JP5046100B2 - Short-range take-off and landing aircraft - Google Patents

Short-range take-off and landing aircraft Download PDF

Info

Publication number
JP5046100B2
JP5046100B2 JP2007191772A JP2007191772A JP5046100B2 JP 5046100 B2 JP5046100 B2 JP 5046100B2 JP 2007191772 A JP2007191772 A JP 2007191772A JP 2007191772 A JP2007191772 A JP 2007191772A JP 5046100 B2 JP5046100 B2 JP 5046100B2
Authority
JP
Japan
Prior art keywords
aircraft
landing
short
take
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007191772A
Other languages
Japanese (ja)
Other versions
JP2009023628A (en
Inventor
宙 小林
啓 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2007191772A priority Critical patent/JP5046100B2/en
Publication of JP2009023628A publication Critical patent/JP2009023628A/en
Application granted granted Critical
Publication of JP5046100B2 publication Critical patent/JP5046100B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、短距離離着陸航空機、特に駆動輪の推進力と推進装置の推進力を併用し短距離で離陸滑走すると共に駆動輪の制動力を利用して短距離で着陸滑走することが可能な短距離離着陸航空機に関する。   The present invention is capable of taking off and landing at a short distance by using both a propulsion force of a driving wheel and a propulsion force of a propulsion device, and taking a landing at a short distance by using a braking force of the driving wheel. It relates to short-range take-off and landing aircraft.

日本の主要空港のほとんどは僻地あるいは沖合にあるため、空港への移動時間が大幅にかかり、国内航空交通では、結果的に鉄道や自動車や船に対する移動速度の優位性が無くなってしまうことも珍しくない。上記アクセスに不便な空港は旅客離れを誘発し、便数の減少のみならず路線の廃止にまで至る場合が近年少なくない。また、低頻度の海上交通手段しか持たない離島においては、島民の生活の足や観光客誘致の手段として航空輸送への要求が高くても、環境に与える影響が懸念されるため空港の建設は一般的に容易ではない。その一方で、首都圏への旅客需要は年々高まり、首都圏の航空便発着枠は慢性的に不足している。
このような現在の日本の航空輸送に存在する問題点を解決するには、市街地の近くや離島にも空港を新設することが理想的な解決策であるが、これらの場所に長大な滑走路用地を確保するのは建設コストや環境負荷の点からも甚だ困難であるため、短い滑走路を持つ小規模空港の建設がひとつの解決策となる。しかし、短距離で離着陸することができる航空機は、通常、エンジンのパワーを増大することと高揚力を発生するための特別な空力デバイスを主翼に装備することによりその目的を達成しているが、この手法は重量増加や空気抵抗の増加も伴うため巡航性能を犠牲にしがちであるという短所がある。さらに、短距離離着陸機としての特別な全機的開発が必要であるため、現在日常的に運航されている通常の航空機との互換性を開発・設計プロセスに持たせることも難しく、歴史的に見ても短距離離着陸機は普及してはいない。
市街地近くの空港が近隣住民に受け入れられるためには、短距離離着陸性能だけでなく、さらに離着陸時における低排出ガス及び低騒音性能も強く要求される。
しかし、現在の航空機は空港内でタキシング及び離陸滑走を行う場合にも、飛行中に用いるプロペラまたはジェットエンジン等の推進器をそのまま用いている。これらは通常、巡航速度において、最大効率が達成されるよう設計されており、タキシングや滑走時のように機速が低い場合、推進効率が低いので燃料消費量がかさむ上、騒音の原因にもなる。
これについてBoeing社から米国特許第3977631号に示すように、降着装置に電動モータを内蔵し、車輪を動力で駆動することにより、タキシングを静粛かつ高効率に行う手法が提案されている(例えば、特許文献1を参照。)。
わが国においても、降着装置の車輪を回転させるという手法は、様々な形で提案されている(例えば、特許文献2から6を参照。)。しかし、これらの特許文献に示されている機構は着陸接地時の衝撃を和らげる目的で接地直前に車輪を回転させる機構であるため、地上において機体全体を加速させるほどの出力はない。また、特許文献6の航空機の車輪は、タキシング時の推進器燃料を節約する目的で降着装置の車輪に駆動機構を持たせているが、やはり車輪に機体全体を離陸速度まで加速させるほどの駆動力を持たせるには駆動機構全体の重量が航空機には受け入れ難いほど大きくなる欠点がある。
近年は永久磁石の性能が向上し、特許文献7に示される小型高出力なインホイールモータ式電気自動車が開発されている。ここで用いられているインホイールモータは小型航空機の離陸滑走に必要な出力を備えていると同時に、インホイールであるため駆動機構の重量が小さい。これらを航空機の車輪にも適用することでわずかな重量増加でタキシングのみならず、離陸滑走時の推進力を補強できる可能性がある。
Most of Japan's major airports are remote or offshore, so it takes a long time to travel to the airport, and domestic air traffic rarely loses its advantage in speed over railways, cars and ships. Absent. In recent years, airports that are inconvenient to access often cause passengers to leave and not only the number of flights but also the abolition of routes. On remote islands that have only low-frequency means of sea transportation, even if demand for air transport is high as a means of attracting islanders' lives and attracting tourists, there are concerns about the impact on the environment. Generally not easy. On the other hand, passenger demand in the Tokyo metropolitan area is increasing year by year, and airline slots in the metropolitan area are chronically lacking.
In order to solve the problems that exist in the current air transportation in Japan, the ideal solution is to establish a new airport near the city and on the remote islands. Since it is very difficult to secure a site in terms of construction cost and environmental load, the construction of a small airport with a short runway is one solution. However, aircraft that can take off and land at short distances usually achieve their purpose by increasing the power of the engine and equipping the main wing with a special aerodynamic device to generate high lift, This method has a disadvantage in that it tends to sacrifice the cruise performance due to an increase in weight and an increase in air resistance. In addition, special development as a short-range take-off and landing aircraft is required, so it is difficult to have the development and design process compatible with ordinary aircraft that are currently operating on a daily basis. Even short-range take-off and landing aircraft are not widespread.
In order for an airport near the city to be accepted by neighboring residents, not only short-range take-off and landing performance, but also low emission and noise performance during take-off and landing are strongly required.
However, current aircraft use propellers such as propellers or jet engines used during flight as they are when taxiing and taking off and taking off in airports. These are usually designed to achieve maximum efficiency at cruising speed.If the speed is low, such as during taxiing or gliding, the propulsion efficiency is low, which increases fuel consumption and also causes noise. Become.
Regarding this, as shown in US Pat. No. 3,977,631 from Boeing, a method for quietly and highly efficiently performing taxiing by incorporating an electric motor in an landing gear and driving wheels with power has been proposed (for example, (See Patent Document 1).
Even in Japan, a method of rotating a landing gear wheel has been proposed in various forms (see, for example, Patent Documents 2 to 6). However, since the mechanism shown in these patent documents is a mechanism for rotating the wheel immediately before the landing for the purpose of reducing the impact at the time of landing and landing, there is not enough output to accelerate the entire body on the ground. In addition, the aircraft wheel of Patent Document 6 has a drive mechanism on the wheels of the landing gear for the purpose of saving the propellant fuel during taxiing, but the drive is also sufficient to accelerate the entire fuselage to the takeoff speed. In order to have a force, there is a drawback that the weight of the entire drive mechanism becomes unacceptably large for an aircraft.
In recent years, the performance of permanent magnets has improved, and a small and high-power in-wheel motor type electric vehicle shown in Patent Document 7 has been developed. The in-wheel motor used here has an output necessary for take-off of a small aircraft, and at the same time, since it is an in-wheel, the weight of the drive mechanism is small. By applying these to the wheels of an aircraft, it is possible to reinforce not only the taxing but also the propulsive force during take-off run with a slight increase in weight.

米国特許第3977631号U.S. Pat. No. 3,976,761 特開平09−095299号公報Japanese Patent Laid-Open No. 09-095299 特開平09−150796号公報Japanese Patent Laid-Open No. 09-150796 特開2004−058978号公報JP 2004-058978 A 特開2004−203223号公報JP 2004-203223 A 特開平05−193577号公報Japanese Patent Laid-Open No. 05-193577 特開2002−186119号公報JP 2002-186119 A

離陸滑走距離の長い航空機ほど、より長い滑走路が必要であり、空港の建設あるいは運用に伴う環境負荷は、より大きくなる。しかし、短い滑走路で済む短距離離着陸航空機を従来提案されてきたようなエンジンパワーの増加と空力デバイスの付加によって実現したとしても、上述した理由により市場で広く普及する航空機にはなり難い。
ところで、航空機の車輪にインホイールモータを内蔵させ、エンジンの推進力と車輪が発生する駆動推進力を併用することにより、離陸滑走時の推進力が補強され、短距離で離陸速度に達することが可能となる。
しかし、航空機の車輪に機体全体を加速させる駆動推進力を持たせると次のようなピッチアップの問題が生じる。つまり、航空機は自動車の場合と異なり機体の重心が高い位置にあることから、重心回りに発生するピッチアップモーメント(機首を上げようと作用するモーメント)が重力によるピッチダウンモーメントと同程度の大きさを持つ。そのため、車輪の駆動推進力が大きくなると、ピッチアップモーメントがピッチダウンモーメントより大きくなり、その結果、機体がピッチアップして機体の尾部が地面に接触するという問題が発生する。
また、機体がピッチアップを開始した場合、前脚の操舵輪が地面から離れた後は、前脚は操舵機能を全く失うことになるという問題が発生する。
そこで、本発明は、かかる従来技術の問題点に鑑みなされたものであって、その目的は既存航空機の機体形状やエンジンといった設計の根幹に関わる部分を変更しなくても、わずかなデバイスの付加だけで簡単に離着陸滑走距離を短縮できる手段を備えた短距離離陸航空機を提供することにある。
An aircraft with a longer take-off run distance requires a longer runway, and the environmental load associated with airport construction or operation is greater. However, even if a short take-off and landing aircraft that requires a short runway is realized by increasing engine power and adding an aerodynamic device as previously proposed, it is difficult to become an aircraft that is widely spread on the market for the reasons described above.
By the way, the in-wheel motor is built in the wheel of the aircraft, and the driving force generated by the engine and the driving force generated by the wheel are used together to reinforce the driving force during take-off and can take off at a short distance. It becomes possible.
However, when the driving force for accelerating the entire aircraft is given to the wheels of the aircraft, the following pitch-up problem occurs. In other words, unlike an automobile, an aircraft has a high center of gravity, so the pitch-up moment that occurs around the center of gravity (the moment that acts to raise the nose) is as large as the pitch-down moment due to gravity. Have Therefore, when the driving driving force of the wheel increases, the pitch-up moment becomes larger than the pitch-down moment, and as a result, there arises a problem that the aircraft pitches up and the aircraft tail comes into contact with the ground.
Further, when the airframe starts pitching up, there is a problem that the front leg loses the steering function at all after the front wheel steered away from the ground.
Therefore, the present invention has been made in view of the problems of the prior art, and its purpose is to add a few devices without changing the parts related to the design of the aircraft body shape and engine of the existing aircraft. It is an object of the present invention to provide a short-range take-off aircraft equipped with means that can easily reduce the take-off and landing run distance.

前記目的を達成するために請求項1に記載の短距離離着陸航空機は、機体重心から斜め後方かつ機軸に対し対称に配置され各々1又は複数の駆動輪を備えた左右主脚と、機体重心前方に配置され1又は複数の遊動輪を備えた前脚とを有する航空機であって、前記左右主脚より機体重心後方に配置され且つ滑走手段を有し任意に対地距離を変化させることができる可動脚と、前記各駆動輪の推進力をラダーの操作量に応じて個別に変化させる推進力可変手段を備え、離陸滑走時において前記航空機の巡航時に使用される主推進装置の推進力と前記各駆動輪の推進力を併用して加速しながら離陸滑走することを特徴とする。
上記短距離離着陸航空機では、第4の脚として左右主脚より機体重心後方に可動脚を備えることにより、左右駆動輪の推進力に起因して発生するピッチアップモーメントによって機首が上がり尾部が下がる場合に、可動脚が接地して尾部の地面との接触を防止すると共に機体の滑走姿勢を安定に保つことが可能となる。また、可動脚は対地距離を変化させることができるため、機体を空気の抵抗力を受けにくい滑走姿勢に保つことにより、駆動輪の推進力を効率良く機体の加速に寄与させることが可能となる。これにより、駆動輪の推進力と、主推進装置の推進力とを併用することにより、機体を短距離で離陸速度まで加速させることが可能となる。
また、各駆動輪の推進力をラダーの操作量に応じて個別に変化させる推進力可変手段を備えることにより、前脚の操舵機能が失われても左右駆動輪の推進力の差で操舵することが可能となり、機体の方向安定性を保つことが可能となる。
In order to achieve the above object, a short take-off and landing aircraft according to claim 1 is provided with left and right main landing gears each having one or a plurality of driving wheels arranged obliquely rearward and symmetrically with respect to the axle from the center of gravity of the aircraft, And a front leg having one or a plurality of idler wheels, which are arranged behind the left and right main legs and have a sliding means and can arbitrarily change a ground distance. And a propulsive force varying means for individually changing the propulsive force of each driving wheel according to the operation amount of the ladder, and the propulsive force of the main propulsion device used during cruise of the aircraft during takeoff and the driving It is characterized by taking off and running while accelerating with the driving force of the wheels.
In the above short-range take-off and landing aircraft, the fourth leg is provided with a movable leg behind the center of gravity of the aircraft from the left and right main legs, so that the nose rises due to the pitch-up moment generated by the propulsive force of the left and right drive wheels, and the tail is lowered. In this case, it is possible to prevent the contact of the movable leg with the ground of the tail and contact the ground of the tail and to keep the aircraft's sliding posture stable. In addition, since the movable legs can change the distance to the ground, the propulsion force of the drive wheels can be efficiently contributed to the acceleration of the aircraft by keeping the aircraft in a sliding posture that is less susceptible to air resistance. . Thereby, it becomes possible to accelerate the airframe to the takeoff speed in a short distance by using the driving force of the driving wheel and the driving force of the main propulsion device in combination.
In addition, by providing propulsive force variable means that individually changes the propulsive force of each drive wheel according to the amount of operation of the ladder, even if the steering function of the front leg is lost, steering is performed with the difference in the propulsive force of the left and right drive wheels This makes it possible to maintain the directional stability of the aircraft.

請求項2に記載の短距離離着陸航空機では、前記駆動輪は電動モータによって駆動されることとした。
上記短距離離着陸航空機では、駆動輪の駆動手段として電動モータを採用することにより左右駆動輪のトルクを容易に制御することが可能となる。更に、電動モータが車輪内に収納されたインホイールモータの場合は、ロータの回転軸と車輪の回転軸が直結し、これにより動力伝達に係る機構・部品が大幅に省略され機体は軽量化されることになる。従って、駆動輪の推進力と、主推進装置の推進力とを併用することにより、機体を短距離で離陸速度までより効率良く加速させることが可能となる。また、機体の軽量化は、燃料消費率の向上の他、後述する着陸距離の短縮に対しても大きく寄与することになる。
In the short-range take-off and landing aircraft according to claim 2, the driving wheel is driven by an electric motor.
In the short-range take-off and landing aircraft, it is possible to easily control the torque of the left and right drive wheels by adopting an electric motor as the drive means of the drive wheels. Furthermore, in the case of an in-wheel motor in which the electric motor is housed in a wheel, the rotor's rotating shaft and the wheel's rotating shaft are directly connected, which greatly reduces the mechanism and parts related to power transmission and reduces the weight of the fuselage. Will be. Therefore, by using the driving force of the driving wheel and the driving force of the main propulsion device in combination, the airframe can be accelerated more efficiently to the take-off speed over a short distance. In addition, the weight reduction of the fuselage greatly contributes to the improvement of the fuel consumption rate and the shortening of the landing distance described later.

請求項3に記載の短距離離着陸航空機では、前記推進力可変手段は着陸滑走時においては前記電動モータに制動トルクを発生させることとした。
上記短距離離着陸航空機では、電動モータに制動トルクを発生させることにより、着陸時において主推進装置のリバーススラストと、電動モータの制動トルクに比例した駆動輪の制動力とを併用することが可能となり、その結果、着陸滑走距離を短縮するようになる。
In the short take-off and landing aircraft according to claim 3 , the propulsion force varying means generates a braking torque in the electric motor during the landing run.
In the short-range take-off and landing aircraft, by generating a braking torque in the electric motor, it becomes possible to use both the reverse thrust of the main propulsion device and the braking force of the driving wheel proportional to the braking torque of the electric motor at the time of landing. As a result, the landing run distance is shortened.

請求項4に記載の短距離離着陸航空機では、前記航空機の主推進装置を駆動する原動機は内燃機関を備えることとした。
上記短距離離着陸航空機では、原動機として内燃機関を備えた航空機の離陸滑走距離および着陸滑走距離を短縮し、更に自力でタキシングをすることができるようになる。
In the short-range take-off and landing aircraft according to claim 4 , the prime mover that drives the main propulsion device of the aircraft includes an internal combustion engine.
In the above short-range take-off and landing aircraft, the take-off run distance and landing run distance of an aircraft equipped with an internal combustion engine as a prime mover can be shortened, and further, taxiing can be performed by oneself.

請求項5に記載の短距離離着陸航空機では、前記航空機の主推進装置を駆動する原動機は電動モータであることとした。
上記短距離離着陸航空機では、原動機として電動モータを備えた航空機の離陸滑走距離および着陸滑走距離を短縮し、更に自力でタキシングをすることができるようになる。
In the short-range take-off and landing aircraft according to claim 5 , the prime mover that drives the main propulsion device of the aircraft is an electric motor.
In the above short-range take-off and landing aircraft, the take-off running distance and landing run distance of an aircraft equipped with an electric motor as a prime mover can be shortened, and further, taxiing can be performed by oneself.

本発明の短距離離着陸航空機によれば、以下に記す効果が期待される。
(1)航空機の離着陸滑走距離が短縮されることで利用可能な滑走路の数が増え、さらに空港の規模が小規模で済むため、従来建設が難しかった市街地付近などにも空港の新設が可能となり、旅客の利便性が大幅に向上する。
(2)航空機単体で自在なタキシングが可能となることで牽引車やそのための人員コストも削減でき、タキシングの際に発生する空港騒音や過剰な燃料消費を低減することができる。
According to the short-range take-off and landing aircraft of the present invention, the following effects are expected.
(1) The number of runways that can be used is increased by reducing the take-off and landing run distance of the aircraft, and the size of the airport can be reduced, so it is possible to establish new airports near urban areas where construction was difficult in the past. As a result, passenger convenience is greatly improved.
(2) Since the taxi can be freely controlled by a single aircraft, it is possible to reduce the cost of the tow vehicle and the personnel for that purpose, and it is possible to reduce airport noise and excessive fuel consumption generated during taxiing.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、本発明に係る短距離離着陸航空機100を示す説明図である。なお、図1の(a)は平面図であり、同(b)は側面図である。
この短距離離着陸機100は、胴体1のノーズ部下部に配設され操舵輪12を有する前脚11と、左右主翼2,3下部に配設され左右駆動輪22,32を有する左右主脚21,31との他に、第4の脚として胴体1の後部に配設され滑走手段としての遊動輪14を有する可動脚13を備える。なお、後述するように、左右駆動輪22,32にはインホイールブラシレスモータが内蔵され、これら左右駆動輪22,32はそのモータによって直接駆動され、機体を前方に押し出す駆動推進力を発生する。これにより、機体は左右エンジン24,34の推進力と、これら左右駆動輪22,32の推進力を併用して離陸滑走するようになり、主エンジンの推進力のみで離陸滑走する従来の航空機に比べ短距離で離陸することができるようになる。また、可動脚13を備えることにより、左右駆動輪22,32の推進力に起因して発生するピッチアップモーメントによって機首が上がり尾部が下がる場合に、可動脚13の遊動輪14が接地して尾部の地面との接触を防止すると共に機体の滑走姿勢を安定に保ち、離陸距離の短縮に大きく寄与している。また、可動脚13は、離陸速度に達した後は、後述の可動脚制御装置によって機体の内部に収納される。また、可動脚13の滑走手段として遊動輪14に代えて、そり等の非回転機構を採用することも可能である。
FIG. 1 is an explanatory view showing a short-range take-off and landing aircraft 100 according to the present invention. 1A is a plan view, and FIG. 1B is a side view.
This short-range take-off and landing aircraft 100 includes a front leg 11 having a steering wheel 12 disposed below a nose portion of the fuselage 1 and left and right main legs 21 having left and right driving wheels 22 and 32 disposed below the left and right main wings 2 and 3. In addition to 31, a movable leg 13 having a idler wheel 14 as a sliding means disposed at the rear part of the body 1 as a fourth leg is provided. As will be described later, in-wheel brushless motors are built in the left and right drive wheels 22 and 32, and these left and right drive wheels 22 and 32 are directly driven by the motors to generate a driving propulsion force that pushes the airframe forward. As a result, the aircraft will take off and run using the propulsive force of the left and right engines 24 and 34 and the propulsive force of the left and right drive wheels 22 and 32, and the aircraft will take off with only the propulsive force of the main engine. Compared to take a short distance. Further, by providing the movable leg 13, the idler wheel 14 of the movable leg 13 is grounded when the nose is raised and the tail is lowered due to the pitch-up moment generated due to the propulsive force of the left and right drive wheels 22,32. While preventing the tail from touching the ground, it keeps the aircraft in a stable position and contributes greatly to shortening the takeoff distance. Further, after reaching the takeoff speed, the movable leg 13 is housed inside the aircraft by a movable leg control device described later. Further, a non-rotating mechanism such as a sled can be adopted as the sliding means of the movable leg 13 instead of the idler wheel 14.

胴体1には重心XGより前方に配置された前脚11と同後方に配置された可動脚13が各々配設され、また前脚11には駆動力を発生させない操舵機能を有する操舵輪12が備わり、可動脚13には同じく駆動力を発生させない遊動輪14が備わる。なお、図1(b)に示されるように、遊動輪14は、静止時において地面との間にクリアランスを有し接地していない。また、可動脚13は、ダンピング機構、例えば脚の一部がシリンダとピストンによって構成され、且つそのシリンダの内部がオリフィスを備えた仕切り板によって2室に区切られオイルと不活性ガスが封入された機構を備える。従って、例えば不活性ガスの封入圧力を変えることにより、可動脚13の対地距離を任意に変化させることが可能となる。 Movable legs 13 which are disposed on the same rear leg 11 before being placed in front of the center of gravity X G is respectively arranged in the body 1, also the front legs 11 equipped with a steering wheel 12 having a steering function that does not generate a driving force The movable leg 13 is also provided with an idler wheel 14 that does not generate a driving force. As shown in FIG. 1 (b), the idler wheel 14 is not grounded with a clearance from the ground when stationary. Further, the movable leg 13 is a damping mechanism, for example, a part of the leg is constituted by a cylinder and a piston, and the inside of the cylinder is divided into two chambers by a partition plate having an orifice, and oil and inert gas are enclosed. Provide mechanism. Therefore, for example, the ground distance of the movable leg 13 can be arbitrarily changed by changing the sealing pressure of the inert gas.

左右主翼2,3には重心XGより斜め後方に左右主脚21,31が各々備わり、また、巡航時または滑走時に推進力を発生させる左右エンジン24,34が各々備わる。更に、左右主脚21,31には離陸滑走時の駆動推進力を発生させる左右駆動輪22,32が各々備わる。従って、離陸滑走時には左右エンジン24,34の推進力に左右駆動輪22,32の推進力が加わり、従来よりも短い滑走距離で離陸速度に達することが可能となる。 Diagonally behind the center of gravity X G in the left and right wing 2,3 equipped with left and right main legs 21 and 31 respectively, also provided right engine 24, 34 for generating a propulsive force during cruising or during skid respectively. Further, the left and right main legs 21 and 31 are provided with left and right drive wheels 22 and 32, respectively, for generating a driving propulsion force during takeoff. Therefore, at the time of takeoff run, the propulsive force of the left and right drive wheels 22 and 32 is added to the propulsive force of the left and right engines 24 and 34, and the takeoff speed can be reached with a shorter run distance than before.

左右駆動輪22,32の各車輪(ホイール)にはインホイールブラシレスモータが内蔵されている。ここで、インホイールモータを用いることにより、動力伝達機構に使用される部品を省略することができ、その結果、部品点数を大幅に削減することができると共に、モータの後述する電流制御(トルク制御)により各駆動輪のトルクを容易に制御することができるようになる。これにより、離陸滑走中にピッチアップモーメントが発生し、機首が上がり、前脚11の操舵輪12が地面から離れ前脚11の操舵機能が喪失した場合であっても、可動脚13により機体の滑走姿勢が安定に保たれ、更にはこれら左右駆動輪22,32のトルク制御により機体を安定に操舵することが可能となる。また、ブラシレスモータを用いることにより、後述するように各相に直流電圧を印加する或いは各相の端子を短絡させることにより、モータに制動トルクを発生させ機体に制動をかけることができ、その結果、着陸滑走距離が短縮されると共に、メンテナンスが不要となり、運用コストを軽減することができるようになる。なお、左右駆動輪22,32を駆動するモータとしては、各駆動輪のトルク制御の容易さだけでなく上述した部品点数の削減およびメンテナンスフリーまでを考慮するならば、インホイールタイプが望ましいが、各駆動輪のトルク制御の容易さのみを考慮するならばギヤあるいはプーリ等の動力伝達機構を介したアウトホイールタイプでも良い。   An in-wheel brushless motor is built in each wheel of the left and right drive wheels 22 and 32. Here, by using the in-wheel motor, the parts used in the power transmission mechanism can be omitted, and as a result, the number of parts can be greatly reduced, and current control (torque control) described later of the motor can be achieved. ), The torque of each drive wheel can be easily controlled. As a result, a pitch-up moment is generated during take-off, the nose rises, and even if the steering wheel 12 of the front leg 11 leaves the ground and the steering function of the front leg 11 is lost, the movable leg 13 causes the aircraft to slide. The posture is kept stable, and further, the aircraft can be stably steered by the torque control of the left and right drive wheels 22 and 32. In addition, by using a brushless motor, as described later, by applying a DC voltage to each phase or by short-circuiting the terminals of each phase, it is possible to generate braking torque in the motor and brake the machine body, and as a result The landing run distance is shortened, maintenance is not required, and the operation cost can be reduced. The motor for driving the left and right drive wheels 22 and 32 is preferably an in-wheel type in consideration of not only the ease of torque control of each drive wheel but also the reduction in the number of parts and maintenance-freeness described above. If only the ease of torque control of each drive wheel is considered, an out-wheel type via a power transmission mechanism such as a gear or a pulley may be used.

また、可動脚13は、上述したようにダンピング機構(図示せず)を備え、シリンダ軸方向に対して伸縮することが可能である。従って、左右駆動輪22,32の推進力が増して機体がピッチアップを開始した場合、可動脚13のダンピング機構が作用し機体の尾部を支持し機体の滑走姿勢を安定に保つように作用する。可動脚13の脚長は、機体の安定性を確保するため、静止時には接地しない長さであり、従って、静止時からピッチアップ運動を始めるまでの間は機体は前脚11(操舵輪12)、左右主脚21,31(左右駆動輪22,32)によって支持されている。その後、左右駆動輪22,32の駆動推進力が増し、機体がピッチアップを開始した場合は操舵輪12が地面から離れ、逆に可動脚13の遊動輪14が接地することで機体を支える。また、操舵輪12が地面から離れた後は、前脚11は操舵機能を失うことになるが、後述するトルク制御シーケンスに示されるように、推進力可変手段を構成するトルク制御装置によって左右駆動輪22,32の推進力を個別に制御することにより機体の方向安定性を保つことが可能となる。 Moreover, the movable leg 13 includes a damping mechanism (not shown) as described above, and can be expanded and contracted with respect to the cylinder axial direction. Therefore, when the propulsion force of the left and right drive wheels 22 and 32 increases and the aircraft starts to pitch up, the damping mechanism of the movable leg 13 acts to support the tail of the aircraft and to keep the aircraft's sliding posture stable. . The leg length of the movable leg 13 is a length that does not contact the ground when stationary in order to ensure the stability of the aircraft. Therefore, the aircraft is in front of the front legs 11 (steering wheels 12), left and right until the pitch-up movement starts from the stationary time. It is supported by the main legs 21 and 31 (left and right drive wheels 22 and 32). Thereafter, when the driving propulsion force of the left and right drive wheels 22 and 32 increases and the aircraft starts to pitch up, the steering wheel 12 leaves the ground, and the idler wheel 14 of the movable leg 13 is grounded to support the aircraft. Further, after the steered wheel 12 is separated from the ground, the front leg 11 loses the steering function. However, as shown in a torque control sequence described later, the left and right drive wheels are driven by the torque control device constituting the propulsive force varying means. It is possible to maintain the directional stability of the aircraft by controlling the propulsive forces 22 and 32 individually.

図2は、本発明のトルク制御システム200を示す構成説明図である。
このトルク制御システム200は、可動脚13を制御する可動脚制御装置15と、推進器(左右エンジン24,34)の出力を調整するスロットル16と、機体の向きを操作するラダーペダル(方向舵操作ペダル)17と、スロットル操作量Thおよびラダーペダル操作量Ruの入力を受けて、左モータ23および右モータ33に給電する電流値Iml,Imrを決定するトルク制御装置18と、トルク制御装置18に電力を供給する電源19と、充電回路20とから構成されている。
FIG. 2 is an explanatory diagram showing the configuration of the torque control system 200 of the present invention.
This torque control system 200 includes a movable leg control device 15 that controls the movable leg 13, a throttle 16 that adjusts the output of the propulsion device (left and right engines 24 and 34), and a ladder pedal (a rudder operation pedal that operates the direction of the aircraft). ) 17, the torque control device 18 that receives the throttle operation amount Th and the rudder pedal operation amount Ru and determines the current values Iml and Imr to be supplied to the left motor 23 and the right motor 33, and the torque control device 18 is supplied with electric power. And a charging circuit 20.

可動脚制御装置15は、可動脚13のダンピング機構(ダンパー)の減衰力、脚長ならびに引き出し及び引き込みを制御する。すなわち、ピッチアップモーメントが強くなり、機体の尾部が地面に押しつけられそうになると、ダンパーの減衰力を強めピッチアップモーメントを吸収し、更には機体の姿勢を安定に保つように可動脚13の脚長を適切な長さに保つように制御する。また、機体が離陸した後は、可動脚13を機体の内部に収納し巡航時の抵抗とならないようにする。   The movable leg control device 15 controls the damping force of the damping mechanism (damper) of the movable leg 13, the leg length, and the pulling out and retracting. That is, when the pitch-up moment becomes strong and the tail of the aircraft is about to be pressed against the ground, the damping force of the damper is strengthened to absorb the pitch-up moment, and further, the leg length of the movable leg 13 so as to keep the posture of the aircraft stable. Is controlled to maintain an appropriate length. In addition, after the aircraft has taken off, the movable leg 13 is housed inside the aircraft so that it does not become a resistance during cruising.

トルク制御装置18は、上記操作量Th,Ruの入力を受けて、図3に示すシーケンスにより左右駆動輪22,32を駆動するインホイールブラシレスモータである左右モータ23,33に電源19から各々に与える各電流Iml,Imrを制御することで、その各電流に比例する左右駆動輪22,32の各トルク、さらにはこれらに比例する右駆動輪推進力Fwrおよび左駆動輪推進力Fwlを制御する。   The torque control device 18 receives the input of the manipulated variables Th and Ru, and supplies power to the left and right motors 23 and 33, which are in-wheel brushless motors that drive the left and right drive wheels 22 and 32 according to the sequence shown in FIG. By controlling the currents Iml and Imr to be applied, the torques of the left and right drive wheels 22 and 32 proportional to the currents, and the right drive wheel propulsion force Fwr and the left drive wheel propulsion force Fwl proportional to these are controlled. .

図3は、トルク制御装置18による左右モータ23,33のトルク制御シーケンスの例を示すフロー図である。
トルク制御装置18は、左モータ23の推進力(Fwl)に関する指令値Fwlref、および右モータ33の推進力(Fwr)に関する指令値Fwrrefをスロットル16の操作量Thおよびラダーペダル17の操作量Ruの値を基に算出する。
そのため、先ずステップS1では、スロットル16の操作量Thにより、左モータ23の推進力(Fwl)と右モータ33の推進力(Fwr)の和Fwlref+Fwrrefを制御する。ここでは、Fwlref+Fwrref=At×ThとしFwlref+Fwrrefを算出する。なお、Atはユーザが予め設定するゲインである。
FIG. 3 is a flowchart showing an example of a torque control sequence of the left and right motors 23 and 33 by the torque control device 18.
Torque controller 18, the operation amount command values FWL ref, and the operation amount Th and rudder pedals 17 of the propulsion force of the right motor 33 a command value Fwr ref about (Fwr) throttle 16 about propulsion (FWL) of the left motor 23 Calculated based on the value of Ru.
Therefore, first, in step S1, the sum Fwl ref + Fwr ref of the propulsive force (Fwl) of the left motor 23 and the propulsive force (Fwr) of the right motor 33 is controlled by the operation amount Th of the throttle 16. Here, Fwl ref + Fwr ref = At × Th, and Fwl ref + Fwr ref is calculated. At is a gain preset by the user.

ステップS2では、ラダーペダル17の操作量Ruにより、左モータ23の推進力(Fwl)と右モータ33の推進力(Fwr)の差Fwlref−Fwrrefを制御する。ここでは、Fwlref−Fwrref=Ar×Ruとし、Fwlref−Fwrrefを算出する。また、機体を右に旋回させる場合にはFwlをFwrに対して増せばよく、他方、左に旋回させる場合にはFwrをFwlに対して増せばよい。つまり、機体はFwl−Fwrが正ならば右に旋回し、負ならば左に旋回する。よって、ラダーペダル操作量Ruは右旋回に対応する入力を正とし、トルク制御装置18では、Fwlref−Fwrref=Ar×RuからFwlref−Fwrrefを算出する。なお、Arはユーザが予め設定するゲインである。 In step S <b> 2, the difference Fwl ref −Fwr ref between the propulsive force (Fwl) of the left motor 23 and the propulsive force (Fwr) of the right motor 33 is controlled by the operation amount Ru of the ladder pedal 17. Here, Fwl ref −Fwr ref = Ar × Ru, and Fwl ref −Fwr ref is calculated. Further, when turning the aircraft to the right, Fwl may be increased with respect to Fwr, and when turning to the left, Fwr may be increased with respect to Fwl. In other words, the aircraft turns to the right if Fwl-Fwr is positive, and to the left if Fwl-Fwr is negative. Therefore, rudder pedal operation amount Ru is positive in the input corresponding to the right turn, the torque control unit 18 calculates the Fwl ref -Fwr ref from Fwl ref -Fwr ref = Ar × Ru . Ar is a gain set in advance by the user.

ステップS3では、ステップS1で得られたFwlref+Fwrrefと、ステップS2で得られたFwlref−Fwrrefを基に、左右モータ23,33の指令値Fwlref,Fwrrefを個別に算出する。 In step S3, the Fwl ref + Fwr ref obtained in step S1, based on Fwl ref -Fwr ref obtained in step S2, the command value FWL ref of the left and right motors 23 and 33 is calculated individually Fwr ref.

ステップS4では、ステップS3で得られた左右モータ23,33の指令値Fwlref,Fwrrefに対応した左右モータ23,33の電流の指令値Iml,Imrを算出する。ここでは、各指令値Fwlref,Fwrrefに、モータの電流−トルク特性から定まる定数 Cl,Crを各々掛けることにより各モータの各指令値に対応した電流の指令値Iml,Imrを各々求め、その指令値Iml,Imrを左右モータ23,33に与える。また、実際は、算出された各電流の指令値Iml,Imrは(図示しない)モータのドライバ回路に送信され、そこで各電流の指令値に応じて各モータに印加される各パルス電圧のデューティ比を調節することで各モータに供給される各電流を制御している。 In step S4, the command values Iml and Imr of the currents of the left and right motors 23 and 33 corresponding to the command values Fwl ref and Fwr ref of the left and right motors 23 and 33 obtained in step S3 are calculated. Here, by multiplying each command value Fwl ref and Fwr ref by constants C l and C r determined from the current-torque characteristics of the motor, current command values Iml and Imr corresponding to each command value of each motor are obtained. Then, the command values Iml and Imr are given to the left and right motors 23 and 33, respectively. In actuality, the calculated command values Iml and Imr of each current are transmitted to a motor driver circuit (not shown), where the duty ratio of each pulse voltage applied to each motor is determined according to the command value of each current. Each current supplied to each motor is controlled by adjusting.

このように、電源19から左右モータ23,33に供給される電流をIml,Imrに制御することで左右駆動輪22,32のトルク、ひいては左駆動推進力Fwl,右駆動推進力Fwrを個別に制御できることになり、機体の方向安定性を保つことが可能となる。   In this way, by controlling the current supplied from the power source 19 to the left and right motors 23 and 33 to Iml and Imr, the torque of the left and right drive wheels 22 and 32, and thus the left drive propulsion force Fwl and the right drive propulsion force Fwr are individually obtained. It becomes possible to control, and it becomes possible to maintain the direction stability of the aircraft.

他方、機体が着陸する際には上記左右モータ23,33のコイルの各相に直流電圧を印加する或いは各相の端子を短絡させることで、左右モータ23,33に制動トルクを発生させ機体に制動をかけることが可能となる。あるいは、大きな制動力が必要でない場合は充電回路20により、左右モータ23,33に発生した回転エネルギを回生し電源19を充電する。   On the other hand, when the airframe lands, a DC torque is applied to each phase of the coils of the left and right motors 23 and 33 or a terminal of each phase is short-circuited to generate a braking torque in the left and right motors 23 and 33. It is possible to apply braking. Alternatively, when a large braking force is not necessary, the charging circuit 20 regenerates the rotational energy generated in the left and right motors 23 and 33 to charge the power source 19.

さらに本発明は推進器用原動機がエンジンの場合だけでなく、図4に示すように原動機が電動モータの場合にも同様に適用することが可能である。   Furthermore, the present invention can be applied not only when the prime mover prime mover is an engine but also when the prime mover is an electric motor as shown in FIG.

ここで、Cessna182(セスナ社製)の20%スケールモデルを用いて、本発明による離陸滑走距離の短縮効果の検証を行った結果を図5および図6に示す。ここでは、本発明の滑走方式(プロペラと駆動輪の併用)、「駆動輪のみ」の滑走方式、および「プロペラのみ」の滑走方式において、機体が離陸に必要な揚力を得る速度(14m/s)に達するまでの滑走距離を離陸滑走距離として比較を行った。図5に示されているように、「プロペラのみ」の場合に比べ本発明適用時の離陸滑走距離は約57%低減されている。一方、「駆動輪のみ」の場合は「プロペラのみ」の場合に比べて約23%の離陸滑走距離の低減に留まっており、プロペラと駆動輪を併用する本発明に対し、離陸滑走距離の低減効果は半分以下となっている。   Here, the results of verifying the effect of shortening the take-off run distance according to the present invention using a 20% scale model of Cessna 182 (manufactured by Cessna) are shown in FIGS. Here, in the sliding method of the present invention (combination of propeller and driving wheel), the sliding method of `` driving wheel only '', and the sliding method of `` propeller only '', the speed at which the aircraft obtains the lift necessary for takeoff (14 m / s The comparison was made by taking the run distance to reach) as the take-off run distance. As shown in FIG. 5, the take-off run distance when the present invention is applied is reduced by about 57% compared to the case of “propeller only”. On the other hand, in the case of “only driving wheel”, the take-off running distance is reduced by about 23% compared to the case of “propeller only”, and the take-off running distance is reduced compared to the present invention using both propeller and driving wheel. The effect is less than half.

また、各滑走方式における速度の時間変化を図6に示す。図6に示されるように、速度が14m/s(離陸速度)に近づくと、駆動輪のみの場合は本発明適用時及び「プロペラのみ」の場合に比べ、速度の増加が緩やかになっている。これは駆動輪に用いたモータが高い速度(回転数)までトルクを維持できないためで、これより高い速度域ではプロペラによって機体を加速させる方が効果的である。よって、離陸滑走においては、本発明を用いプロペラと駆動輪を併用することで離陸滑走距離を最小化することができる。   Moreover, the time change of the speed in each sliding method is shown in FIG. As shown in FIG. 6, when the speed approaches 14 m / s (takeoff speed), the increase in speed becomes slower in the case of only driving wheels than in the case of applying the present invention and the case of “propeller only”. . This is because the motor used for the drive wheel cannot maintain torque up to a high speed (number of rotations), and it is more effective to accelerate the aircraft with a propeller in a higher speed range. Therefore, in takeoff run, the takeoff run distance can be minimized by using the present invention in combination with a propeller and a drive wheel.

本発明の短距離離着陸機は、さまざまな形態の航空機の離着陸装置に適用可能であるが、今後需要の伸びが予想される小型航空機に好適に適用することが出来る。特に国土が小さく山がちなわが国では、この技術により現在利用数の低迷する地方空港の活性化、首都圏空港の滑走路の効率的な運用が可能となる。   The short-range take-off and landing aircraft of the present invention can be applied to various types of aircraft take-off and landing devices, but can be suitably applied to small aircraft for which demand growth is expected in the future. Especially in Japan, where the land is small and mountainous, this technology enables the activation of local airports that are currently sluggish and the efficient operation of runways at metropolitan airports.

本発明の短距離離着陸航空機を示す説明図である。It is explanatory drawing which shows the short distance take-off and landing aircraft of this invention. 本発明のトルク制御システムを示す構成説明図である。It is composition explanatory drawing which shows the torque control system of this invention. トルク制御装置による左右モータのトルク制御シーケンスの例を示すフロー図である。It is a flowchart which shows the example of the torque control sequence of the left-right motor by a torque control apparatus. 本発明の他のトルク制御システムを示す構成説明図である。It is composition explanatory drawing which shows the other torque control system of this invention. 本発明による離陸滑走距離の短縮効果の検証を行った結果を示すグラフである。It is a graph which shows the result of having verified the shortening effect of the take-off run distance by the present invention. 滑走方式における速度の時間変化を示すグラフである。It is a graph which shows the time change of the speed in a sliding system.

符号の説明Explanation of symbols

1 胴体
2 左主翼
3 右主翼
4 左水平尾翼
5 右水平尾翼
6 垂直尾翼
11 前脚
12 操舵輪
13 可動脚
14 遊動輪
15 可動脚制御装置
16 スロットル
17 ラダーペダル
18 トルク制御装置
19 電源
20 充電回路
21 左主脚
22 左駆動輪
23 左モータ
31 右主脚
32 右駆動輪
33 右モータ
100 短距離離着陸機
200,300 トルク制御システム
1 fuselage 2 left main wing 3 right main wing 4 left horizontal tail 5 right horizontal tail 6 vertical tail 11 front leg 12 steering wheel 13 movable leg 14 idler wheel 15 movable leg control device 16 throttle 17 ladder pedal 18 torque control device 19 power supply 20 charging circuit 21 Left main leg 22 Left drive wheel 23 Left motor 31 Right main leg 32 Right drive wheel 33 Right motor 100 Short-range take-off and landing aircraft 200,300 Torque control system

Claims (5)

機体重心から斜め後方かつ機軸に対し対称に配置され各々1又は複数の駆動輪を備えた左右主脚と、機体重心前方に配置され1又は複数の遊動輪を備えた前脚とを有する航空機であって、前記左右主脚より機体重心後方に配置され且つ滑走手段を有し任意に対地距離を変化させることができる可動脚と、前記各駆動輪の推進力をラダーの操作量に応じて個別に変化させる推進力可変手段を備え、離陸滑走時において前記航空機の巡航時に使用される主推進装置の推進力と前記各駆動輪の推進力を併用して加速しながら離陸滑走することを特徴とする短距離離着陸航空機。 It is an aircraft having left and right main legs that are arranged obliquely rearward from the center of gravity of the fuselage and symmetrically with respect to the axle and each provided with one or more drive wheels, and front legs that are disposed in front of the center of gravity of the aircraft and provided with one or more idle wheels. A movable leg which is disposed behind the center of gravity of the aircraft from the left and right main legs and has sliding means and can arbitrarily change the ground distance, and the propulsive force of each driving wheel according to the operation amount of the ladder. A variable propulsive force means for changing is provided, and during take-off run, the take-off run is performed while accelerating by using both the propulsion force of the main propulsion device used when cruising the aircraft and the propulsion force of each driving wheel. A short-range take-off and landing aircraft. 前記駆動輪は電動モータによって駆動される請求項1に記載の短距離離着陸航空機。   The short-range take-off and landing aircraft according to claim 1, wherein the driving wheel is driven by an electric motor. 前記推進力可変手段は着陸滑走時においては前記電動モータに制動トルクを発生させる請求項1又は2に記載の短距離離着陸航空機。 The short-range take-off and landing aircraft according to claim 1 or 2 , wherein the propulsive force varying means generates a braking torque in the electric motor during landing landing. 前記航空機の主推進装置を駆動する原動機は内燃機関を備える請求項1から3の何れかに記載の短距離離着陸航空機。 The short-range take-off and landing aircraft according to any one of claims 1 to 3 , wherein the prime mover that drives the main propulsion device of the aircraft includes an internal combustion engine. 前記航空機の主推進装置を駆動する原動機は電動モータである請求項1から3の何れかに記載の短距離離着陸航空機。 The short-range take-off and landing aircraft according to any one of claims 1 to 3 , wherein the prime mover that drives the main propulsion device of the aircraft is an electric motor.
JP2007191772A 2007-07-24 2007-07-24 Short-range take-off and landing aircraft Expired - Fee Related JP5046100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191772A JP5046100B2 (en) 2007-07-24 2007-07-24 Short-range take-off and landing aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191772A JP5046100B2 (en) 2007-07-24 2007-07-24 Short-range take-off and landing aircraft

Publications (2)

Publication Number Publication Date
JP2009023628A JP2009023628A (en) 2009-02-05
JP5046100B2 true JP5046100B2 (en) 2012-10-10

Family

ID=40395839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191772A Expired - Fee Related JP5046100B2 (en) 2007-07-24 2007-07-24 Short-range take-off and landing aircraft

Country Status (1)

Country Link
JP (1) JP5046100B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6626328B2 (en) * 2015-12-02 2019-12-25 株式会社Ihi Electric taxiing system for aircraft
GB2587670A (en) * 2019-10-02 2021-04-07 Advanced Mobility Res And Development Ltd Systems and methods for aircraft
US11708153B2 (en) * 2020-02-22 2023-07-25 ZeroAvia, Inc. Electric acceleration assist for short takeoff and landing capabilities in fixed-wing aircraft

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2355210A (en) * 1940-10-02 1944-08-08 Brewster Aeronautical Corp Airplane retractible tail wheel or skid mount
US2869662A (en) * 1956-02-14 1959-01-20 Alfred L Koup Detachable wheel assembly drive unit
US3977631A (en) * 1975-06-04 1976-08-31 The Boeing Company Aircraft wheel drive apparatus and method
JP2534336B2 (en) * 1988-12-01 1996-09-11 三菱重工業株式会社 Sludge treatment equipment
JPH0425796A (en) * 1990-05-22 1992-01-29 Canon Inc Tilt mechanism of electronic equipment
JP3052090B2 (en) * 1990-11-28 2000-06-12 利臣 鈴木 Aircraft landing gear and control system
JPH05193577A (en) * 1991-10-14 1993-08-03 Toshio Moriyama Wheel of aircraft
JPH0995299A (en) * 1995-08-07 1997-04-08 Toshiaki Tanaka Device for rotating landing wheels of air plane having same speed therewith
JPH09150796A (en) * 1995-11-30 1997-06-10 Mitsubishi Heavy Ind Ltd Aircraft wheel device
US5984229A (en) * 1997-06-02 1999-11-16 Boeing North American, Inc. Extremely short takeoff and landing of aircraft using multi-axis thrust vectoring
JP3369546B2 (en) * 2000-12-18 2003-01-20 科学技術振興事業団 Electric car
JP2004058978A (en) * 2002-07-29 2004-02-26 Yukitaka Urasato Aircraft tire and rim having blade like windmill to reduce friction, shock or the like between tire and runway when aircraft is landing
JP2004203223A (en) * 2002-12-25 2004-07-22 Shinji Matsuda Aircraft wheel racing device
US6845944B2 (en) * 2003-04-11 2005-01-25 The Boeing Company Multi-positional tail skids and associated methods of use
JP2006335171A (en) * 2005-06-01 2006-12-14 Toyota Motor Corp Driving/braking force control device for vehicle

Also Published As

Publication number Publication date
JP2009023628A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
RU2589212C2 (en) Convertiplane
KR101984332B1 (en) Transformation method of hybrid transportation vehicle for ground and air, and hybrid transportation vehicle itself
RU2509685C2 (en) Aircraft chassis and chassis nose landing gear assy
US8702032B2 (en) Compact electric taxi assembly for installation on an aircraft
Rajashekara et al. Flying cars: Challenges and propulsion strategies
US8955793B2 (en) Landing gear method and apparatus for braking and maneuvering
US10532813B2 (en) Dual purpose vehicle for air and ground transportation, and related methods
US20130001355A1 (en) Method of reducing fuel carried by an aircraft in flight
US6131848A (en) Roadable airplane drive through an automotive transaxle
CN205930082U (en) Electronic hovercar of coaxial anti - oar double -duct formula
JP5004224B2 (en) Short-range take-off and landing aircraft
CN101367436B (en) Miniature hybrid power flying platform and implementing method thereof
JP5046100B2 (en) Short-range take-off and landing aircraft
RU2551300C1 (en) Flying car
JP6631367B2 (en) Amphibious vehicle
US20200039658A1 (en) Acceleration control for a convertible air-road vehicle
GB2570763A (en) Aircraft electric taxi system design and operation
CN201317462Y (en) Small hybrid power flying platform
US20230312087A1 (en) Aircraft nose landing gear assembly
US20210261242A1 (en) Electric acceleration assist for short takeoff and landing capabilities in fixed-wing aircraft
WO2010064326A1 (en) Flying automobile
CN1167718A (en) Landing transportation shuttle for cosmonautic vehicle
OA17071A (en) Transformation method of hybrid transportation vehicle for ground and air, and hybrid transportation vehicle itself.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees