縮効果の数値解析結果を示すグラフである。It is a graph which shows the numerical analysis result of the shortening effect of the take-off run distance by this invention.

符号の説明Explanation of symbols

1 胴体
2 左主翼
3 右主翼
4 左水平尾翼
5 右水平尾翼
6 垂直尾翼
11 前脚
12 操舵輪
13 ダンパー
14 リニアポテンションメータ
15 スロットル
16 トルク制御装置
17 電源
18 充電回路
21 左主脚
22 左駆動輪
23 左モータ
31 右主脚
32 右駆動輪
33 右モータ
100 短距離離着陸機
200,300 トルク制御システム
1 fuselage 2 left main wing 3 right main wing 4 left horizontal tail 5 right horizontal tail 6 vertical tail 11 front leg 12 steering wheel 13 damper 14 linear potentiometer 15 throttle 16 torque control device 17 power source 18 charging circuit 21 left main leg 22 left drive wheel 23 Left motor 31 Right main leg 32 Right drive wheel 33 Right motor 100 Short-range take-off and landing aircraft 200,300 Torque control system

Claims (6)

機体重心から斜め後方かつ機軸に対し対称に配置され各々1又は複数の駆動輪を備えた左右主脚と、機体重心前方に配置され1又は複数の遊動輪を備えた前脚とを有する航空機であって、機体がピッチアップ運動を開始する予兆を検出するピッチアップ予検出手段と、該ピッチアップ予検出手段からの検出信号に基づいて前記駆動輪の推進力を制御する推進力可変手段とを備え、離陸滑走時において前記航空機の巡航時に使用される主推進装置の推進力と前記各駆動輪の推進力を併用して加速しながら離陸滑走することを特徴とする短距離離着陸航空機。   It is an aircraft having left and right main legs that are arranged obliquely rearward from the center of gravity of the fuselage and symmetrically with respect to the axle and each provided with one or more drive wheels, and front legs that are disposed in front of the center of gravity of the aircraft and provided with one or more idle wheels. And a pitch-up pre-detecting means for detecting a sign that the airframe starts pitch-up motion, and a propulsive force varying means for controlling the propulsive force of the drive wheel based on a detection signal from the pitch-up pre-detecting means. A short-range take-off and landing aircraft that takes off and runs while accelerating using both the propulsive force of the main propulsion device used during cruise of the aircraft and the propulsive force of each drive wheel during take-off run. 前記ピッチアップ予検出手段は、機体の姿勢角、機体の角速度、機体の一部と地面との距離、または前脚に作用する地面からの荷重を基にして機体がピッチアップ運動を開始する予兆を検出する請求項1に記載の短距離離着陸航空機   The pitch-up pre-detection means provides a sign that the aircraft starts pitch-up motion based on the attitude angle of the aircraft, the angular velocity of the aircraft, the distance between a part of the aircraft and the ground, or the load from the ground acting on the front legs. The short-range take-off and landing aircraft according to claim 1 for detection. 前記駆動輪は電動モータによって駆動される請求項1又は2に記載の短距離離着陸航空機。   The short-range take-off and landing aircraft according to claim 1 or 2, wherein the driving wheels are driven by an electric motor. 前記推進力可変手段は着陸滑走時においては前記電動モータに制動トルクを発生させる請求項1から3の何れかに記載の短距離離着陸航空機。   The short-range take-off and landing aircraft according to any one of claims 1 to 3, wherein the propulsive force varying means generates a braking torque in the electric motor during landing landing. 前記航空機の主推進装置を駆動する原動機は内燃機関を備える請求項1から4の何れかに記載の短距離離着陸航空機。   The short-range take-off and landing aircraft according to any one of claims 1 to 4, wherein the prime mover that drives the main propulsion device of the aircraft includes an internal combustion engine. 前記航空機の主推進装置を駆動する原動機は電動モータである請求項1から4の何れかに記載の短距離離着陸航空機。   The short-range take-off and landing aircraft according to any one of claims 1 to 4, wherein the prime mover that drives the main propulsion device of the aircraft is an electric motor.
JP2007191773A 2007-07-24 2007-07-24 Short-range take-off and landing aircraft Expired - Fee Related JP5004224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191773A JP5004224B2 (en) 2007-07-24 2007-07-24 Short-range take-off and landing aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191773A JP5004224B2 (en) 2007-07-24 2007-07-24 Short-range take-off and landing aircraft

Publications (2)

Publication Number Publication Date
JP2009023629A true JP2009023629A (en) 2009-02-05
JP5004224B2 JP5004224B2 (en) 2012-08-22

Family

ID=40395840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191773A Expired - Fee Related JP5004224B2 (en) 2007-07-24 2007-07-24 Short-range take-off and landing aircraft

Country Status (1)

Country Link
JP (1) JP5004224B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196466A (en) * 2014-04-01 2015-11-09 シンフォニアテクノロジー株式会社 Wheel drive system for aircraft
JP2018500234A (en) * 2014-12-31 2018-01-11 エムアールエイ・システムズ・エルエルシー Aircraft using energy recovery system
JP2018177196A (en) * 2017-04-18 2018-11-15 ザ・ボーイング・カンパニーThe Boeing Company Aircraft landing gear assembly and method of assembling the same
KR102263740B1 (en) * 2020-10-13 2021-06-10 이상철 Drone control system
US20210261242A1 (en) * 2020-02-22 2021-08-26 Valery Miftakhov Electric acceleration assist for short takeoff and landing capabilities in fixed-wing aircraft

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2587671A (en) * 2019-10-02 2021-04-07 Advanced Mobility Res And Development Ltd Systems and methods for aircraft

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977631A (en) * 1975-06-04 1976-08-31 The Boeing Company Aircraft wheel drive apparatus and method
JPH02246898A (en) * 1989-03-17 1990-10-02 Nippo Sangyo Kk Landing of aeroplane
JPH04193698A (en) * 1990-11-28 1992-07-13 Toshiomi Suzuki Alighting gear for aircraft and control system therefor
JPH05193577A (en) * 1991-10-14 1993-08-03 Toshio Moriyama Wheel of aircraft
US5527002A (en) * 1993-10-14 1996-06-18 Aerospatiale Societe Nationale Industrielle Electrical flight control system for an airplane, with attitude protection on takeoff
JPH0995299A (en) * 1995-08-07 1997-04-08 Toshiaki Tanaka Device for rotating landing wheels of air plane having same speed therewith
JPH09150796A (en) * 1995-11-30 1997-06-10 Mitsubishi Heavy Ind Ltd Aircraft wheel device
JP2001526779A (en) * 1997-04-15 2001-12-18 トリニティ エアウェイズ,エルエルシー Aircraft weight and center of gravity indicator
JP2002186119A (en) * 2000-12-18 2002-06-28 Japan Science & Technology Corp Electric vehicle
JP2004058978A (en) * 2002-07-29 2004-02-26 Yukitaka Urasato Aircraft tire and rim having blade like windmill to reduce friction, shock or the like between tire and runway when aircraft is landing
JP2004203223A (en) * 2002-12-25 2004-07-22 Shinji Matsuda Aircraft wheel racing device
JP2006213225A (en) * 2005-02-04 2006-08-17 Kanazawa Inst Of Technology Flying automobile
WO2006136515A1 (en) * 2005-06-21 2006-12-28 Continental Teves Ag & Co.Ohg Method for regulating driving dynamics and driving dynamics regulator for motorised single-track vehicles
JP2007516882A (en) * 2003-12-15 2007-06-28 スティーブン・サリヴァン Landing device method and apparatus for braking and steering

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977631A (en) * 1975-06-04 1976-08-31 The Boeing Company Aircraft wheel drive apparatus and method
JPH02246898A (en) * 1989-03-17 1990-10-02 Nippo Sangyo Kk Landing of aeroplane
JPH04193698A (en) * 1990-11-28 1992-07-13 Toshiomi Suzuki Alighting gear for aircraft and control system therefor
JPH05193577A (en) * 1991-10-14 1993-08-03 Toshio Moriyama Wheel of aircraft
US5527002A (en) * 1993-10-14 1996-06-18 Aerospatiale Societe Nationale Industrielle Electrical flight control system for an airplane, with attitude protection on takeoff
JPH0995299A (en) * 1995-08-07 1997-04-08 Toshiaki Tanaka Device for rotating landing wheels of air plane having same speed therewith
JPH09150796A (en) * 1995-11-30 1997-06-10 Mitsubishi Heavy Ind Ltd Aircraft wheel device
JP2001526779A (en) * 1997-04-15 2001-12-18 トリニティ エアウェイズ,エルエルシー Aircraft weight and center of gravity indicator
JP2002186119A (en) * 2000-12-18 2002-06-28 Japan Science & Technology Corp Electric vehicle
JP2004058978A (en) * 2002-07-29 2004-02-26 Yukitaka Urasato Aircraft tire and rim having blade like windmill to reduce friction, shock or the like between tire and runway when aircraft is landing
JP2004203223A (en) * 2002-12-25 2004-07-22 Shinji Matsuda Aircraft wheel racing device
JP2007516882A (en) * 2003-12-15 2007-06-28 スティーブン・サリヴァン Landing device method and apparatus for braking and steering
JP2006213225A (en) * 2005-02-04 2006-08-17 Kanazawa Inst Of Technology Flying automobile
WO2006136515A1 (en) * 2005-06-21 2006-12-28 Continental Teves Ag & Co.Ohg Method for regulating driving dynamics and driving dynamics regulator for motorised single-track vehicles
JP2008546586A (en) * 2005-06-21 2008-12-25 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Driving dynamic control method and driving dynamic controller for motorized single track vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196466A (en) * 2014-04-01 2015-11-09 シンフォニアテクノロジー株式会社 Wheel drive system for aircraft
US9950784B2 (en) 2014-04-01 2018-04-24 Sinfonia Technology Co., Ltd. Wheel drive system for aircraft
JP2018500234A (en) * 2014-12-31 2018-01-11 エムアールエイ・システムズ・エルエルシー Aircraft using energy recovery system
JP2018177196A (en) * 2017-04-18 2018-11-15 ザ・ボーイング・カンパニーThe Boeing Company Aircraft landing gear assembly and method of assembling the same
JP7032934B2 (en) 2017-04-18 2022-03-09 ザ・ボーイング・カンパニー Aircraft landing gear assembly and its assembly method
US20210261242A1 (en) * 2020-02-22 2021-08-26 Valery Miftakhov Electric acceleration assist for short takeoff and landing capabilities in fixed-wing aircraft
WO2021188247A3 (en) * 2020-02-22 2022-01-06 ZeroAvia, Inc. Electric acceleration assist for short takeoff and landing capabilities in fixed-wing aircraft
US11708153B2 (en) * 2020-02-22 2023-07-25 ZeroAvia, Inc. Electric acceleration assist for short takeoff and landing capabilities in fixed-wing aircraft
KR102263740B1 (en) * 2020-10-13 2021-06-10 이상철 Drone control system
US11993374B2 (en) 2020-10-13 2024-05-28 Sang Chul Lee Drone control system

Also Published As

Publication number Publication date
JP5004224B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5004224B2 (en) Short-range take-off and landing aircraft
AU2014307569B2 (en) Convertiplane with new aerodynamic and technical solutions which make the aircraft safe and usable
RU2589212C2 (en) Convertiplane
CN101941524B (en) Method of taxiing aircraft
Moore NASA puffin electric tailsitter VTOL concept
Rajashekara et al. Flying cars: Challenges and propulsion strategies
US20130001355A1 (en) Method of reducing fuel carried by an aircraft in flight
US10532813B2 (en) Dual purpose vehicle for air and ground transportation, and related methods
US20150307112A1 (en) Suspension Transport System
CN101367436B (en) Miniature hybrid power flying platform and implementing method thereof
RU2551300C1 (en) Flying car
Mahvelatishamsabadi et al. Electric propulsion system for exceptionally short takeoff and landing electric air vehicles
WO2012148035A1 (en) Flying automobile
AU2020201310A1 (en) An airplane with tandem roto-stabilizers
CN203612198U (en) Front-pull rear-push type multifunctional fixed-wing unmanned aerial vehicle
CN2695270Y (en) Triphibian aircraft with vehicle, ship and plane function
JP5046100B2 (en) Short-range take-off and landing aircraft
US20210047026A1 (en) Taxiing an aircraft having a hybrid propulsion system
CN106005440A (en) Hybrid power flying electric vehicle with parasol wing
WO2020070521A1 (en) Powered transportation device
CN201317462Y (en) Small hybrid power flying platform
CN204264457U (en) A kind of hybrid power unmanned plane
RU122981U1 (en) COMPACT AIRCRAFT
CN113879051A (en) Vertical take-off and landing and fixed wing aerocar
US20230312087A1 (en) Aircraft nose landing gear assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees